

On the Unification of Access Control and Data Services

David Ferraiolo1, Serban Gavrila1, Wayne Jansen2

1National Institute of Standards and
Technology

Gaithersburg, MD 20899, USA
{dferraiolo, gavrila}@nist.gov

2Bayview Behavioral Consulting

Point Roberts, WA 98281, USA
 jansen@computer.org

Abstract

A primary objective of enterprise computing (via a
data center, cloud, etc.) is the controlled delivery of data
services (DS). Typical DSs include applications such as
email, workflow, and records management, as well as
system level features, such as file and access control
management. Although access control (AC) currently
plays an important role in imposing control over the
execution of DS capabilities, AC can be more
fundamental to computing than one might expect. That is,
if properly designed, a single AC mechanism can
simultaneously implement, control, and deliver
capabilities of multiple DSs. The Policy Machine (PM) is
an AC framework that has been designed with this
objective in mind. This paper describes the PM features
that provide a generic AC mechanism to implement DS
capabilities, and comprehensively enforces mission
tailored access control policies across DSs.

Keywords: Access Control; Data Services, Access
Control Policy, Policy Machine, Operating Environment

1. Introduction

Controlled delivery of data services (DS) is a primary
objective of enterprise computing. In addition to the
ubiquitous electronic mail and file management, DSs
commonly deployed in an enterprise include services for
time and attendance reporting, payroll processing, health
benefits management, and workflow management. All
DSs include computational capabilities that consist of
operation/object pairs, which allow the reading, writing,
and management of data, and distribution of access rights.
Control over the delivery of DSs is achieved through
authentication and access control (AC) mechanisms,
typically made available through an operating
environment (OE).

While AC currently plays an important role in securing
DSs, by building AC and DS from the same underlying
elements, AC can serve an even more substantial role in
computing. With this goal of unification in mind, the
Policy Machine (PM)’s AC framework was designed to
implement a security critical portion of the program logic
of arbitrary DSs and to enforce arbitrary, mission-tailored
AC policies over DSs, solely through the configuration of
its AC data [8]. PM policies are attribute based and
multiple, distinct classes of policy can be maintained
under the framework. The type of an object is transparent
to users—they can view and consume all data regardless
of type, in a manner consistent with the defined policies,
and under a single authenticated session.

To appreciate the PM’s benefits in computing, it is
important to recognize the methods in which DSs are
delivered today. Each DS runs in an OE, which can be of
many types (e.g., operating systems, database systems,
and many applications), each implementing its own
routines to enable the execution of DS-specific operations
(e.g., read, send, approve, select) on their respective data
types (e.g., files, messages, work items, records). To
impose control, each OE typically implements its own
method for identifying and authenticating its users. In
addition to authentication, many OEs implement their own
method of AC to selectively limit a user’s ability to
perform operations on its objects.

The heterogeneity among OEs introduces a number of
administrative and policy enforcement challenges and user
inconveniences. Administrators must contend with a
multitude of security domains when managing access
policy, each with a local scope of control (user, data), and
ordinary users and administrators alike must authenticate
to and establish sessions within different OEs in order to
exercise legitimate DS capabilities. Even if properly
coordinated across OEs, access control policies are not
always globally enforced and leakage or other unwanted
access can occur. An email application may, for example,
distribute files to users regardless of an operating system’s

protection settings on those files. Moreover, special types
of controls that are required over sensitive data can be
especially difficult to implement in a piecemeal fashion
across different OEs.

To alleviate these security management, policy
enforcement, and usability challenges, the PM offers a
multi-user, enterprise-wide OE. The approach taken is to
provide a generic AC mechanism that can implement
computational capabilities of arbitrary DSs, and displaces
fractional AC decision making and enforcement by
different OEs, with a single administrative domain and
scope of control, amounting to a general purpose OE.

The PM has evolved from a concept, to a formal
specification [9], to a reference implementation and open
source distribution, which have served as a basis for an
ANSI/INCITS standardization effort under the title of
"Next Generation Access Control" (NGAC) [1, 2].
Previous publications [6, 7] have described the PM’s
capabilities in expressing and enforcing a wide variety of
AC policies. The focus of this paper is on the PM’s
unification of AC and DSs.

