Published: May 20, 2010
Author(s)
Joan Boyar (University of Southern Denmark), Rene Peralta (NIST)
Conference
Name: 9th International Symposium on Experimental Algorithms (SEA 2010)
Dates: May 20-22, 2010
Location: Ischia Island, Naples, Italy
Citation: Experimental Algorithms, Lecture Notes in Computer Science vol. 6049, pp. 178-189
Announcement
A new technique for combinational logic optimization is described. The technique is a two-step process. In the first step, the non-linearity of a circuit – as measured by the number of non-linear gates it contains – is reduced. The second step reduces the number of gates in the linear components of the already reduced circuit. The technique can be applied to arbitrary combinational logic problems, and often yields improvements even after optimization by standard methods has been performed. In this paper we show the results of our technique when applied to the S-box of the Advanced Encryption Standard (AES). This is an experimental proof of concept, as opposed to a full-fledged circuit optimization effort. Nevertheless the result is, as far as we know, the circuit with the smallest gate count yet constructed for this function. We have also used the technique to improve the performance (in software) of several candidates to the Cryptographic Hash Algorithm Competition. Finally, we have experimentally verified that the second step of our technique yields significant improvements over conventional methods when applied to randomly chosen linear transformations.
A new technique for combinational logic optimization is described. The technique is a two-step process. In the first step, the non-linearity of a circuit – as measured by the number of non-linear gates it contains – is reduced. The second step reduces the number of gates in the linear components of...
See full abstract
A new technique for combinational logic optimization is described. The technique is a two-step process. In the first step, the non-linearity of a circuit – as measured by the number of non-linear gates it contains – is reduced. The second step reduces the number of gates in the linear components of the already reduced circuit. The technique can be applied to arbitrary combinational logic problems, and often yields improvements even after optimization by standard methods has been performed. In this paper we show the results of our technique when applied to the S-box of the Advanced Encryption Standard (AES). This is an experimental proof of concept, as opposed to a full-fledged circuit optimization effort. Nevertheless the result is, as far as we know, the circuit with the smallest gate count yet constructed for this function. We have also used the technique to improve the performance (in software) of several candidates to the Cryptographic Hash Algorithm Competition. Finally, we have experimentally verified that the second step of our technique yields significant improvements over conventional methods when applied to randomly chosen linear transformations.
Hide full abstract
Keywords
AES; circuit complexity; finite field inversion; multiplicative complexity; S-box
Control Families
None selected