

NISTIR 8058 (Draft) 1

Security Content Automation Protocol 2

(SCAP) Version 1.2 Content Style Guide 3

(Draft) 4

Best Practices for Creating and Maintaining SCAP 1.2 Content 5

 6

Harold Booth 7

Melanie Cook 8

Stephen Quinn 9

David Waltermire 10

Karen Scarfone 11

 12

 13

 14

 15

 16

 17

 18

 19

NISTIR 8058 (Draft) 20

Security Content Automation Protocol 21

(SCAP) Version 1.2 Content Style Guide 22

(Draft) 23

Best Practices for Creating and Maintaining SCAP 1.2 Content 24

 25

Harold Booth 26

Melanie Cook 27

Stephen Quinn 28

David Waltermire 29

Computer Security Division 30

Information Technology Laboratory 31

 32

Karen Scarfone 33

Scarfone Cybersecurity 34

Clifton, Virginia 35

 36

 37

 38

May 2015 39

 40

 41

 42
 43
 44

U.S. Department of Commerce 45
Penny Pritzker, Secretary 46

 47
National Institute of Standards and Technology 48

Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director 49

ii

National Institute of Standards and Technology Internal Report 8058 50
42 pages (May 2015) 51

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 52
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 53
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 54
available for the purpose. 55

There may be references in this publication to other publications currently under development by NIST in 56
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 57
methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, 58
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 59
operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of 60
these new publications by NIST. 61

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 62
to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 63
http://csrc.nist.gov/publications. 64

Public comment period: May 1, 2015 through June 1, 2015 65

National Institute of Standards and Technology 66
Attn: Computer Security Division, Information Technology Laboratory 67

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 68
Email: NISTIR8058-comments@nist.gov 69

 70

 71

http://csrc.nist.gov/publications

iii

Reports on Computer Systems Technology 72

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 73
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s 74
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 75
concept implementations, and technical analyses to advance the development and productive use of 76
information technology. ITL’s responsibilities include the development of management, administrative, 77
technical, and physical standards and guidelines for the cost-effective security and privacy of other than 78
national security-related information in Federal information systems. 79

 80

Abstract 81

The Security Content Automation Protocol (SCAP) is a suite of specifications that standardize the format 82
and nomenclature by which software flaw and security configuration information is communicated, both 83
to machines and humans. SCAP version 1.2 requirements are defined in NIST Special Publication 800-84
126 Revision 2. Over time, certain stylistic conventions regarding the authoring of SCAP 1.2 content 85
have become best practices. While these best practices are not required, they improve the quality of SCAP 86
content in several ways, such as improving the accuracy and consistency of results, avoiding performance 87
problems, reducing user effort, lowering content maintenance burdens, and enabling content reuse. This 88
document has been created to capture the best practices and encourage their use by SCAP content authors 89
and maintainers. 90

 91

Keywords 92

information security; SCAP content; SCAP data stream; SCAP programmer; SCAP style guide; security 93
automation; Security Content Automation Protocol (SCAP) 94

 95

 96

iv

Acknowledgements 97

The authors wish to thank their colleagues who reviewed drafts of this document and contributed to its 98
technical content. In addition to the authors, other sources of best practices included presentations from 99
Kent Landfield of McAfee [9] and Shane Shaffer of G2, Inc. [10], and several code examples were 100
derived from the United States Government Configuration Baseline (USGCB) checklist for Microsoft 101
Windows 7 [11]. 102

 103

Trademark Information 104

OVAL and CVE are registered trademarks, and CCE, CPE, and OCIL are trademarks, of The MITRE 105
Corporation. 106

All other registered trademarks or trademarks belong to their respective organizations. 107

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

v

 108

Table of Contents 109

1 Introduction .. 1 110

1.1 Purpose and Scope .. 1 111

1.2 Audience... 1 112

1.3 Document Structure .. 1 113

1.4 Document Conventions .. 1 114

2 Overview of SCAP 1.2 Stylistic Concepts ... 3 115

3 Best Practice Template ... 4 116

4 General Style Best Practices .. 5 117

4.1 When writing content, use the latest version of the SCAP specification. 5 118

4.2 Test all content. .. 5 119

4.3 Run the SCAP Content Validation Tool on all content and remove warnings 120

whenever feasible. .. 6 121

4.4 Avoid unnecessarily including dynamic information in content. 6 122

4.5 Use specific properties instead of overloading general properties. 7 123

4.6 Spell check all text that might be presented to the user. 8 124

4.7 When reusing content, recognize its originator. .. 9 125

4.8 Explicitly specify all default attributes when creating content that will be 126

signed. .. 9 127

5 OCIL Style Best Practices ... 10 128

5.1 Only include one fact per question. .. 10 129

5.2 Sequence questions to avoid asking unnecessary questions. 12 130

5.3 Provide step-by-step instructions when helpful. .. 12 131

5.4 Use <ocil:choice_question> instead of <ocil:string_question> when feasible.13 132

5.5 Use <ocil:choice_group> when feasible... 14 133

6 OVAL Style Best Practices ... 16 134

6.1 Check for the conditional applicability of vulnerabilities. 16 135

6.2 Include concise comments in elements whenever possible.......................... 17 136

6.3 Use safe regular expressions in pattern matching. 18 137

6.4 Consider performance impacts when writing or modifying checks. 18 138

6.5 When feasible, write one check that applies to multiple software versions, 139

instead of duplicate checks for each version. .. 19 140

6.6 Use external variables so a single check can be used for multiple input 141

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

vi

variables. ... 19 142

6.7 When creating an external variable, carefully consider the possible values. 20 143

6.8 Reuse check content where possible. .. 21 144

6.9 Indicate revisions of definitions, tests, objects, states, and variables. 22 145

6.10 Have a single CCE or CVE per definition when applicable. 23 146

6.11 Be careful when extending extended definitions. .. 24 147

6.12 Explicitly declare the <oval:registry_state> element’s <oval:type> 148

element. .. 24 149

6.13 Avoid the use of deprecated tests. .. 25 150

6.14 Ensure that the schema location and version number agree. 25 151

7 XCCDF Style Best Practices ... 27 152

7.1 Use a tailoring document when deriving your own XCCDF content from 153

someone else’s benchmark. ... 27 154

7.2 Indicate revisions of a single benchmark or tailoring document.................... 28 155

7.3 Indicate revisions of <xccdf:Profile>, <xccdf:Group>, <xccdf:Rule>, and 156

<xccdf:Value> elements. ... 29 157

7.4 When referencing OVAL from XCCDF, match datatypes. 30 158

7.5 Have a single CCE or CVE per rule when applicable. 30 159

7.6 If a patch checklist is required, use separate checklists for patches and 160

configuration settings. ... 31 161

8 SCAP Data Stream Style Best Practices .. 32 162

8.1 Avoid using data stream identifiers to convey other information to automated 163

parsers. ... 32 164

9 Best Practice Topics for Further Discussion .. 33 165

9.1 Is it preferable to use plaintext or XHTML?... 33 166

 167

List of Appendices 168

Appendix A— Acronyms and Abbreviations .. 34 169

Appendix B— References .. 35 170

 171

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 1

1 Introduction 172

1.1 Purpose and Scope 173

The purpose of the document is to provide a list of best practices for Security Content 174

Automation Protocol (SCAP) version 1.2 content developers and maintainers. NIST encourages 175

the adoption of these best practices. These best practices are not SCAP requirements (which are 176

defined in NIST Special Publication (SP) 800-126 Revision 2 [1]), but rather they are 177

recommendations that help ensure greater SCAP content reuse and interoperability with SCAP 178

consumers. 179

1.2 Audience 180

The intended audience for this document is individuals who have responsibilities for creating, 181

maintaining or verifying SCAP 1.2 content. This includes technical subject matter experts, 182

programmers, SCAP content authors, and SCAP content consumers. It is assumed that readers 183

are already familiar with NIST SP 800-126 Revision 2 [1]. 184

1.3 Document Structure 185

The remainder of this document is organized into the following major sections and appendices: 186

 Section 2 elaborates on the need for an SCAP content style guide to supplement NIST SP 187

800-126, which specifies requirements for SCAP version 1.2 content. 188

 Section 3 defines the fields of the template used for discussing best practices throughout 189

the rest of the document. 190

 Section 4 provides details on best practices that apply to all the SCAP languages: 191

