Published: September 01, 2020
Citation: IEEE Transactions on Information Theory vol. 66, no. 9, (September 2020) pp. 5567-5584
Author(s)
Rahul Jain (National University of Singapore), Carl Miller (NIST), Yaoyun Shi (Alibaba Quantum Laboratory)
A prominent application of quantum cryptography is the distribution of cryptographic keys that are provably secure. Such security proofs were extended by Vazirani and Vidick ( Physical Review Letters , 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust the integrity of the underlying quantum devices. The protocols analyzed by them and by subsequent authors all require a sequential execution of \(N\) multiplayer games, where \(N\) is the security parameter. In this work, we prove the security of a protocol where all games are executed in parallel. Besides decreasing the number of time-steps necessary for key generation, this result reduces the security requirements for DI-QKD by allowing arbitrary information leakage of each user’s inputs within his or her lab. To the best of our knowledge, this is the first parallel security proof for a fully device-independent QKD protocol. Our protocol tolerates a constant level of device imprecision and achieves a linear key rate.
A prominent application of quantum cryptography is the distribution of cryptographic keys that are provably secure. Such security proofs were extended by Vazirani and Vidick ( Physical Review Letters , 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust...
See full abstract
A prominent application of quantum cryptography is the distribution of cryptographic keys that are provably secure. Such security proofs were extended by Vazirani and Vidick ( Physical Review Letters , 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust the integrity of the underlying quantum devices. The protocols analyzed by them and by subsequent authors all require a sequential execution of
\(N\) multiplayer games, where
\(N\) is the security parameter. In this work, we prove the security of a protocol where all games are executed in parallel. Besides decreasing the number of time-steps necessary for key generation, this result reduces the security requirements for DI-QKD by allowing arbitrary information leakage of each user’s inputs within his or her lab. To the best of our knowledge, this is the first parallel security proof for a fully device-independent QKD protocol. Our protocol tolerates a constant level of device imprecision and achieves a linear key rate.
Hide full abstract
Keywords
Bell inequalities; nonlocal games; parallel repetition; quantum self-testing; von Neumann entropy; quantum cryptography; certified randomness
Control Families
None selected