The remainder of the paper gives in increasing details
to the PM’s approach to achieving the unification.

2. Overview

At its highest level the PM is a logical “machine”
comprising:

• Two types of objects: AC data consisting of data
elements and relations used to express access
control policies and DS capabilities, and DS data;

• A set of operations: read, write1, for DS data, plus
administrative operations for configuring the AC
data; and

• A set of functions for trapping and enforcing policy
on access requests, for computing access decisions
to accommodate or reject those requests based on
the current state of the AC data, and for
automatically altering access state when specified
access events occur.

The PM is based on the premise that AC and DS logic
can be expressed in terms of the same elements. AC
provides the underpinnings for unification. DS capabilities
are delivered to users through AC requests and policy is
enforced over those requests, but only with respect to the
operation and object types of the OE in which the AC is
implemented. The question is whether a single AC can be
general enough to support the operation types and object
types of arbitrary DSs? To accommodate arbitrary DS
object types and operation types through a single AC
mechanism, the PM takes a data-centric approach. That is,

1 Our unification approach is based on a slight specialization of NGAC,
as we limit resource operations to read and write, and NGAC does not.

the PM does not control access to DSs, but to DS data
types (e.g., documents, messages), which are treated
simply as objects that can be read and written 2 . DS
operations (e.g., read, send, submit, approve, schedule)
are treated as combinations of read/write operations on
DS data and administrative operations on AC data that
alter the access state. In addition, the PM organizes the
AC data and DS data using three kinds of containers,
which are instrumental in the distribution of capabilities to
users and the expression and enforcement of policies.

Some aspects of DS functionality cannot be
accommodated by the PM. For example, operations such
as spell checking, font selection, and user presentation,
pertain to specific methods for writing and reading and
must be implemented in DS logic outside of the PM’s
purview.

The PM is a generic OE in the sense that through the
same access request interface, set of operations, AC data
elements and relations, and functional components,
arbitrary DSs can be delivered to users. Arbitrary access
control policies can be expressed and enforced over
executions of DS capabilities. Because the PM’s
functional architecture is fixed, the PM’s AC data
elements and relations provide the basic ingredients for
expressing policy and DS logic.

2.1. Elements and relations

The PM’s AC data elements include users, processes,
objects, and three kinds of containers: user and object
attributes, and policy classes. These containers group and
characterize their members to reflect vital traits relevant to
policy and DSs. User containers can represent roles, such
as doctor or bank teller; affiliations, such as divisions,
communities-of-interest or teams; or other common
characteristics pertinent to policy, such as security
clearances. Processes, through which a user attempts
access, take on the same attributes as the invoking user.
Data object containers work similarly in characterizing
data, by identifying collections of objects such as those
associated with certain projects, applications, or security
classifications. Object containers can also represent
compound objects, such as folders, inboxes, table columns
or rows, to satisfy the requirements of different DS’s.
Policy class containers are used to group and characterize
collections of policy or DS at a broad level, with each
container representing a distinct set of related
configuration items.

An assignment relation provides the linkage between
all configuration elements and the properties they
represent. For example, the assignment of a user to a user

2 Execute operation is not included because it is an indirect method of
reading and writing data which can be controlled by the PM.

attribute denotes that the user obtains the properties held
or represented by the attribute. The same convention
applies to the assignment of objects to object attributes
and the other pairwise assignments between configuration
elements allowed by the relation. Through assignments to
a designated policy class, attribute containers and the
elements they contain are organized into distinct classes of
policy or DS. Policy classes can be mutually exclusive or
overlap to various degrees to meet a wide range of policy
and DS requirements and styles of administration.

Two other key attribute-oriented relations help
represent a PM policy and DSs: associations and
prohibitions. Associations describe the access rights that
a class of users holds over a class of data objects or AC
data, which are used to authorize operations that can be
performed. Prohibitions describe access rights that users
or their processes cannot exercise over a class of data
objects or AC data, which are used correspondingly to
prevent operations from being performed. When deciding
whether to grant or deny an access request, an
authorization decision function evaluates privileges and
restrictions that are derived respectively from all of the
prevailing associations and prohibitions.