Extensible Configuration Checklist Description Format (XCCDF), Open Vulnerability 192

and Assessment Language (OVAL), and Open Checklist Interactive Language (OCIL). 193

 Section 5 focuses on best practices for OCIL. 194

 Section 6 covers best practices for OVAL. 195

 Section 7 addresses best practices for XCCDF. 196

 Section 8 discusses best practices for SCAP data streams. 197

 Section 9 details best practice topics that need community discussion before further 198

development. 199

 Appendix A lists acronyms and abbreviations used throughout the document. 200

 Appendix B provides the references for the document. 201

1.4 Document Conventions 202

Some of the requirements and conventions used in this document reference Extensible Markup 203

Language (XML) content [6]. An example of a reference is: Explicitly declare the 204

<oval:registry_state> element’s <oval:type> element. In this example the notation 205

<oval:registry_state> can be replaced by the more verbose equivalent “the XML element 206

whose qualified name is oval:registry_state”. 207

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 2

The general convention used when describing XML attributes within this document is to 208

reference the attribute as well as its associated element including the namespace alias, employing 209

the general form "@attributeName for the <prefix:localName>". 210

See Table 1 of NIST SP 800-126 Revision 2 [1] for the conventional XML mappings used for 211

SCAP 1.2 content. 212

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 3

2 Overview of SCAP 1.2 Stylistic Concepts 213

SCAP 1.2 includes several expression language component specifications: XCCDF [2], OVAL 214

[4], and OCIL [3]. Each of these specifications includes robust feature sets that ensure broad 215

application and flexibility for their individual use cases. To ensure greater interoperability for 216

SCAP content authors and consumers, particularly when using multiple component 217

specifications together, the SCAP specification (documented in NIST SP 800-126 Revision 2 218

[1]) adds constraints to the component specifications in the form of SCAP 1.2 requirements. For 219

example, XCCDF is a flexible XML specification, but this flexibility needed to be constrained 220

through additional SCAP requirements to ensure that SCAP-validated products could process 221

XCCDF for a particular set of use cases. 222

An example of such a constraint is from Section 3.2.2 of NIST SP 800-126 Revision 2: “The 223

<xccdf:version> element and the @id attribute SHALL be used together to uniquely identify 224

all revisions of a benchmark.” While the use of the <xccdf:version> element and the @id 225

attribute are both required by the XCCDF specification, the requirement to use them together to 226

uniquely identify benchmark revisions is not part of the XCCDF specification. It has been added 227

through NIST SP 800-126 Revision 2 as an SCAP-specific requirement. 228

Over time, certain stylistic conventions regarding the authoring of SCAP content have become 229

informal best practices. An example is using a tailoring document when deriving your own 230

XCCDF content from someone else’s benchmark. While these best practices are not required by 231

NIST SP 800-126 Revision 2 or any of the component specifications, the best practices improve 232

the quality of SCAP content in several ways, such as: 233

 Improving the accuracy and consistency of results 234

 Avoiding performance problems 235

 Reducing user effort 236

 Lowering content maintenance burdens 237

 Enabling content reuse 238

This document has been created to capture the best practices and encourage their use by SCAP 239

content authors and maintainers. 240

Nothing in this document contradicts the requirements of NIST SP 800-126 Revision 2 and the 241

component specifications. 242

 243

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 4

3 Best Practice Template 244

Sections 4 through 9 of this document follow the template defined in this section for discussing 245

each best practice. The possible fields are listed in order below. Note that this template may be 246

used by readers to submit their own best practice suggestions to NIST for possible inclusion in 247

revisions of this document. 248

x.x This is a best practice statement. Mandatory. The best practice statement expresses 249
the best practice in a concise sentence. 250

Rationale: Mandatory. This states in a sentence the reason why the best practice is being 251

recommended. 252

Background: Optional. This gives the reader background information necessary to understand 253

the rest of the discussion, such as indicating which elements being discussed are mandatory and 254

which are optional according to the SCAP specification or component specifications. 255

Reference: Optional. This points the reader to additional sources of information on the topic. 256

Dependencies: Optional. This lists any dependencies that this best practice has on other best 257

practices. 258

Applicability: Mandatory. This speaks to the situations for which this best practice is 259

recommended. 260

Implementation: Mandatory. This explains how the reader can best go about performing this 261

best practice. 262

Impact/Consequence: Mandatory. This describes the impact of following the best practice 263

and/or the consequence of not following the best practice. 264

Example: Optional. This contains excerpts of SCAP content to better illustrate the best practice 265

through an example. Some content is omitted for brevity; omissions are indicated through “…” 266

notation. 267

 268

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 5

4 General Style Best Practices 269

This section discusses general style best practices (those that apply to XCCDF, OVAL, and 270

OCIL). 271

4.1 When writing content, use the latest version of the SCAP specification. 272

Rationale: Using the latest version of SCAP and its component specifications supports greater 273

interoperability and functionality. 274

Reference: As of this writing, the latest version of SCAP is 1.2, which is defined in NIST SP 275

800-126 Revision 2 [1]. The versions of the component specifications, such as OCIL, OVAL, 276

and XCCDF, are defined in Section 2 of NIST SP 800-126 Revision 2. 277

Applicability: This applies to any situation where new content is being developed. This best 278

practice is not meant to imply that all existing content should be updated to the latest SCAP 279

version, although in many cases doing so will take little effort. 280

Implementation: Develop all new content using the latest SCAP version and the associated 281

versions of its component specifications. An example is OVAL. SCAP 1.2 specifies the use of 282

OVAL 5.10. Although older versions of OVAL content may be used, new OVAL content should 283

be developed in OVAL 5.10, not deprecated OVAL versions.
1
 284

Impact/Consequence: This best practice supports interoperability by recommending the use of 285

the latest SCAP specification and its associated component specifications instead of older 286

specifications. Older specifications are likely to lose support much earlier than newer 287

specifications. Also, newer specifications tend to have greater functionality, allowing content to 288

be written more effectively and efficiently than with previous specifications. 289

4.2 Test all content. 290

Rationale: Testing all SCAP content reduces the number of errors in final content, thus 291

improving the performance, consistency, and accuracy of the content. 292

Applicability: This applies to any situation where new content is being developed or existing 293

content is being modified. 294

Implementation: It is important to ensure that content you develop or customize works correctly 295

in all possible cases, to the extent that this is feasible. This requires testing the content. 296

Impact/Consequence: Obviously content that doesn’t work at all or doesn’t work properly can 297

cause a variety of negative impacts, such as unreliable or incorrect results, or performance 298

1 Since the release of the SCAP 1.2 specification [1], OVAL 5.10 was updated to OVAL 5.10.1 for bug fixes. References

within this document to OVAL 5.10 are intended to imply the use of OVAL 5.10.1

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 6

problems. By performing thorough testing of content, users of that content can be spared a 299

variety of problems. 300

4.3 Run the SCAP Content Validation Tool on all content and remove warnings 301
whenever feasible. 302

Rationale: Correcting content that is generating validation warnings improves the 303

interoperability of content. 304

Background: From the SCAP Specifications page (http://scap.nist.gov/revision/1.2/): “The 305

SCAP Content Validation Tool is designed to validate the correctness of a SCAP data stream for 306

a particular use case according to what is defined in SP 800-126.” 307

Reference: For more information on the SCAP Content Validation Tool (SCAPval), see the 308

Tools section of http://scap.nist.gov/revision/1.2/. 309

Applicability: This is applicable to all SCAP content that is written or edited. 310

Implementation: Run the SCAP Content Validation Tool on all new or revised content and 311

review the warnings for the content. For all feasible warnings, modify the content so that the 312

warnings will no longer be generated. Note that it may not be possible to eliminate all warnings 313

in SCAP content. An example is referencing a Common Platform Enumeration (CPE) entry that 314

is not contained in the official CPE dictionary. 315

Impact/Consequence: This best practice supports interoperability by ensuring that SCAP 316

content is as consistent with the specifications and general expectations of SCAP style as 317

feasible. If warnings are not removed from content, this could cause unpredictable behavior in 318

certain tools that are not expecting these associated conditions to occur. 319

4.4 Avoid unnecessarily including dynamic information in content. 320

Rationale: Examples of dynamic information are vulnerability scores and security control 321

mappings and text. Dynamic information should be linked to through associated identifiers 322

instead of embedding it within the SCAP content because of the maintenance burden. 323

