FIPS 201 Cryptography and PKI

Tim Polk May 26, 2005

Information Technology Laboratory

Computer Security Division

Cryptographic Requirements Overview

- FIPS 201 relies on cryptography
 - o To protect objects stored on the PIV card
 - o To authenticate the PIV card or cardholder
 - To authenticate the source and integrity of status information
- The details are in SP 800-78

Cryptographic Strength Requirements

- SP 800-78 mandates a transition from 80 bit strength to 112 bits of strength by 1/1/2011
 - Cryptographic keys that provide long term data protection transition by 1/1/2009 to provide two years "forward security"
- Elliptic Curve Cryptography is specified with a minimum of 112 bits of strength (224 bit keys)
 - o Avoid transition issues

Cryptographic Objects Stored on the PIV Card

- FIPS 201 specified
 - o Cryptographic keys
 - o Digitally signed objects
 - CHUID
 - Biometrics
 - X.509 Certificates
- SP 800-073 specified
 - o Authentication/Integrity Object

Cryptographic keys

• Asymmetric private keys

- o PIV Authentication key (Mandatory)
- Digital Signature key (Optional)
- o Key Management key (Optional)
 - May support key transport or key agreement
- Card Management Key (Optional)
 - o Symmetric key
- PIV Card Authentication Key (Optional)
 May be symmetric or asymmetric

Asymmetric Algorithms for Cryptographic Keys

- SP 800-78 limits asymmetric keys to RSA and ECC
 - o RSA must be 1024/2048/3072
 - 1024 bit keys phased out by 1/1/2011
 - Digital signature and key management keys transition by 1/1/2008 to provide for forward security
 - Authentication keys transition by 1/1/2011 since forward security is not an issue
 - ECC must use a recommended curve from FIPS 186-2
 - 224 through 283 bit keys
 - No phase out specified

X.509 Certificates for Asymmetric Keys, I

- PIV Authentication and Card Authentication certificates
 - o Subject name is omitted
 - o OtherName contains FASC-N
 - May not be stored in public directories!
 - OCSP and CRL based status distribution mandatory

X.509 Certificates for Asymmetric Keys, I

- PIV Authentication and Card Authentication certificates
 - o Assert CommonAuth certificate policy
 - KeyUsage asserts digitalSignature but not nonRepudiation
- Card Authentication certificates
 - Mandatory extended key usage signals cryptographic operations performed without cardholder authentication

X.509 Certificates for Asymmetric Keys, III

- PIV Signature and Key Mgmt certificates
 - Assert the *commonHW* certificate policy
 - Subject name is present
 - FASC-N is omitted
 - o Optionally stored in public directories
 - o CRL based status information mandatory
- PIV Signature Certificate
 - KeyUsage asserts both digitalSignature and nonRepudiation

Symmetric Algorithms for Cryptographic Keys

- SP 800-78 limits symmetric keys to Triple DES (TDEA) and AES
 - o TDEA must be two key or three key
 - Two key TDEA phased out by 1/1/2011
 - o AES may be 128, 192, or 256 bit keys
 - No phase out specified

Digitally Signed Objects

- Signatures may be generated using RSA or ECDSA
 - o RSA may use PKCS #1 or PSS padding schemes
 - o SHA-1, SHA-224, and SHA-256 hash algorithms
 - SHA-1 phased out by 1/1/2011
- Phase out depends on card *expiration*, not signature generation date

SP 800-73 Security Object

- ICAO Authentication/Integrity Object
- Digitally signed hash table
 - The table includes a message digest for each of the objects (CHUID, keys, etc.) stored on the card
 - o Message digests are generated using SHA-1, SHA-224, or SHA-256
 - SHA-1 phased out by 1/1/2011
 - o Signature requirements from previous slide

Status Information

- FIPS 201 relies upon digitally signed X.509 CRLs and OCSP responses to distribute status information
- Signatures may be generated using RSA or ECDSA
 - o RSA may use PKCS #1 or PSS padding schemes
 - o SHA-1, SHA-224, and SHA-256 hash algorithms
 - SHA-1 phased out by 1/1/2011
- Phase out depends on signature generation date

OCSP and FIPS 201

- OCSP
 - mandatory for status of PIV Authentication
 Key and Card Authentication Key (if present)
 - Optional for Signature and Key Management Key
- Outstanding comment
 - o OCSP service requirements are underspecified
 - Are nonces required?

Summary: Certificates

- X.509 certificates to support FIPS 201 conform to standard FPKI profiles but
 - Use of the otherName field in the subject alternative name extension to specify the FASC-N
 - Use the extended key usage extension to differentiate the Card Authentication key
 - Rely on the AIA and SIA extension for path building and to locate status information

Summary: Algorithms

- RSA and SHA transition strategies from Common Policy are specified in SP 800-78
 - Move to 2048 bits RSA (or comparable) and SHA-256 is mandated
 - PSS padding for RSA signatures specified
- ECC is a transition strategy, but limited to six of the NIST Approved curves from FIPS 186-3
- 2 key TDEA phased out in 2010

Summary: Architecture

- OCSP is required to distribute status for authentication keys
- CRLs are required to distribute status for all certificates
- LDAP and HTTP are required to distribute CA certificates and CRLs