One final PM relation is obligations. Each obligation
stipulates a sequence of actions that are to be taken when
an associated, pre-designated, access event takes place.
Obligations serve as a way of automating administrative
actions and representing certain types of dynamic
conditions, such as those involved in separation of duty or
workflow policies.

2.2. Functional architecture

The PM functional architecture (vis. figure 1) involves
several components that work together to bring about
policy preserving access and DSs. Among these
components is a Policy Enforcement Point (PEP) that
traps DS access requests. An access request includes a
process id, user id, operation, and object. The operation
may be a read/write, or administrative and the object may
be a DS data element or an AC data element or relation.
Administrative operational routines are implemented in
the Policy Administration Point (PAP) and read/write
routines are implemented in Resource Servers (RS). To
determine if a request should be granted or denied the
PEP submits the request to a Policy Decision Point (PDP).
The PDP computes a decision based on current
configuration of data elements and relations stored in the
Policy Information Point (PIP), via the PAP. The PDP
returns a decision of grant or deny to the PEP. If access is
granted, and the operation was read/write the PDP also
returns the physical location where the object’s content
resides, and the PEP issues a command to the appropriate
RS to execute the operation on the object content, and the
RS returns the status. In the case of a read operation, the

RS also returns the data type of the object (e.g., .ppt.) and
the PEP invokes the correct DS application for its
consumption. If the request pertained to an administrative
operation and the decision was grant, the PEP issues a
command to the PAP for execution of the operation on the
data element or relation stored in the PIP, and the PAP
returns the status to the PEP. Users access data of varying
data types, in a manner consistent with the defined
policies, and under a single authenticated session. If the
status of successful is returned by either the RS or PAP
the PEP submits the context of the access to the Event
Processing Point (EPP). If the context matches an event
pattern of an obligation the EPP automatically executes
the administrative operations of that obligation,
potentially changing the access state.

Note that the AC is data type agnostic. It sees objects
as just data or AC elements and relations, and it is not
until after the access process is complete, that the actual
type of object matters to the DS.

Figure 1. PM functional architecture

3. Specifics and examples

User attributes and object attributes generically
characterize their members. An object is a name that
indirectly references its content. As such, every object is
an attribute of itself. Through assignments to a designated
policy class, attribute containers and the elements they
contain are organized into distinct classes of policy. Every
user, user attribute, and object attribute must be contained
in at least one policy class. Policy classes can be mutually
exclusive or overlap to various degrees to meet a wide
range of policy and DS requirements.

We use the symbol “→” to generically denote these
assignment relations regardless of their type without
danger of confusion, in that assignment always infers
containment. We denote by “→+” a chain of 1 or more
assignment relations.

In addition to assignments, PM includes an association
relation. An association is a triple, denoted by ua---ops---
ce, where ua is a user attribute, ops is an operation set,
and ce is a configuration element, comprising of either a
user attribute, object attribute, operation set, or policy
class. Its meaning is that the users contained in ua can
perform the operations contained in ops on the objects
contained in ce.

Figure 2 illustrates two example assignment and
association relations depicted as graphs – one an AC
policy configuration with policy class Project Access, vis.
figure 2a, and the other vis. figure 2b, a DS configuration
with File Management as its policy class. Users and user
attributes are on the left side of the graphs and objects and
object attributes are on the right. The arrows represent
assignment relations and the dashed lines are associations.

Figure 2. Two example assignment and association

graphs

The AC of Figure 2a specifies that users assigned to

either Group1 or Group2 can read data objects contained
in Projects, but only Group1 users can write to Project1
data and only Group2 users can write to Project2 data.
The Policy further specifies that only Group2 users can
read/write data objects in Gr2-Secret. While figure 2a
specifies policies for how its data can be read and written,
the configuration is considered incomplete in that it does

not specify how its elements and relations were created
and can be managed. Figure 2b depicts a File
Management DS. User u2 (Bob) has read/write access to
objects assigned to folders (Proposals and Reports) that
are assigned to his home directory (Bob Home). The
configuration also shows user u1 (Alice) with read/write
access to object o2. This configuration is also considered
incomplete in that one would expect user capabilities to
create and manage folders and to create and assign objects
to their folders. Another feature common to File
Management is the capability for a user to grant access to
objects that are under his/her control to other users.