Reference: See Section 3.2.4.4 of NIST SP 800-126 Revision 2 [1] for more information on 324

mapping to vulnerability scores, and Section 3.6 for information on security control mappings. 325

Applicability: This applies whenever dynamic information might be inserted into content, not 326

just for vulnerability scores and security control mappings. 327

Implementation: NIST SP 800-126 Revision 2 provides insights into how this would be 328

implemented for vulnerability scores and security control mappings and text. From Section 3.6 329

regarding security control text: “A preferred technique is to embed only the CCE identifiers 330

within SCAP content; when mappings to NIST SP 800-53 control identifiers are needed, 331

dynamically acquire them from the official data feed and associate them to the SCAP content 332

based on its embedded CCE identifiers.” From Section 3.2.4.4 regarding vulnerability scores: 333

http://scap.nist.gov/revision/1.2/
http://scap.nist.gov/revision/1.2/

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 7

“During scoring, current CVSS scores acquired dynamically, such as from a data feed, SHOULD 334

be used in place of the @weight attribute within XCCDF vulnerability-related rules.” The same 335

principle applies to any other forms of dynamic content. 336

Impact/Consequence: Embedding dynamic information in content causes a significant 337

maintenance burden. This is particularly true with vulnerability scores, which may change over 338

time, but it is also relevant for security control mappings and text, such as from NIST SP 800-53. 339

Although NIST SP 800-53 does not change frequently, it has many pages of content that would 340

unnecessarily need to be duplicated in SCAP content if mappings through identifiers were not 341

used. Duplicating this content increases the chance of errors, takes considerable time, and 342

necessitates editing the content whenever a new version of NIST SP 800-53 or related errata is 343

released. 344

Example: The <xccdf:ident> element in the abbreviated XCCDF example below shows the 345

use of a CCE identifier instead of hard-coded CCE information. The CCE identifier can be used 346

to dynamically look up the current CCE information. 347

<xccdf:Rule id="xccdf_gov.nist_rule_account_lockout_duration" 348
selected="false"> 349
 <xccdf:title>...</xccdf:title> 350
 <xccdf:description>...</xccdf:description> 351
 <xccdf:reference>...</xccdf:reference> 352
 <xccdf:ident system="http://cce.mitre.org">CCE-9308-8</xccdf:ident> 353
 <xccdf:check system="http://oval.mitre.org/XMLSchema/oval-354
definitions-5">...</xccdf:check> 355
</xccdf:Rule> 356

 357
Another example shows how a CCE identifier can be referenced from within OCIL content by 358

using an <ocil:reference> element. 359

 360
<questionnaire id="ocil:usgcb.win7.checklist:questionnaire:1"> 361
 <title>USGCB Windows 7 User Settings: Question 1</title> 362
 <description>Enable screen saver</description> 363
 <references> 364
 <reference href="http://cce.mitre.org">CCE-10051-1</reference> 365
 </references> 366
 <actions> 367
 <test_action_ref>ocil:usgcb.win7.checklist:testaction:1 368
</test_action_ref> 369
 </actions> 370
</questionnaire> 371

4.5 Use specific properties instead of overloading general properties. 372

Rationale: Overloading a property instead of using an existing property makes the information 373

stored within it less readily accessible. 374

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 8

Applicability: This applies whenever a specific property exists that is well suited for the 375

information that the content author wants to store. 376

Implementation: When there is a more specific property and a more general property available 377

that information could be stored in, use the more specific property. An example is the 378

<xccdf:Group> element. This element has a general <xccdf:description> property, 379

which is defined in the XCCDF specification [2] as “text that describes the item.” The 380

<xccdf:Group> element also has several more specific properties, such as 381

<xccdf:warning>, which is “a note or caveat about the item intended to convey important 382

caution information for the benchmark user;” and <xccdf:rationale>, which is “descriptive 383

text giving rationale or motivations for abiding by this group/rule.” A warning should be stored 384

in the <xccdf:warning> element, not the <xccdf:description> element. 385

Impact/Consequence: Using specific properties instead of more general properties makes it 386

easier for both tools and humans to find the information of interest to them. 387

Example: 388

<Group id="xccdf_gov.sample_group_filepermissions"> 389
 <description>This group contains rules pertaining to file 390
permissions</description> 391
 <warning>File permission settings contained within the following 392
rules may cause application errors</warning> 393
 <rationale>Maintaining proper file permissions is critical 394
to...</rationale> 395
 ... 396
</Group> 397

4.6 Spell check all text that might be presented to the user. 398

Rationale: Spell checking text visible to the user promotes readability and understanding of the 399

text. 400

Applicability: This applies in all cases where text might be presented to a user, including 401

comments. 402

Implementation: It is important to check the text of all elements presenting text to the user for 403

any misspellings, typos, etc. This can be accomplished by loading the content into a tool that has 404

spell checking capabilities. However, authors are advised to manually proofread their text as well 405

to catch other errors that cannot be caught through spell checking. 406

Impact/Consequence: This helps ensure that text is clear, so that the users will understand them. 407

Ensuring that text is spelled correctly also creates a professional impression and helps to 408

underscore the seriousness and legitimacy of the materials. 409

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 9

4.7 When reusing content, recognize its originator. 410

Rationale: The original author of content should be recognized for their efforts. 411

Applicability: This applies whenever reusing content from another party. 412

Implementation: SCAP component specifications do not have a specific property for 413

recognizing the originator of content, but the various specifications have comment attributes 414

(e.g., OVAL), metadata attributes (e.g., XCCDF), or other text field attributes that could be used 415

to give credit to the source of the content. 416

Impact/Consequence: Recognizing the originator of the content is the ethical thing to do. It may 417

also be required because of the content’s licensing model. Failure to recognize the originator 418

could cause ethical questions to be raised and could be a violation of the content license. 419

4.8 Explicitly specify all default attributes when creating content that will be signed. 420

Rationale: Some parsers automatically fill in the values of default attributes before signing 421

content, so if default attributes are not provided, signature verification will fail for other parsers 422

that do not automatically fill in the values. 423

Applicability: This best practice applies whenever digitally signing an SCAP data stream or 424

other SCAP content. 425

Implementation: Explicitly provide values for all default attributes instead of assuming the 426

default values. 427

Impact/Consequence: If all default attributes are not explicitly defined when digitally signing 428

SCAP content, certain parsers may fail to process the data stream signing correctly. This could 429

lead to processing errors or a failure to recognize the legitimacy of signed content. 430

 431

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 10

5 OCIL Style Best Practices 432

This section discusses style best practices specific to OCIL. 433

5.1 Only include one fact per question. 434

Rationale: Having a single fact per question means that the answer to the question will provide a 435

granular answer for a specific fact, not a general answer for a group of facts. 436

Applicability: This applies in all cases where questions are being written. 437

Implementation: It may be prudent to break a single question
2
 into multiple questions. For 438

example, you might want to ask a user whether the system’s password policy for service 439

accounts mandates that passwords are at least 15 characters long and meet complexity 440

requirements. This should be broken into at least two questions: 1) does the system mandate that 441

passwords for service accounts are at least 15 characters long?, and 2) does the system mandate 442

that passwords for service accounts meet complexity requirements? It may be necessary to break 443

the complexity requirements question into multiple questions, depending on the nature of those 444

requirements. You may also want to first ask if the system enforces a password policy, so as to 445

skip all other password policy-related questions if it does not. 446

Impact/Consequence: By having a single fact per question, the information provided by 447

answering the questions is much more granular and actionable (for example, an answer 448

indicating that the system does mandate a minimum password length of 15 characters, but does 449

not mandate password complexity requirements, instead of an answering simply indicating that 450

the system does not meet the password policy.) Questions are also clearer for the user to answer 451

because only a single fact is being considered at any given time, so users are more likely to 452

provide accurate answers. 453

2 The <ocil:question> element is abstract and does not appear in OCIL content. Instead, a question is represented as

one of the following four elements: <ocil:boolean_question>, <ocil:choice_question>,

<ocil:numeric_question>, or <ocil:string_question>.

