

Security

Enabling an Enterprise-
Wide, Data-Centric
Operating Environment
David Ferraiolo and Serban Gavrila, National Institute of
Standards and Technology

Wayne Jansen, Booz Allen Hamilton

The Policy Machine can execute arbitrary data services and specify and
enforce arbitrary but mission-tailored access control policies over those
executions.

A primary objective of
enterprise computing
via a datacenter, the
cloud, and so forth is

the controlled delivery of data ser­
vices—operations on objects that
enable data reading, manipulation,
presentation, management, and
sharing. Typical DSs include appli­
cations such as email, workf low
management, enterprise calen­
dars, and records management as
well as system-level features such
as file, access control (AC), and
identity management.

AC currently plays an important
role in securing DSs; however, if
properly conceived and designed,
it can serve an even more substan­
tial function in computing. A single
AC framework can accommodate
the program logic that deals with
the implementation, distribution,
and enforcement of individual DS
capabilities.

The National Institute of

Standards and Technology (NIST)
has developed the Policy Machine
(PM) with this objective in mind. The
PM evolved from a concept to a pro­
totype implementation and is now
an open source project.

DATA S E RV I CES
To appreciate the PM’s benefits,

it’s important to recognize the way
DSs are delivered today.

Each DS runs in an operating en­
vironment (OE), such as an operating
system, a Web service, middleware,
or database and database applica­
tions. The OE implements its own
routines to enable the execution of
DS-specific operations such as read,
send, and view on different data
types—for example, files, messages,
and fields.

To impose control over DS execu­
tion, each OE typically implements a
method to identify and authenticate
its users. Many OEs also implement
finer-grained controls to selectively

limit a user’s ability to perform op­
erations on objects.

This heterogeneity among OEs
introduces several administrative
challenges as well as user incon­
veniences. Administrators must
contend with multiple security do­
mains when implementing access
policy, and ordinary users and ad­
ministrators alike must authenticate
to and establish sessions in differ­
ent OEs to exercise legitimate DS
capabilities.

Even if AC policies are properly
coordinated across OEs, they aren’t
always enforced globally. For ex­
ample, an email application might
distribute files to users regardless of
an operating system’s protection set­
tings on those files. Also, although
researchers, practitioners, and poli­
cymakers have specified various AC
policies, only a small subset of these
can be enforced using off-the-shelf
technology, and any one OE can en­
force only an even smaller subset.

10 computer Published by the IEEE Computer Society 0018-9162/13/$31.00 © 2013 IEEE

http:0018-9162/13/$31.00

THE POLICY MACHINE
The PM provides an enterprise-

wide OE that can dramatically
alleviate many of these issues. Like
most other AC mechanisms, it con­
sists of

•	 AC data used to express AC
policies and deliver DS capabili­
ties to perform operations on
objects,
•	 a set of administrative opera­

tions for configuring the AC,
and
•	 a set of functions for enforcing

policy on requests to execute
operations on objects as well as
for computing access decisions
to accommodate or reject those
requests on the basis of the AC
data’s current state.

What distinguishes the PM from
other existing AC mechanisms are
the data elements and relations
that define its AC data, the type of
operations it recognizes, and the
functions it implements. These
specifics are driven by a redefini­
tion of AC and DSs in terms of their
common and underlying elements,
relations, and functions.

The PM can implement arbitrary
DS capabilities and can specify and
enforce mission-tailored AC poli­
cies over these executions through
configuration of its AC data. The
PM-enabled OE is object-type
agnostic—users can view and con­
sume all data regardless of their
type in a manner consistent with
the defined policies under a single
authenticated session.

What makes this setup possible
is the fact that the different DS data
types are fundamentally just data.
Many DS operations can be imple­
mented as simple read or write
operations on data or as sequences
of administrative operations that
alter the access state in which users
can read or write data.

As such, an OE that offers read
and write routines and an AC that

controls user capabilities to execute
read or write operations on data ob­
jects can implement a large variety
of DS operations. These include not
only create, read, write, and delete
operations that are typical in operat­
ing systems but also operations such
as send, forward, approve, and reject
that are commonly found in applica­
tions and middleware. Other kinds
of operations, such as font manipu­
lation, spell checking, and ordering
by date or sender, must be imple­
mented in DS logic.

USER AND DATA
OBJECT CONTAINERS

Although essential, the ability to
abstract DS operations from read,
write, and administrative opera­
tions isn’t sufficient for PM-enabled
OE properties. In contrast to other
AC mechanisms, PM can implement
many DS features as well as rep­
resent and treat them as AC data.
These features include containers to
express DS capabilities.

User and data object contain­
ers that characterize and group
their members are common in AC
policies and DSs. User containers
serve as AC attributes to distinguish
DS user classes. They can repre­
sent roles, such as doctor or bank
teller; affiliations, such as divisions
or teams; or even a user’s name,
such as Smith. Data object contain­
ers serve as data object attributes
as well as DS data types. They can
represent sensitivities, such as
secret or proprietary, but can also
represent folders, inboxes, table
columns, or records. The PM explic­
itly recognizes these containers as
elements in its AC data.