We specify these and other management capabilities
for the Project Access policy and File Management DS,
later in this section.

Collectively associations and assignments indirectly
specify privileges of the form (u, op, o), with the meaning
that user u is permitted (or has a capability) to perform
operation op on object o.

PM includes a combining algorithm for defining
privileges with respect to policy classes. Specifically, (u,
op, o) is a privilege iff for each policy class, pc in which o
is contained there exists an association ua---ops---ce,
such that u is in ua, op is in ops, and o is in ce and ce is in
pc. Note the algorithm also works when there is just one
policy class.

The left and right columns of table 1 list the privileges
for the graphs (a) and (b) of figure 2, when considered
independent of one another. Table 2 lists the privileges for
these graphs in combination. Note that (u1 r, o1) is a
privilege in table 2 because o1 is only in policy class
Project Access and there exist an association Division---{r
}--- Projects, where u1 is in Division, r is in {r}, and o1 is
in Projects. Note that (u1, w, o2) is not a privilege because
o2 is in both Project Access and File Management, and
although there exist an association Alice---{r, w}---o2,
where u1 is in Alice, w is in {r, w}, and o2 is in o2 in File
Management, no such association exists in Project Access.
As we later demonstrate this combining algorithm
provides the basis for comprehensive policy enforcement
over DSs.

Table 1. List of derived privileges for the independent

configurations of figures 2(a) and 2(b)
(u1, r, o1), (u1, w, o1), (u1,
r, o2), (u2, r, o1), (u2, r,
o2), (u2, w, o2), (u2, r, o3),
(u2, w, o3)

(u1, r, o2), (u1, w, o2), (u2,
r, o2), (u2, w, o2), (u2, r,
o3), (u2, w, o3), (u2, r, o4),
(u2, w, o4)

Table 2. List of derived privileges for the combined

configurations of figures 2(a) and 2(b)
(u1, r, o1), (u1, w, o1), (u1, r, o2), (u2, r, o1), (u2, r, o2),
(u2, w, o2), (u2, r, o3), (u2, w, o3)

In reality, users do not actually issue access requests;
processes do, usually, but not always, on behalf of a user.
In addition to users, PM includes processes among its
basic elements. The PM treats users and processes as
independent but related entities. A process is a system
entity, with memory, and operates on behalf of a user. A
user may be associated with one or more processes, while
a process is always associated with just one user. The
function process user(p) denotes the user associated with
process p. We denote by <op, o>p a process access
request, where op is an operation and o is an object.

PM includes two types of prohibitions: user-deny and
process-deny. In general, deny relations specify privilege
exceptions. We denote a user-based deny relation by
u_deny(u|ua, ops, os), where u|ua is either a user u, or a
user attribute ua, ops is an operation set, and os is an
object set. Its meaning is that user u or any user assigned
to ua cannot perform the operations in ops on the objects
in os. User-deny relations can be created by an
administrator or as a consequence of an obligation. For
example, an administrator could impose a condition where
no user is able to alter his/her own Tax Return, in spite of
the fact that he/she is assigned to an IRS Auditor user
attribute with capabilities to read/write all tax returns.
When created through an obligation, user-deny relations
can take on a number of dynamic policy conditions to
include that of separation of duties (if a user executed
capability x, that user would be immediately precluded
from being able to perform capability y).

A process-deny relation is a triple of the form
p_deny(p, ops, os), where p is a process, ops is an
operation set, and os is an object set. Its meaning is that
the process p cannot perform operations in ops on the
objects in os. By specifying os as its complement, denoted
by ¬, the meaning of p_deny(p, ops, ¬os) is that the
process can not perform the operations in ops on objects
not in os. Process-deny relations are exclusively created
through obligations. Their primary use is in the
enforcement of confinement conditions (if a process reads
Top Secret data, preclude that process from writing to any
data object container other than that of Top Secret).