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 11

Example: The code below shows how multiple <ocil:boolean_question> elements can be 454

used to achieve more granular results. 455

<questionnaires> 456
 <questionnaire id="ocil:namespace_here:questionnaire:1"> 457
 <title>Insurance policy coverage</title> 458
 <actions> 459
 <test_action_ref>ocil:namespace_here:testaction:1 460
 </test_action_ref> 461
 <test_action_ref>ocil:namespace_here:testaction:2 462
 </test_action_ref> 463
 </actions> 464
 </questionnaire> 465
</questionnaires> 466
<test_actions> 467
 <boolean_question_test_action 468
 question_ref="ocil:namespace_here:question:1" 469
 id="ocil:namespace_here:testaction:1"> 470
 <when_true> 471
 <result>PASS</result> 472
 </when_true> 473
 <when_false> 474
 <result>FAIL</result> 475
 </when_false> 476
 </boolean_question_test_action> 477
 <boolean_question_test_action 478
 question_ref="ocil:namespace_here:question:2" 479
 id="ocil:namespace_here:testaction:2"> 480
 <when_true> 481
 <result>PASS</result> 482
 </when_true> 483
 <when_false> 484
 <result>FAIL</result> 485
 </when_false> 486
 </boolean_question_test_action> 487
</test_actions> 488
<questions> 489
 <boolean_question id="ocil:namespace_here:question:1"> 490
 <question_text>Does the insurance policy include coverage for 491
floods?</question_text> 492
 </boolean_question> 493
 <boolean_question id="ocil:namespace_here:question:2"> 494
 <question_text>Does the insurance policy include coverage for 495
earthquakes?</question_text> 496
 </boolean_question> 497
</questions> 498

 499

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 12

5.2 Sequence questions to avoid asking unnecessary questions. 500

Rationale: The answer to one question may negate the need to ask other questions, so it is more 501

efficient for users if questions are properly sequenced so that unneeded questions are not asked. 502

Applicability: This applies in cases where questions are being written and the answer to one or 503

more questions may negate the need to ask other questions. 504

Implementation: Link test actions so that they ask questions in a series when there are 505

dependencies between those questions. An example is asking a user about a system’s password 506

policy characteristics. It may be prudent to first ask the user if the system has a password policy, 507

and only if that answer is in the affirmative, then asking the user about the details of that 508

password policy. 509

Impact/Consequence: Sequencing questions in this way eliminates asking unneeded questions, 510

which speeds the answering process for users and reduces user frustration. 511

5.3 Provide step-by-step instructions when helpful. 512

Rationale: Step-by-step instructions can aid the reader in answering questions. 513

Background: NISTIR 7692 [3] states in Section 6.5: “Authors SHOULD use instructions 514

elements for questions that users are likely to answer more accurately and/or easily with step-by-515

step instructions.” 516

Applicability: This is a best practice to consider when writing questions that necessitate user 517

actions, such as manually verifying a setting on a system. 518

Implementation: Rather than assuming that a user knows how to manually check a system for a 519

particular setting, for example, provide the user with step-by-step instructions using the 520

<ocil:instructions> element on how to perform that manual check. 521

Impact/Consequence: Step-by-step instructions help ensure that users perform the check 522

correctly and consistently, thus leading to higher accuracy in answers. Providing step-by-step 523

instructions may also reduce user frustration and also reduce the amount of time that users need 524

to answer each question. 525

 526

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 13

Example: 527

<boolean_question id="ocil:namespace_here:question:3"> 528
 <question_text>Is the engine oil level low?</question_text> 529
 <instructions> 530
 <title>Instructions</title> 531
 <step><description>Open the hood of the 532
vehicle</description></step> 533
 <step><description>Locate the dipstick</description></step> 534
 <step><description>Remove the dipstick</description></step> 535
 <step><description>Wipe all oil off the 536
dipstick</description></step> 537
 <step><description>Re-insert the dipstick</description></step> 538
 <step><description>Remove the dipstick</description></step> 539
 <step><description>Observe the level of oil relative to the mark 540
on the dipstick indicating the minimum oil level</description></step> 541
 <step><description>If below the minimum level, respond "Yes", 542
otherwise respond "No"</description></step> 543
 </instructions> 544
</boolean_question> 545

5.4 Use <ocil:choice_question> instead of <ocil:string_question> when feasible. 546

Rationale: Forcing users to choose from a list of answers instead of typing in an answer can 547

improve the accuracy of answers and reduce the workload for the users. 548

Applicability: This applies whenever a question is being written that has a small, predefined set 549

of possible answers. 550

Implementation: It is recommended to use an <ocil:choice_question> element when an 551

<ocil:string_question> could be used but would have only a small, predefined set of 552

possible answers. Imagine asking users to manually enter the name of their organizational unit to 553

answer an <ocil:string_question>. This is likely to generate all sorts of responses that 554

vary based on spelling errors, punctuation differences, and other variations in how people type in 555

strings. Such variation can prevent accurate correlation of data collected from multiple 556

individuals. It would be highly preferable to instead have an <ocil:choice_question> 557

defined that lists the organizational units, so that users can simply pick the correct organizational 558

unit. 559

Impact/Consequence: This reduces the time that it takes users to enter a response. It also 560

improves the consistency and accuracy of the responses by bounding the choices that users have 561

to pick from, instead of allowing free-form text entry. Logic within the 562

<ocil:string_question_test_action> element might have to be quite complex to handle 563

capitalization variations and other differences between free-form text entries. A possible 564

disadvantage of using an <ocil:choice_question> is if the list of choices itself needs to 565

change frequently. This could cause a maintenance burden, and the tradeoff between consistent 566

input and question maintenance would have to be considered. 567

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 14

Example: Instead of the following: 568

<string_question id="ocil:namespace_here:question:4"> 569
 <question_text>What is your favorite day of the 570
week?</question_text> 571
</string_question> 572

Do this: 573

<choice_question id="ocil:namespace_here:question:4"> 574
 <question_text>What is your favorite day of the 575
week?</question_text> 576
 <choice id="ocil:namespace_here:choice:1">Sunday</choice> 577
 <choice id="ocil:namespace_here:choice:2">Monday</choice> 578
 <choice id="ocil:namespace_here:choice:3">Tuesday</choice> 579
 <choice id="ocil:namespace_here:choice:4">Wednesday</choice> 580
 <choice id="ocil:namespace_here:choice:5">Thursday</choice> 581
 <choice id="ocil:namespace_here:choice:6">Friday</choice> 582
 <choice id="ocil:namespace_here:choice:7">Saturday</choice> 583
</choice_question> 584

5.5 Use <ocil:choice_group> when feasible. 585

Rationale: Defining a set of choices once and reusing that set is more efficient and less error-586

prone than redefining the same set of choices multiple times. 587

Background: As defined in NISTIR 7692, Section 5.1, an <ocil:choice_group> “represents 588

a reusable set of choices for a choice_question. A choice_question MAY reference a 589

choice_group or explicitly specify allowed choices.” 590

Applicability: This applies in all cases where multiple <ocil:choice_question> elements 591

are being written and they share the same set of answers. 592

Implementation: It is recommended to use <ocil:choice_group> when the same set of 593

choices is to be used for multiple questions: for example, Always, Usually, Sometimes, Rarely, 594

Never. By placing these in an <ocil:choice_group> element, the 595

<ocil:choice_question> elements can simply reference the <ocil:choice_group> 596

element, instead of each question having the same choices individually defined. 597

Impact/Consequence: This reduces the amount of effort for the content author and reduces the 598

risk of having typos or other errors in the duplicate sets of choices by giving the author only a 599

single set to write and proofread. This also simplifies the content itself and makes it easier for 600

maintainers—for example, if the example set of choices listed above needed to change, it could 601

be changed in one spot instead of many spots. 602

 603

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 15

Example: 604

<choice_question id="ocil:namespace_here:question:5"> 605
 <question_text>What is your favorite day of the 606
week?</question_text> 607
 <choice_group_ref>ocil:namespace_here:choicegroup:1 608
 </choice_group_ref> 609
</choice_question> 610
<choice_question id="ocil:namespace_here:question:6"> 611
 <question_text>What day of the week were you born?</question_text> 612
 <choice_group_ref>ocil:namespace_here:choicegroup:1 613
 </choice_group_ref> 614
</choice_question> 615
<choice_group id="ocil:namespace_here:choicegroup:1"> 616
 <choice id="ocil:namespace_here:choice:1">Sunday</choice> 617
 <choice id="ocil:namespace_here:choice:2">Monday</choice> 618
 <choice id="ocil:namespace_here:choice:3">Tuesday</choice> 619
 <choice id="ocil:namespace_here:choice:4">Wednesday</choice> 620
 <choice id="ocil:namespace_here:choice:5">Thursday</choice> 621
 <choice id="ocil:namespace_here:choice:6">Friday</choice> 622
 <choice id="ocil:namespace_here:choice:7">Saturday</choice> 623
</choice_group> 624

