This publication is used in conjunction with ISO/IEC/IEEE 15288:2015, Systems and software engineering—Systems life cycle processes, NIST Special Publication 800-160, Volume 1, Systems Security Engineering—Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems, and NIST Special Publication 800-37, Risk Management Framework for Information Systems and Organizations—A System Life Cycle Approach for Security and Privacy. It can be viewed as a handbook for achieving the identified cyber resiliency outcomes based on a systems engineering perspective on system life cycle processes in conjunction with risk management processes, allowing the experience and expertise of the organization to help determine what is correct for its purpose. Organizations can select, adapt, and use some or all of the cyber resiliency constructs (i.e., objectives, techniques, approaches, and design principles) described in this publication and apply the constructs to the technical, operational, and threat environments for which systems need to be engineered. The system life cycle processes and cyber resiliency constructs can be used for new systems, system upgrades, or repurposed systems; can be employed at any stage of the system life cycle; and can take advantage of any system or software development methodology including, for example, waterfall, spiral, or agile. The processes and associated cyber resiliency constructs can also be applied recursively, iteratively, concurrently, sequentially, or in parallel and to any system regardless of its size, complexity, purpose, scope, environment of operation, or special nature. The full extent of the application of the content in this publication is guided and informed by stakeholder protection needs, mission assurance needs, and concerns with cost, schedule, and performance. The tailorable nature of the engineering activities and tasks and the system life cycle processes ensure that systems resulting from the application of the security and cyber resiliency design principles, among others, have the level of trustworthiness deemed sufficient to protect stakeholders from suffering unacceptable losses of their assets and associated consequences. Trustworthiness is made possible, in part, by the rigorous application of the security and cyber resiliency design principles, constructs, and concepts within a structured set of systems life cycle processes that provides the necessary traceability of requirements, transparency, and evidence to support risk-informed decision-making and trades.
This publication is used in conjunction with ISO/IEC/IEEE 15288:2015, Systems and software engineering—Systems life cycle processes, NIST Special Publication 800-160, Volume 1, Systems Security Engineering—Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure...
See full abstract
This publication is used in conjunction with ISO/IEC/IEEE 15288:2015, Systems and software engineering—Systems life cycle processes, NIST Special Publication 800-160, Volume 1, Systems Security Engineering—Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems, and NIST Special Publication 800-37, Risk Management Framework for Information Systems and Organizations—A System Life Cycle Approach for Security and Privacy. It can be viewed as a handbook for achieving the identified cyber resiliency outcomes based on a systems engineering perspective on system life cycle processes in conjunction with risk management processes, allowing the experience and expertise of the organization to help determine what is correct for its purpose. Organizations can select, adapt, and use some or all of the cyber resiliency constructs (i.e., objectives, techniques, approaches, and design principles) described in this publication and apply the constructs to the technical, operational, and threat environments for which systems need to be engineered. The system life cycle processes and cyber resiliency constructs can be used for new systems, system upgrades, or repurposed systems; can be employed at any stage of the system life cycle; and can take advantage of any system or software development methodology including, for example, waterfall, spiral, or agile. The processes and associated cyber resiliency constructs can also be applied recursively, iteratively, concurrently, sequentially, or in parallel and to any system regardless of its size, complexity, purpose, scope, environment of operation, or special nature. The full extent of the application of the content in this publication is guided and informed by stakeholder protection needs, mission assurance needs, and concerns with cost, schedule, and performance. The tailorable nature of the engineering activities and tasks and the system life cycle processes ensure that systems resulting from the application of the security and cyber resiliency design principles, among others, have the level of trustworthiness deemed sufficient to protect stakeholders from suffering unacceptable losses of their assets and associated consequences. Trustworthiness is made possible, in part, by the rigorous application of the security and cyber resiliency design principles, constructs, and concepts within a structured set of systems life cycle processes that provides the necessary traceability of requirements, transparency, and evidence to support risk-informed decision-making and trades.
Hide full abstract