Published: May 27, 2019
Citation: Quantum: The Open Journal for Quantum Science vol. 3, (May 2019) pp. 1-26
Author(s)
Spencer Breiner (NIST), Carl Miller (NIST), Neil Ross (QuICS)
We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of new proofs, and enable automated proof verification. As an example of our framework, we reprove a previous result from device-independent quantum cryptography: any linear randomness expansion protocol can be converted into an unbounded randomness expansion protocol. We give a graphical proof of this result, and implement part of it in the Globular proof assistant.
We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of...
See full abstract
We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of new proofs, and enable automated proof verification. As an example of our framework, we reprove a previous result from device-independent quantum cryptography: any linear randomness expansion protocol can be converted into an unbounded randomness expansion protocol. We give a graphical proof of this result, and implement part of it in the Globular proof assistant.
Hide full abstract
Keywords
quantum cryptography; automated proof-checking; random number generation; category theory
Control Families
None selected