 625

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 16

6 OVAL Style Best Practices 626

This section will discuss style best practices specific to OVAL. 627

6.1 Check for the conditional applicability of vulnerabilities. 628

Rationale: It is best to ensure that software is present on a system before checking for 629

vulnerabilities in that software. 630

Background: In the OVAL Definitions Model (Section 4.3 of the OVAL Language 631

Specification [4]), the CriteriaType, CriterionType, and ExtendDefinitionType include an 632

<oval:applicability_check> attribute. An optional attribute, 633

<oval:applicability_check> is defined as “a boolean flag that when ‘true’ indicates that 634

the [criteria|criterion|ExtendDefinition] is being used to determine whether the OVAL Definition 635

applies to a given system. No additional meaning is assumed when ‘false’.” 636

Applicability: This applies in any case where vulnerability criteria were written under the 637

assumption that the user already knows that the potentially affected software is present. 638

Implementation: This is best explained through an example. Suppose that there is a 639

vulnerability in Acme Enterprise before version 1234. If you didn’t use 640

<oval:applicability_check> and you used criteria that checked for a version of Acme 641

before 1234, you’d get a true result if you were running Acme version 1230, and a false result if 642

you were running Acme version 1235. But what result would you get if the system didn’t have 643

Acme installed? You wouldn’t have any way of differentiating this result from an actual true or 644

false value. To prevent this ambiguity from occurring, it is recommended that you set 645

<oval:applicability_check> to true; this will cause the absence of software to generate a 646

Not Applicable result. 647

Impact/Consequence: Following this practice improves the consistency and accuracy of OVAL 648

results. 649

 650

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 17

Example: 651

<definition class="compliance" 652
id="oval:gov.nist.usgcb.windowsseven:def:1" version="2"> 653
... 654
 <criteria operator="AND"> 655
 <extend_definition comment="Windows 7 is installed" 656
definition_ref="oval:gov.nist.cpe.oval:def:1" 657
applicability_check="true"/> 658
 <criteria operator="OR"> 659
 <criterion comment="Account Lockout Duration is set to keep 660
accounts locked until unlocked by an administrator" 661
test_ref="oval:gov.nist.usgcb.windowsseven:tst:60070"/> 662
 <criteria operator="AND"> 663
 <criterion comment="Account Lockout Duration is set to keep 664
accounts locked for at least the profile defined number of minutes" 665
test_ref="oval:gov.nist.usgcb.windowsseven:tst:60071"/> 666
 <criterion comment="Profile does not require administrator 667
unlock" test_ref="oval:gov.nist.usgcb.windowsseven:tst:60072"/> 668
 </criteria> 669
 <criterion comment="Account Lockout Duration is set to keep 670
accounts locked until unlocked by an administrator" 671
test_ref="oval:gov.nist.usgcb.windowsseven:tst:60073"/> 672
 </criteria> 673
 </criteria> 674
</definition> 675

6.2 Include concise comments in elements whenever possible. 676

Rationale: Comments help authors, maintainers, and even users of the content to understand 677

what the content is intended to do and to troubleshoot problems that occur. 678

Background: In the OVAL Definitions Model (Section 4.3 of the OVAL Language 679

Specification [4]), many types, including the CriteriaType, CriterionType, 680

ExtendDefinitionType, TestType, ObjectType, StateType, and VariableType include an 681

<oval:comment> property. Some of these <oval:comment> properties are mandatory, while 682

others are optional. 683

Applicability: This applies to writing or editing a wide variety of OVAL elements. 684

Implementation: Whenever an <oval:comment> property is available for an OVAL element, 685

it should be used to provide concise comments for content authors and maintainers. Comments 686

serve as the documentation for OVAL content. 687

Impact/Consequence: Comments are beneficial for those individuals who are authoring, 688

maintaining, or troubleshooting the content. By having comments, problems are likely to be 689

resolved more quickly and effectively. Comments are also searchable in the XML source, which 690

can aid in content authoring, maintenance, and troubleshooting. Also, well-commented OVAL 691

content is more likely to be reused because its purpose and function are clearly stated. 692

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 18

Example: The OVAL example below shows comments for both the 693

<oval:extend_definition> and <oval:criterion> elements. 694

<definition class="compliance" 695
id="oval:gov.nist.usgcb.windowsseven:def:1" version="2"> 696
 <metadata>...</metadata> 697
 <criteria operator="AND"> 698
 <extend_definition comment="Windows 7 is installed" 699
definition_ref="oval:gov.nist.cpe.oval:def:1"/> 700
 <criteria operator="OR"> 701
 <criterion comment="Account Lockout Duration is set to keep 702
accounts locked until unlocked by an administrator" 703
test_ref="oval:gov.nist.usgcb.windowsseven:tst:60070"/> 704
 ... 705
 </criteria> 706
 </criteria> 707
</definition> 708

6.3 Use safe regular expressions in pattern matching. 709

Rationale: Using safe regular expressions helps ensure that only legitimate inputs are processed. 710

Applicability: This applies whenever writing or modifying OVAL content that uses pattern 711

matching. 712

Implementation: Inputs may contain data that is corrupted, malicious, or otherwise unexpected. 713

To handle such inputs properly when doing pattern matching, it is prudent to use safe regular 714

expressions that ensure that only input that meets the specified requirements is further processed. 715

Impact/Consequence: If inputs are not checked, unexpected inputs may be processed. This 716

could cause tools to crash or produce unpredictable results. If the unexpected inputs are 717

malicious, they could cause the tool to return false results, such as failing to report the existence 718

of exploitable vulnerabilities that attackers could then target. 719

Example: The <oval:value> element below shows an example of a safe pattern matching 720

expression. 721

<registry_state xmlns="http://oval.mitre.org/XMLSchema/oval-722
definitions-5#windows" comment="The registry key matches with Windows 723
7" id="oval:org.mitre.oval:ste:5027" version="4"> 724
 <value operation="pattern match">^[a-zA-Z0-725
9\(\)\s]*[Ww][Ii][Nn][Dd][Oo][Ww][Ss] 7[a-zA-Z0-9\(\)\s]*$</value> 726
</registry_state> 727

6.4 Consider performance impacts when writing or modifying checks. 728

Rationale: Running certain checks in production environments may cause denial of service 729

conditions to occur because of excessive resource utilization. 730

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 19

Applicability: This applies whenever writing or modifying a check that does not scale well for 731

larger environments. An example is resolving groups on a local host versus a million-host 732

domain. 733

Implementation: When writing or modifying checks, consider not just the best case or the 734

typical case, but the worst case. If you suspect that there may be negative performance impacts to 735

users, document these within the check. Where possible, consider alternate approaches to 736

authoring the check to reduce the assessment workload. 737

Impact/Consequence: Failure to consider performance impacts in a variety of environments 738

could cause denial of service conditions in some production environments that use the checks. 739

6.5 When feasible, write one check that applies to multiple software versions, instead 740
of duplicate checks for each version. 741

Rationale: This best practice reduces the number of checks that need to be written. 742

Applicability: This applies whenever you have an opportunity to use the same check on multiple 743

operating system versions or application versions. 744

Implementation: Create a single check and use it for multiple operating system versions (e.g., 745

Windows 7 and 8) or multiple application versions instead of creating a separate duplicate check 746

for each operating system or application version. 747

Impact/Consequence: This allows a single check to be used instead of multiple checks, so it 748

reduces the number of checks that need to be written. This makes content maintenance and 749

troubleshooting easier, and it reduces the likelihood of errors entering the content by eliminating 750

the writing of unnecessary checks. 751

6.6 Use external variables so a single check can be used for multiple input variables. 752

Rationale: This best practice reduces the number of checks that need to be written. 753