With derived privileges and prohibitions in place, we
are now able to describe the PM authorization decision
function. The PM authorization decision function governs
accesses in terms of user processes. When determining
whether to grant or deny an access request, the
authorization decision function takes into account all
privileges and restrictions that apply to a user and its
processes, which are derived from relevant associations
and prohibitions, giving prohibitions precedence over
privileges. That is, access requests to perform an
operation on an object are issued only from processes
acting on behalf of some user, and are granted
authorization only if the processes’ user holds appropriate
privileges that allows the access and no restriction exists

that would prevent the access. Otherwise, the access
request is denied:

A process access request <op, o>p is granted iff there
exists a privilege (u, op, o), where u = process user(p),
and no restriction (u, op, o) or (p, op, o) exists.

Administrative operations are implemented through
parameterized routines, prefixed by a condition, with a
body that describes how a data set or relation (denoted by
R) changes to R’. The condition tests the validity of the
actual parameters. If the condition evaluates to false, then
the routine fails:

Rtnname (x1, x2, …, xk) {
 if {conditions} then

{
R1′= f1 (R1, x1, x2, …, xk)
R2′= f2 (R2, x1, x2, …, xk)
…
}}

The remainder of this paper uses administrative
operations whose meaning should be obvious from their
names. To execute an administrative operation the
requesting user must possess the required capability. Just
as capabilities to perform operations on data objects are
defined in terms of associations, so too are capabilities to
perform administrative operations on data elements and
relations.

Recall that an association has the general format: ua ---
ops --- ce, where ua is a user attribute, ops is a set of
operations, and ce is an object attribute, policy class, user
attribute, or operation set. The exact
treatment/interpretation of ce depends on the operations
included in ops, but in general the association specifies
that users of ua are authorized to perform the operations
in ops on elements in ce.

The following association enables administration of the
assignments depicted in figure 2a, by users assigned to
ProjectAccessAdmin (not shown):

ProjectAccessAdmin --- {create-u, delete-u, create-ua,
delete-ua, create-o, delete-o, create-oa, delete-oa, r,
w}--- Project Access
Its meaning is that all users in ProjectAccessAdmin can

create and delete users, user attributes, objects and object
attributes, as well as read and write objects, anywhere in
the policy class Project Access.

The next two associations enable users in
ProjectAccessAdmin to create and delete associations in
the Project Access policy class:

ProjectAccessAdmin -- {create-assc-from, delete-assc-
from} -- Division
ProjectAccessAdmin -- {create-assc-to, delete-assc-
to}, Projects
To prevent a user assigned to ProjectAccessAdmin

from giving him/herself access to resources controlled by

Project Access policy, a different administrator could
create the following prohibition:

u-deny(ProjectAccessAdmin, {r, w}, Projects ∪ Gr2-
Secret)
The question remains, how are administrative

capabilities created? The answer begins with a super user
with capabilities to perform all administrative operations
on all data elements and relations. A super user can either
directly create administrative capabilities or more
practically can create administrators and delegate to them
capabilities to create and delete administrative privileges.
PM provides a single administrative domain and enables a
systematic approach to the creation of administrative roles
and delegation of administrative capabilities, beginning
with a super user and ending with users with DS
capabilities.

In addition to their individual executions, an authorized
administrator can execute a collection of administrative
operations through an administrative command. An
administrative command is a parameterized sequence of
administrative operations.

Consider the following administrative command within
the context of figure 2b, where the user attribute Users
assigned to the File Management policy class pre-exists:

create-file-mgmt-user(user-id, user-name,
user-home) {

 create-ua(user-name, Users);
 create-u(user-id, user-name);
 create-oa(user-home, File Management);
 create-assc(user-name, {r, w}, user-
 home);
 create-assc(user-name, {create-o,
 delete-o}, user-home);
 create-assc(user-name, {create-ooa,
 delete-ooa,create-oaoa, delete-oaoa},
 user-home);
 create-assc(user-name, {create-assc,
 delete-assc},{Users, {r, w}, user-
 home}); }