The PM further recognizes that

users and objects might be assigned
to more than one container, and
containers might be contained by
or contain other containers. For ob­
jects, this enables the representation
of complex data structures such as
relational database tables or forms
with distinguished fields.

DEFINING CAPABILITIES
AND POLICIES

The PM specifies DS capabilities
and AC policies in terms of asso­
ciation relations. Associations are
triples of the form (user container,
ops, data object container), where ops
is a subset of {read, write}. For ex­
ample, (Smith, {read}, Smith Inbox)
lets Smith read the content of his
or her inbox, and (Doctor, {read,
write}, Medical Records) lets doctors
read and write medical data.

The PM also recognizes another
kind of container—policy class. A
policy class maps user and object
containers to policy reference points
to organize the DSs and AC policies

through containment. This makes
it possible to combine and enforce
policies in a consistent and compre­
hensive manner.

Deriving capabilities through
associations, policy classes, and
combinations of policies also en­
ables fine-grained expressions of
capabilities to access complex data
structures, such as relational da­
tabase tables in which specific
users are limited to performing
specific operations on specific
fields of specific records. For
example, in a medical establish­
ment’s email system, users who
receive a message containing an at­
tached medical record would only
be able to read and write fields in

The policy machine can support a wide range of
well-documented policies including role-based,
discretionary, and mandatory access control as well
as combinations of these.

A pr i l 2013 11

Security

accordance with their role, identity,
and assigned ward.

The PM uses other types of data
and relations to express and enforce
policy (D. Ferraiolo, V. Atluri, and
S. Gavrila, “The Policy Machine: A
Novel Architecture and Framework
for Access Control Policy Specifica­
tion and Enforcement,” J. Systems
Architecture, vol. 57, no. 4, 2011, pp.
412-424). Features include AC pro­
hibitions on users and processes
pertaining to object classes and au­
tomation of administrative actions
on the basis of AC events.

The PM can support a wide range
of well-documented policies includ­
ing role-based, discretionary, and
mandatory AC as well as combi­
nations of these. The PM can also
accommodate separation of duty,
conflict of interest, data tracking,
and confinement policies and can
likely accommodate other unantici­
pated policies in the future.

CLOUD-LIKE DEPLOYMENT
ENVIRONMENT

The PM can be implemented in
many architectures; NIST has imple­
mented its prototype in a virtualized
OE providing cloud-like features. In

Showcase Your
Multimedia Content
on Computing Now!

IEEE Computer Graphics and Applications
seeks computer graphics-related
multimedia content (videos, animations,
simulations, podcasts, and so on) to
feature on its Computing Now page,
www.computer.org/portal/web/
computingnow/cga.

If you’re interested, contact us at
cga@computer.org. All content will be
reviewed for relevance and quality.

particular, the PM’s functional com­
ponents run in virtual machines. In
this deployment, administrators can
provision users and data objects,
and subscribers can select DSs.

The PM provides DSs as software
as a service or platform as a ser­
vice if they conform to its API—that
is, its read, write, or administra­
tive operations. The PM’s cloud-like
environment differs from other
cloud types in the properties it pro­
vides to subscribers—for instance,
data interoperability and policy
enforcement across DSs and single­
sign-on)—as well as the degree of
control it offers. Administrators can
import AC policies from a library of
predefined configurations, or sub­
scribers can configure them from
scratch, conferring to PM the at­
tributes of a “policy as a service”
provider.

Through an experimental
implementation, NIST has
demonstrated that AC can

play a more fundamental role in
computing than it currently does.
The PM was designed to showcase
such an AC mechanism, enabling
an enterprise-wide OE that can exe­

cute arbitrary DS capabilities and
specify and enforce arbitrary but
mission-tailored AC policies over
those executions.

Perhaps what’s most appealing
about the AC framework are the
properties that it offers—users and
objects are global, the framework
is object-type agnostic, DSs natu­
rally interoperate, and AC policies
are managed and enforced across
all DSs.

The PM offers many practical
advantages. Through a single
authenticated session, users can
access various DSs including
office applications, email, and
file, workf low, and records
management. The PM naturally
protects data across DSs. Instead of
deploying and managing different
AC schemes for different DSs, it
delivers different DS capabilities to
select users, under combinations
of arbitrary but mission-tailored
forms of discretionary, mandatory,
and history-based ACs. The PM
achieves this not through features
or interfaces built into DSs but
rather through the OE, which
inherently provides a basis for data
interoperability.

David Ferraiolo is a computer sci­
entist and manages the Secure
Systems and Applications Group of
the Computer Security Division at
the National Institute of Standards
and Technology. Contact him at
david.ferraiolo@nist.gov.

Serban Gavrila is a computer sci­
entist in the Computer Security
Division at the National Institute of
Standards and Technology. Contact
him at serban.gavrila@nist.gov.

Wayne Jansen is a computer sci­
entist at technology consultancy
Booz Allen Hamilton. Contact him at
Jansen_wayne@bah.com.

editor: Jeffrey Voas, National institute of
Standards and technology; j.voas@ieee.org

12 computer

mailto:j.voas@ieee.org
mailto:Jansen_wayne@bah.com
mailto:serban.gavrila@nist.gov
mailto:david.ferraiolo@nist.gov