Reference: For more information on the definition of an OVAL external variable, see Section 754

4.3.23 of the OVAL specification [4]. 755

Applicability: This applies whenever you have an opportunity to use multiple input variables 756

with a single check, instead of creating multiple checks. 757

Implementation: Create a single check with external variables instead of duplicate checks with 758

local variables. An example is checking a password length policy. If the OVAL has the 759

minimum length policy hardcoded and there is not an external variable for it, then every time the 760

policy changes, the OVAL has to be changed. This is particularly problematic if other parties 761

will be reusing the content or if there are multiple policies within a single organization (for 762

example, different length requirements for each system security level). 763

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 20

Impact/Consequence: This allows a single check to be used with multiple input variables, so it 764

reduces the number of checks that need to be written. This makes content maintenance and 765

troubleshooting easier, and it reduces the likelihood of errors entering the content by eliminating 766

the writing of unnecessary checks. 767

Example: This example shows a declaration of an <oval:external_variable> element, 768

then an <xccdf:refine-value> that declares a value of “12 characters”, and then an 769

<xccdf:Rule> element declaration that references the external variable and uses the value. 770

<oval:external_variable comment="Minimum Password Length is greater 771
than or equal to the prescribed value" datatype="int" 772
id="oval:gov.nist.usgcb.windowsseven:var:22" version="2"/> 773
... 774
<xccdf:refine-value 775
idref="xccdf_gov.nist_value_password_minimum_length_var" 776
selector="12_characters"/> 777
... 778
<xccdf:Rule id="xccdf_gov.nist_rule_minimum_password_length" 779
selected="false" weight="10.0"> 780
 ... 781
 <xccdf:check system="http://oval.mitre.org/XMLSchema/oval-782
definitions-5"> 783
 <xccdf:check-export export-784
name="oval:gov.nist.usgcb.windowsseven:var:22" value-785
id="xccdf_gov.nist_value_password_minimum_length_var"/> 786
 <xccdf:check-content-ref href="USGCB-Windows-7-oval.xml" 787
name="oval:gov.nist.usgcb.windowsseven:def:7"/> 788
 </xccdf:check> 789
</xccdf:Rule> 790

6.7 When creating an external variable, carefully consider the possible values. 791

Rationale: This makes the content more readily reusable. 792

Applicability: This applies whenever you are creating an external variable that has several 793

possible values, particularly if the content will be used by other parties. 794

Implementation: Consider the full set of possible values when creating an external variable. An 795

example is establishing an external variable to hold a minimum password length value. Perhaps 796

your organization has three password policies: 8, 12, and 16 character minimums. You could set 797

the <oval:possible_value> element to hold 8, 12, and 16, but this precludes the use of any 798

other policy value. So if your policy changes to a 10 character minimum, the OVAL would need 799

to be rewritten. It might be more appropriate to use <oval:possible_restriction> to set a 800

range of values and perform input validation instead of discretely defining each possible value 801

using <oval:possible_value>. 802

If you have a variable that has an enumerated set of values, these can be specified using the 803

<oval:possible_value> element as well. 804

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 21

Impact/Consequence: This allows a single check to be used with multiple input variables, so it 805

reduces the number of checks that need to be written. This makes content maintenance and 806

troubleshooting easier, and it reduces the likelihood of errors entering the content by eliminating 807

the writing of unnecessary checks. 808

Example: The first example shows the use of the <oval:possible_restriction> element 809

for a range of values, and the second example shows the use of the <oval:possible_value> 810

element for enumerated values. 811

<external_variable comment="Required Password Length" datatype="int" 812
id="oval:namespace_here:var:1" version="1"> 813
 <possible_restriction hint="Min/Max password length"> 814
 <restriction operation="greater than or equal">0</restriction> 815
 <restriction operation="less than or equal">14</restriction> 816
 </possible_restriction> 817
</external_variable> 818

<external_variable comment="Audited events" datatype="string" 819
id="oval:namespace_here:var:2" version="1"> 820
 <possible_value hint="Audit no events">AUDIT_NONE</possible_value> 821
 <possible_value hint="Audit success 822
events">AUDIT_SUCCESS</possible_value> 823
 <possible_value hint="Audit failure 824
events">AUDIT_FAILURE</possible_value> 825
 <possible_value hint="Audit auccess and failure 826
events">AUDIT_SUCCESS_FAILURE</possible_value> 827
</external_variable> 828

6.8 Reuse check content where possible. 829

Rationale: Reusing check content where possible reduces the likelihood of errors (typos, etc.) 830

and makes content maintenance and troubleshooting easier. 831

Applicability: This applies whenever you have an opportunity to use a single object, variable, or 832

other entity instead of duplicating the same information within multiple objects, multiple 833

variables, etc. 834

Implementation: Create a single object, variable, etc. instead of duplicate objects, variables, etc. 835

An example is having a set of checks that all look for files within the system32 directory. There 836

should be a single object and a single variable that point to system32, and they should be reused 837

for all the checks in the set. For example, oval:org.mitre.oval:var:200 is the ID of the system32 838

variable in the OVAL repository [8], and it is reused by hundreds of objects. 839

Impact/Consequence: This allows a single object, variable, etc. to be used with many checks, so 840

it reduces the number of objects, variables, etc. that need to be created. This makes content 841

maintenance and troubleshooting easier, and it reduces the likelihood of errors entering the 842

content by eliminating the writing of unnecessary objects, variables, etc. However, be cautioned 843

that future changes to check content should not alter the intended logic of the content, otherwise 844

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 22

others that use the check content may start receiving unexpected results (FALSE instead of 845

TRUE, for example). 846

Example: The examples below show two <oval:file_object> definitions that reference the 847

same variable in the OVAL repository, with id oval:org.mitre.oval:var:200. 848

<file_object xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-849
5#windows" id="oval:gov.nist.usgcb.windowsseven:obj:20003" 850
version="2"> 851
 <path var_check="all" var_ref="oval:org.mitre.oval:var:200"/> 852
 <filename>telnet.exe</filename> 853
</file_object> 854
 855
<file_object xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-856
5#windows" id="oval:gov.nist.usgcb.windowsseven:obj:20005" 857
version="2"> 858
 <path var_check="all" var_ref="oval:org.mitre.oval:var:200"/> 859
 <filename>tftp.exe</filename> 860
</file_object> 861

6.9 Indicate revisions of definitions, tests, objects, states, and variables. 862

Rationale: Updating the version every time you revise an OVAL definition, test, object, state, or 863

variable makes it clear that any two instances of an entity with the same version number are the 864

same, and that any two instances of an entity with different version numbers are different. 865

Background: Section 4.3.3 of the OVAL Language Specification [4] defines the properties of an 866

OVAL Definition, and they include a mandatory <oval:version> property that holds the 867

version of the OVAL Definition as an unsigned integer. Although the <oval:version> 868

property is mandatory, the OVAL specification and the SCAP specification do not place any 869

requirements on the value of this property. The same is true for the <oval:version> properties 870

of an OVAL Test (Section 4.3.12), OVAL Object (Section 4.3.16), OVAL State (Section 4.3.20), 871

and OVAL Variable (Section 4.3.22). 872

Applicability: You want to modify an existing OVAL definition, test, object, state, or variable. 873

Implementation: Update the value for the <oval:version> property every time you are 874

creating a new revision of an OVAL Definition, Test, Object, State, or Variable, even if you 875

consider your changes to be minor. Ideally the values used for the <oval:version> property 876

should have a sequence, such as iterative numbers (1, 2, 3, 10), so that their order can be readily 877

determined. Tools, scripts, and other mechanisms for generating and modifying content should 878

handle this versioning on behalf of the user. 879

Impact/Consequence: Clearly distinguishing each revision of an OVAL Definition, Test, 880

Object, State, or Variable allows users to immediately tell that a new revision has been released. 881

Users can also readily compare revision numbers to each other to determine which iteration 882

should be used. Without clearly marking each revision, users might inadvertently fail to update 883

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 23

to a newer revision, or they might inadvertently confuse one revision with another. This could 884

cause the users to get inaccurate or inconsistent results compared to other users. 885

Example: Below are three examples of OVAL elements with <oval:version> values. 886