Through the execution of this command with
parameters (u1, Bob and Bob Home), the user attribute
“Bob” is created and assigned to “Users”, and user u1 is
created and assigned to “Bob”. In addition, the object
attribute “Bob Home” is created and assigned to policy
class “File Management”. Through the execution of this
command user u1 is delegated capabilities to create,
organize, and delete object attributes (DS folders) in Bob
Home. In addition, u1 is provided with capabilities to
create, read, write and delete objects that correspond to
files and place those files into his folders. In addition, u1
is provided with capabilities to “grant” to users in the
“Users” container, capabilities to perform read/write
operations on individual files or to all files in folders in
his Home. As indicated, by figure 2b User u2 (Bob) has
granted user u1 (Alice) read/write access to object o2.

It is important to recognize that regardless of the
method in which a DS distributes capabilities, the Project
Access policy will always be comprehensively enforced,
so long as no user of those DSs can delete o→+ Gr2-
Secrets assignments for any object o. For instance,
although the current configuration of the File Management
DS gives user u2 (Bob) the capability to grant Alice
read/write access to object o3, Alice would not be able to
execute that capability (in accordance with the
authorization decision function and in consideration of the
Project Access policy). As another example, imagine an
email DS that includes the association Charlie---{r}---
CharlieInbox, where email users have the capabilities to
assign objects to each other’s Inboxes. As an email user,
Bob could assign o3 to CharlieInbox, but unless the
Project Access policy authorized Charlie to read o3, the
assignment would have no effect.

Final examples pertains to obligations, which consist of
a pair (ep, r) (usually denoted when ep do r), where ep is
an event pattern and r is a sequence of administrative
operations, called a response. The event pattern specifies
conditions that if matched by the context surrounding a
process’ successful execution of an operation on an object
(an event), the administrative operations of the associated
response are immediately executed. The context may
pertain to and the event pattern may specify parameters
like the user of the process, the operation executed, and
the attribute(s) in which the object is contained.

Obligations can specify operational conditions in
support of history-based policies and DSs. Such
conditions include Conflict-of-Interest (if a user reads
information from a sensitive data set, that user is
prohibited from reading data from a second data set),
Work Flow (approving (writing to a field of) a work item,
enables a second user to read and approve the work item).
Also, included among history-based policies are those that
prevent leakage of data to unauthorized principals.

Consider the cumulative configuration for the Project
Access Policy and File Management DS once again.
Although Bob cannot successfully provide Alice read
access to object o3 through his grant capability, Bob could
still provide Alice with the ability to read the content of
o3. This could be achieved by Bob first reading the
content of o3 and then writing that content to o2. Even if
we were to trust Bob not to perform such actions, a
malicious process acting on Bob’s behalf could, without
Bob’s knowledge. To prevent this leakage we add the
following obligation to our configuration:

When any process p performs (r, o) where o→+ Gr2-
Secrets do create p-deny(p, {w}, ¬Gr2-Secrets)
 This obligation will prevent a process (and its user)

from reading the contents of any object in Gr2-Secrets and
writing it to an object in a different container (outside of
Gr2-Secrets).

A typical OE DS element is copy/paste. Also typical of
copy/paste is the issue that two processes could cooperate
in leaking data through the use of this feature. That is, one
process could read data, e.g., a Gr2-Secrets file, followed
by a copy/paste operation from the memory of the first
process to the memory of the second process followed by
the second process writing the data to another object,
making the data available to users that are not authorized
to read the data. We can accommodate copy/paste while
addressing this concern. The copy/paste functionality can
be implemented as DS specific logic (not provided by the
PM) and two PM administrative commands; one for copy
and the other for paste. The copy command is executed
with the capabilities of the user running the first process.
The DS logic reads highlighted text from the source object
into a clipboard. The copy command creates an object that
represents the clipboard. This event triggers an obligation
response that assigns the clipboard object to all attributes
of the source object. The paste command is executed with
the capabilities of the same user running a second process.
The paste command attempts to read the clipboard object.
If the paste command is successful, the DS logic inserts
the clipboard content into the second process’ memory at
a designated position.

