Published: September 13, 2015
Author(s)
John Kelsey, Kerry McKay, Meltem Sönmez Turan
Conference
Name: 17th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2015)
Dates: September 13-16, 2015
Location: Saint-Malo, France
Citation: Cryptographic Hardware and Embedded Systems -- CHES 2015, Lecture Notes in Computer Science vol. 9293, pp. 372-393
Announcement
Random numbers are essential for cryptography. In most real-world systems, these values come from a cryptographic pseudorandom number generator (PRNG), which in turn is seeded by an entropy source. The security of the entire cryptographic system then relies on the accuracy of the claimed amount of entropy provided by the source. If the entropy source provides less unpredictability than is expected, the security of the cryptographic mechanisms is undermined, as in [5, 7, 10]. For this reason, correctly estimating the amount of entropy available from a source is critical. In this paper, we develop a set of tools for estimating entropy, based on mechanisms that attempt to predict the next sample in a sequence based on all previous samples. These mechanisms are called predictors. We develop a framework for using predictors to estimate entropy, and test them experimentally against both simulated and real noise sources. For comparison, we subject the entropy estimates defined in the August 2012 draft of NIST Special Publication 800-90B [4] to the same tests, and compare their performance.
Random numbers are essential for cryptography. In most real-world systems, these values come from a cryptographic pseudorandom number generator (PRNG), which in turn is seeded by an entropy source. The security of the entire cryptographic system then relies on the accuracy of the claimed amount of...
See full abstract
Random numbers are essential for cryptography. In most real-world systems, these values come from a cryptographic pseudorandom number generator (PRNG), which in turn is seeded by an entropy source. The security of the entire cryptographic system then relies on the accuracy of the claimed amount of entropy provided by the source. If the entropy source provides less unpredictability than is expected, the security of the cryptographic mechanisms is undermined, as in [5, 7, 10]. For this reason, correctly estimating the amount of entropy available from a source is critical. In this paper, we develop a set of tools for estimating entropy, based on mechanisms that attempt to predict the next sample in a sequence based on all previous samples. These mechanisms are called predictors. We develop a framework for using predictors to estimate entropy, and test them experimentally against both simulated and real noise sources. For comparison, we subject the entropy estimates defined in the August 2012 draft of NIST Special Publication 800-90B [4] to the same tests, and compare their performance.
Hide full abstract
Keywords
entropy estimation; min-entropy; random number generation
Control Families
None selected