<definition class="compliance" 887
id="oval:gov.nist.usgcb.windowsseven:def:1" version="2"> 888
 889
<registry_test xmlns="http://oval.mitre.org/XMLSchema/oval-890
definitions-5#windows" check="at least one" 891
check_existence="at_least_one_exists" comment="Windows 7 is installed" 892
id="oval:org.mitre.oval:tst:10792" version="4"> 893
 894
<sid_object xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-895
5#windows" id="oval:gov.nist.usgcb.windowsseven:obj:3" version="2"> 896

6.10 Have a single CCE or CVE per definition when applicable. 897

Rationale: Having a single identifier per definition, instead of multiple identifiers per definition, 898

can produce more granular results. 899

Background: From Section 3.3 of NIST SP 800-126 Revision 2 [1]: “If an OVAL compliance 900

class definition maps to one or more CCE identifiers, the definition SHOULD include <oval-901

def:reference> elements that reference those identifiers…” and “If an OVAL vulnerability 902

class definition maps to one or more CVE identifiers, the definition SHOULD include <oval-903

def:reference> elements that reference those identifiers….” 904

Applicability: This applies to writing OVAL compliance definitions that map to CCE identifiers 905

and OVAL vulnerability definitions that map to CVE identifiers. 906

Implementation: OVAL compliance and vulnerability definitions should be written granularly, 907

so that each one applies to the fewest CCE or CVE identifiers possible, respectively. There are 908

some cases where a single definition will map to multiple identifiers, such as multiple software 909

flaw vulnerabilities in a single software component. However, in most cases a compliance or 910

vulnerability definition can be written so that only a single identifier corresponds to it. 911

Impact/Consequence: Having more granular definitions produces more granular results. If 912

many identifiers map to a definition, then testing for that definition simply indicates a collective 913

result and does not indicate which identifier or identifiers are relevant for the host. This could 914

significantly slow and complicate the process of remediating compliance issues and 915

vulnerabilities on hosts. 916

 917

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 24

Example: 918

<definition class="compliance" 919
id="oval:gov.nist.usgcb.windowsseven:def:1" version="2"> 920
 <metadata> 921
 <title>Account Lockout Duration</title> 922
 <affected family="windows"> 923
 <platform>Microsoft Windows 7</platform> 924
 </affected> 925
 <reference ref_id="CCE-9308-8" source="http://cce.mitre.org"/> 926
 <description>Account Lockout Duration</description> 927
 </metadata> 928
... 929
</definition> 930

6.11 Be careful when extending extended definitions. 931

Rationale: Extending an extended definition can become unnecessarily complicated, especially 932

when there are three or more layers of extension. 933

Applicability: This best practice should be considered whenever a content author is 934

contemplating extending an extended definition. 935

Implementation: There is nothing wrong with extending definitions, but there are concerns 936

about extending a definition that extends a definition, and especially having even more layers of 937

extension for definitions. This can make it very difficult to follow the flow of the XML and 938

determine what is actually being done. Another concern is that a loop of extensions could occur 939

(circular logic). 940

Impact/Consequence: Avoiding extending an extended definition, particularly with three or 941

more layers of extension, can make content much clearer for authors, maintainers, and 942

troubleshooters, reducing the burden on them. 943

6.12 Explicitly declare the <oval:registry_state> element’s <oval:type> element. 944

Rationale: This helps ensure that registry values are handled correctly by explicitly defining 945

their type. 946

Background: The <oval:type> element is an optional property of the 947

<oval:registry_state> element. The OVAL Language Windows Component Specification 948

document [5] defines it as “the type associated with the value of a hive or registry key.” 949

Reference: For more information on the <oval:registry_state> element and its 950

<oval:type> element, see Section 2.17 of the OVAL Language Windows Component 951

Specification: Version 5.10.1 Revision 1 [5]. 952

Applicability: This is applicable whenever an <oval:registry_state> element is used. 953

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 25

Implementation: The <oval:type> element should be included whenever the 954

<oval:registry_state> element is used to ensure that the corresponding registry values are 955

interpreted correctly. An example is receiving the value 1: is this meant as the string “1” 956

(reg_sz), the binary value 1 (reg_binary), or the 32-bit value 1 (reg_dword)? 957

Impact/Consequence: If the <oval:type> element is not specified, then the content author 958

may make erroneous assumptions about the nature of the value associated with the hive or 959

registry key. This could lead to incorrect or inconsistent results. 960

Example: The example below shows the use of the <oval:type> element within the 961

<oval:registry_state> element. 962

<registry_state xmlns="http://oval.mitre.org/XMLSchema/oval-963
definitions-5#windows" id="oval:gov.nist.usgcb.windowsseven:ste:2" 964
version="2"> 965
 <type>reg_dword</type> 966
 <value datatype="int" operation="greater than or equal" 967
var_ref="oval:gov.nist.usgcb.windowsseven:var:2"/> 968
</registry_state> 969

6.13 Avoid the use of deprecated tests. 970

Rationale: If a test has been replaced with another test, the new test should be used in place of 971

the deprecated test because of its superior characteristics and its continued support by the 972

specification and tools. 973

Applicability: This applies whenever writing or modifying content that is based on a deprecated 974

test. 975

Implementation: Instead of using a deprecated test, use the new test or tests that have replaced 976

it. For example, it is common for a single test to be split into multiple tests to provide greater 977

result granularity. In that case, it would be appropriate to use one or more of the new tests instead 978

of the deprecated test. 979

Impact/Consequence: The assumption in the creation of a new test is that it is superior to the 980

test or tests that it deprecates. It may offer better performance, more accurate or granular results, 981

etc. So failing to switch to a new test may unnecessarily cause a variety of problems. Another 982

possible consequence is that newer SCAP-validated products may not be capable of processing 983

deprecated tests. 984

6.14 Ensure that the schema location and version number agree. 985

Rationale: Unpredictable results will occur if the schema location and version number do not 986

agree. 987

Applicability: This applies whenever OVAL is being used. 988

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 26

Implementation: Ensure that the value assigned to the <oval:generator> element’s 989

@schema_version attribute is in agreement with the <xsi:schemaLocation> value. For 990

example, don’t point to the location of the OVAL 5.3 schema if you are setting the 991

@schema_version attribute to 5.10. 992

Impact/Consequence: If the two values are not synchronized, unpredictable outcomes may 993

occur when running the content, including tool crashes and inconsistent or inaccurate results. 994

Example: The examples below show the declaration of the <xsi:schemaLocation> element 995

and the <oval:schema_version> element. 996

<oval_definitions 997
 ... 998
xsi:schemaLocation="http://oval.mitre.org/XMLSchema/oval-common-5 999
http://oval.mitre.org/language/version5.10/ovaldefinition/complete/ova1000
l-common-schema.xsd http://oval.mitre.org/XMLSchema/oval-1001
definitions-5 1002
http://oval.mitre.org/language/version5.10/ovaldefinition/complete/ova1003
l-definitions-schema.xsd http://oval.mitre.org/XMLSchema/oval-1004
definitions-5#windows 1005
http://oval.mitre.org/language/version5.10/ovaldefinition/complete/win1006
dows-definitions-schema.xsd http://oval.mitre.org/XMLSchema/oval-1007
definitions-5#independent 1008
http://oval.mitre.org/language/version5.10/ovaldefinition/complete/ind1009
ependent-definitions-schema.xsd"> 1010
 1011
<generator> 1012
 <oval:product_name>National Institute of Standards and 1013
Technology</oval:product_name> 1014
 <oval:schema_version>5.10</oval:schema_version> 1015
 <oval:timestamp>2014-02-24T10:00:00.000-04:00</oval:timestamp> 1016
</generator> 1017

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 27

7 XCCDF Style Best Practices 1018

This section discusses style best practices specific to XCCDF. 1019

7.1 Use a tailoring document when deriving your own XCCDF content from someone 1020
else’s benchmark. 1021

Rationale: A tailoring document allows you to customize a benchmark without directly altering 1022

the benchmark document itself. 1023

Background: As stated in Section 6.1 of NISTIR 7275 Revision 4 [2], “A tailoring document 1024

holds exactly one <xccdf:Tailoring> element, which contains <xccdf:Profile> elements 1025

to modify the behavior of an <xccdf:Benchmark>.” This is also referred to as the use of 1026

external profiles, because the profiles applied to the benchmark are external to the benchmark 1027

document. 1028

Reference: See Section 6.7 of NISTIR 7275 Revision 4 for a more detailed explanation of 1029

tailoring documents, as well as the actual <xccdf:Tailoring> element specification. 1030