The copy/paste functionality provides the expected
inter-process communication, while adhering to policy.
The PM enabled logic (copy and paste administrative
commands) and the previous obligation, together prevent
copying of an object in Gr2-Secrets and the subsequent
pasting of its contents into an object that is not in Gr2-
Secrets. That is, the copy operation would create and
assign the clipboard object to Gr2-Secrets, and in
accordance with the previous obligation, any subsequent
process that reads from the clipboard (e.g., paste) would
be prevented from writing to any object (e.g., o2) that is
not in Gr2-Secrets.

4. Related work

Previous publications [6, 7] have demonstrated the
PM’s ability to separate policy from mechanism, by
describing the PM’s capability in expressing and
enforcing combinations of well-documented policies,
including role-based, discretionary, and mandatory access
controls, as well as support for novel types of policies that
have been conceived but never implemented due to the
lack of a suitable enforcement mechanism. The approach
applied the same functional architecture and AC data
elements and relations defined in this paper, but did not
specify an approach for delivering DS capabilities.

The notion of a multi-policy machine capable of
combining policies was envisioned by Hosmer in the early
90’s [10]. Inherent to our approach to comprehensive
enforcement, is the ability to combine policies. However,

the two approaches are quite different. The multi-policy
machine combines and resolves conflicts among multiple
access control policies each implemented inside a
different access control mechanism. The individual
mechanisms that compute decisions and enforce policy are
assumed to be already implemented and may pertain to a
variety of policies. The ultimate decision to grant or deny
a request in the multi-policy machine is based on
metapolicies (order, priorities, etc.) and a voting schema.

Our approach is based on the PM that requires changes
only in its configuration in the enforcement of arbitrary
and organization specific attribute-based access control
policies. Some of these policies happen to be composed of
combinations of sub-policies. Besides being a single
(enterprise-wide) mechanism, the PM does not resolve
conflicts, and does not use metadata for combining policy
elements.

The Extensible Access Control Markup Language
(XACML) is an XML-based language standard designed
to express security policies, as well as the access requests
and responses needed for querying the policy system and
reaching an authorization decision [11]. XACML is
similar to the PM insofar as it provides a flexible,
mechanism-independent representation of policy rules that
may vary in granularity, and it employs attributes in
computing decisions. Unlike the PM, XACML does not
provide a single OE or offer a method for accommodating
DS logic. An XACML deployment consists of multiple
OEs that share a common policy decision function. Each
of these OEs implements its own method of
authentication, operational routines, and types of objects.
Requests are issued from, and decisions are returned to, an
OE specific PEP through a standardized request and
response language. XACML and the PM also differ in
their approach to creating and altering its AC data. As a
prominent feature in its approach to unification of AC and
DSs, the PM manages its AC data through a standard set
of administrative operations, applying the same PEP
interface and reference mediation function as it uses for
accessing data resources. XACML does not recognize
administrative operations, but instead manages policy
content through its language, and offers no administrative
method for the management of its attributes.

The concept of trust management as an overlay on
existing OEs was introduced with the PolicyMaker system
[3]. Trust management presents a comprehensive
approach to specifying and interpreting security policies,
credentials, and relationships to allow authorization
decisions to be made about security-critical actions. To
provide a coherent framework for expressing
interrelationships between security policies, security
credentials, and trust relationships, PolicyMaker and its
successor KeyNote utilize public key infrastructure
environments, certificate-based trust, and binding of
cryptographic keys to actions [4, 5]. Unlike other access

control approaches focused mainly on OEs, trust
management is particularly suited for situations where
security policy is decentralized and distributed across a
network, such as multi-system applications and DSs that
cross departmental and organizational boundaries [5]. In
this regard, PolicyMaker and KeyNote are similar to our
use of the PM in providing a general purpose policy
management and enforcement approach in support of DSs,
but does not attempt to implement the capabilities of those
DSs.

5. Conclusion

In this paper, we suggest that the next level of
evolution for AC lies in a unification of AC and DSs. The
PM was designed with this evolutionary goal in mind,
amounting to a general purpose OE. The PM is a generic
OE in the sense that through the same access request
interface, set of operations, AC data elements and
relations, and functional components, arbitrary DSs can be
delivered to users, and arbitrary, mission-tailored access
control policies can be expressed and enforced over
executions of DS capabilities, solely through the
configuration of its AC data. The practical benefits are
many. Rather than a user having to authenticate to
multiple OEs to exercise legitimate DS capabilities, a user
can access all of his/her data, regardless of its type, in a
manner consistent with policy, under a single
authenticated session. This is because the PM is data type
agnostic, and offers a single OE and scope of control.
Policies are also globally enforced over DS, due to the
PM’s combining algorithm for deriving privileges and
global treatment of prohibitions when computing
authorization decisions. Rather than Administrators
having to contend with a multitude of OE specific security
domains when managing access policy, the PM provides a
single administrative domain and enables a systematic
approach to the creation of administrative roles and
delegation of administrative capabilities, beginning with a
super administrator and ending with users with DS
capabilities. Finally, because the PM displaces AC
features that are often implemented in application code to
an underlying AC framework, those features can be made
less susceptible to bypass and less vulnerable to attack.

The PM is more than just a concept. Through its
reference implementation, its features and capabilities
have been shown to be viable. The implementation is
available from GitHub as an open source distribution to
allow wide-spread experimentation and transfer. Example
DSs are provided with the distribution, and include
messaging, records management, and work flow
applications, cut/copy and paste, and several
representative office applications.

The PM's architecture and formal model has been
adopted by the American National Standards Institute,
International Committee for Information Technology
Standards (INCITS) as the basis for the Next Generation
Access Control standard [1, 2].

6. References

[1] Information technology - Next Generation Access Control -

Functional Architecture (NGAC-FA), INCITS 499-2013,
American National Standard for Information Technology,
American National Standards Institute, March 2013.

[2] Working DRAFT Information technology - Next
Generation Access Control – Generic Operations and Data
Structures (NGAC-GOADS)), INCITS 499-2013,
American National Standard for Information Technology,
American National Standards Institute, April 2014.

[3] Mat Blaze, Joan Feigenbaum, and Jack Lacy, Decentralized
Trust Management, IEEE Symposium on Security and
Privacy, Oakland, CA, USA, pp. 164-173, May 1996.

[4] Mat Blaze, Joan Feigenbaum, and Angelos Keromytis,
KeyNote: Trust Management for Public-Key
Infrastructures, The 6th International Workshop on
Security Protocols, Cambridge, UK, April 1998, in Vol.
1550 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 59--63.

[5] Mat Blaze, Joan Feigenbaum, John Ioannidis, and Angelos
Keromytis, The KeyNote Trust Management System,
Version 2, RFC-2704. IETF, September 1999.

[6] David Ferraiolo, Serban Gavrila, Vincent Hu, and Rick
Kuhn, Access Control Policy Management: Composing
and combining policies under the policy machine,
Symposium on Access Control Models and Technologies
(SACMAT), Stockholm, Sweden, pp. 11-20, June 2005.

[7] David Ferraiolo, Vijayalakshmi Atluria, and Serban
Gavrila, The Policy Machine: A novel architecture and
framework for access control policy specification and
enforcement, Journal of Systems Architecture, Volume 57,
Issue 4, pp. 412-424, April 2011.

[8] David Ferraiolo, Serban Gavrila, and Wayne Jansen,
Enabling an Enterprise-Wide, Data-Centric Operating
Environment, IEEE Computer, Volume 46, Issue 4, pp. 10-
12, April 2013.

[9] David Ferraiolo, Serban Gavrila, and Wayne Jansen, Policy
Machine: Features, Architecture, and Specification,
NISTIR 7987, National Institute of Standards and
Technology, Gaithersburg, Maryland, 109 pp., May 2014.

[10] Hilary H. Hosmer, The Multipolicy Paradigm for Trusted
Systems, Proceedings of the 1992-1993 Workshop on New
Security Paradigms, August 1993, Little Compton, RI,
USA, pp. 19-32.

[11] The eXtensible Access Control Markup Language
(XACML), Version 3.0, OASIS Standard, January 22,
2013, <URL: http://docs.oasis-open.org/xacml/3.0/xacml-
3.0-core-spec-os-en.pd