Dependencies: This best practice is dependent on the best practices in Section 6.6 (Use external 1031

variables so a single check can be used for multiple input variables.) and Section 6.7 (When 1032

creating an external variable, carefully consider the possible values.) 1033

Applicability: You want to derive your own content from an existing benchmark, such as 1034

customizing a benchmark to take into account your organization’s individual needs and 1035

requirements. 1036

Implementation: There are two options if you want to derive your own content from someone 1037

else’s benchmark: directly edit the benchmark, or use a tailoring document to customize the 1038

benchmark without editing it directly. This best practice is recommending the second option over 1039

the first. You would create a tailoring document, with one or more profiles that each define a set 1040

of customizations for a single benchmark. 1041

Impact/Consequence: As stated in Section 6.7.1 of NISTIR 7275 Revision 4, “There are several 1042

reasons why this [using a tailoring document] might be desirable: 1043

 The benchmark might not be controlled by the organization wishing to add the profile to 1044

it. 1045

 The benchmark might have digital signatures that would be corrupted by benchmark 1046

modification. 1047

 The benchmark might undergo revision by its author, so modifications by a different 1048

party would represent a development fork that complicates maintenance. 1049

 It enables the capturing of manual tailoring actions in a well-defined format....” 1050

In summary, using a tailoring document eliminates the need to directly edit the source material. 1051

If you had the ability to directly edit the benchmark and you did so, the problems described 1052

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 28

above would be applicable. It would be necessary to duplicate work, such as transferring 1053

customizations from one version of a benchmark to another as the benchmark is revised over 1054

time. This is error prone and time consuming. By using a tailoring document, the customizations 1055

are recorded in an efficient and consistent manner, making their transfer from one benchmark 1056

version to another trivial. 1057

Example: 1058

<Tailoring id="xccdf_gov.nist_tailoring_sample" …> 1059
 <version time="2015-03-10T12:34:56">1</version> 1060
 <Profile id="xccdf_gov.nist_profile_1"> 1061
 <title>Sample profile</title> 1062
 <set-value 1063
idref="xccdf_gov.nist_value_password_minimum_length_var" >8</set-1064
value> 1065
 </Profile> 1066
</Tailoring> 1067

7.2 Indicate revisions of a single benchmark or tailoring document. 1068

Rationale: Updating the version every time you revise an XCCDF benchmark or tailoring 1069

document makes it clear that any two instances of the document with the same version number 1070

and the same ID are the same document, and that any two instances of the document with 1071

different version numbers and the same ID are different versions of the same document. 1072

Background: The <xccdf:version> element is mandatory for a benchmark document and a 1073

tailoring document. The SCAP and XCCDF specifications do not explicitly define a format for 1074

the <xccdf:version> element values, other than stating that the version is to be a string. See 1075

the Reference below for the benchmark recommendations. 1076

Reference: NIST SP 800-126 Revision 2, Section 3.2.2, Item 1a: “Multiple revisions of a single 1077

benchmark SHOULD have the same @id attribute value and different <xccdf:version> 1078

element values, so that someone who reviews the revisions can readily identify them as multiple 1079

versions of a single benchmark.” Item 1b: “Multiple revisions of a single benchmark SHOULD 1080

have <xccdf:version> element values that indicate the revision sequence, so that the history 1081

of changes from the original benchmark can be determined.” 1082

Applicability: You want to modify an existing XCCDF benchmark or tailoring document. 1083

Implementation: Update the value for <xccdf:version> every time you are creating a new 1084

revision of the benchmark or tailoring document, even if you consider your changes to be minor. 1085

Ideally the values used for <xccdf:version> should have a sequence, such as iterative 1086

numbers (0.1, 0.2, 0.3, 1.0), so that their order can be readily determined. 1087

Impact/Consequence: Clearly distinguishing each revision of a benchmark or tailoring 1088

document allows users of that document to immediately tell that a new revision has been 1089

released. Users can also readily compare revision numbers to each other to determine which 1090

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 29

iteration of a document should be used. Without clearly marking each revision, users might 1091

inadvertently fail to update to a newer revision of the benchmark or tailoring document, or they 1092

might inadvertently confuse one revision with another. This could cause the users to get 1093

inaccurate or inconsistent results compared to other users. 1094

Example: The example below shows a declaration of the <xccdf:version> element. 1095

<xccdf:version time="2012-02-24T10:00:00" 1096
update="http://usgcb.nist.gov">v1.2.3.1</xccdf:version> 1097

7.3 Indicate revisions of <xccdf:Profile>, <xccdf:Group>, <xccdf:Rule>, and 1098
<xccdf:Value> elements. 1099

Rationale: Updating the version every time you revise an <xccdf:Profile>, 1100

<xccdf:Group>, <xccdf:Rule>, or <xccdf:Value> elements makes it clear that any two 1101

instances of the element with the same version number and the same ID are the same element, 1102

and that any two instances of the element with different version numbers and the same ID are 1103

different versions of the same element. 1104

Background: The <xccdf:Profile>, <xccdf:Group>, <xccdf:Rule>, and 1105

<xccdf:Value> elements all have an optional <xccdf:version> element intended to be used 1106

to provide a version number for the element. 1107

Applicability: You want to modify an existing <xccdf:Profile>, <xccdf:Group>, 1108

<xccdf:Rule>, or <xccdf:Value> element. 1109

Implementation: Update the value for <xccdf:version> every time you are creating a new 1110

revision of the <xccdf:Profile>, <xccdf:Group>, <xccdf:Rule>, or <xccdf:Value> 1111

element, even if you consider your changes to be minor. Ideally the values used for 1112

<xccdf:version> should have a sequence, such as iterative numbers (0.1, 0.2, 0.3, 1.0), so 1113

that their order can be readily determined. 1114

Impact/Consequence: Clearly distinguishing each revision of an <xccdf:Profile>, 1115

<xccdf:Group>, <xccdf:Rule>, or <xccdf:Value> element allows users of that element to 1116

immediately tell that a new revision has been released. Users can also readily compare revision 1117

numbers to each other to determine which iteration of an element should be used. Without 1118

clearly marking each revision, users might inadvertently fail to update to a newer revision of the 1119

element, or they might inadvertently confuse one revision with another. This could cause the 1120

users to get inaccurate or inconsistent results compared to other users. 1121

Example: 1122

<xccdf:Profile id="xccdf_gov.nist_profile_1"> 1123
 <xccdf:version time="2012-02-24T10:00:00" 1124
update="http://usgcb.nist.gov">v1.2.3.1</xccdf:version> 1125
... 1126
</xccdf:Profile> 1127

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 30

7.4 When referencing OVAL from XCCDF, match datatypes. 1128

Rationale: Conflicts between OVAL and XCCDF datatypes can cause unpredictable results. 1129

Background: Table 16 in NIST SP 800-126 Revision 2, Section 3.2.5 matches OVAL variable 1130

data types to XCCDF data types (for example, OVAL int matches XCCDF number). The same 1131

section also states: “The type and value binding of the specified <xccdf:Value> is constrained 1132

to match that lexical representation of the indicated OVAL Variable data type. Table 16 1133

summarizes the constraints regarding data type usage.” However, there is nothing in the NIST SP 1134

that makes compliance with this matching mandatory, or even recommended. 1135

Applicability: This is applicable whenever an OVAL variable and an XCCDF variable are in an 1136

operation together, including assignment (e.g., assigning the value of the OVAL variable to the 1137

XCCDF variable). 1138

Implementation: OVAL and XCCDF variables in an operation together should be of compatible 1139

types. Table 16 in Section 3.2.5 of NIST SP 800-126 Revision 2 contains the definitive listing of 1140

OVAL and XCCDF variable data type mappings, which are summarized here for convenience: 1141

 OVAL int, XCCDF number 1142

 OVAL float, XCCDF number 1143

 OVAL boolean, XCCDF boolean 1144

 All other OVAL variable data types, XCCDF string 1145

Impact/Consequence: This ensures that data being passed between OVAL and XCCDF is being 1146

used in the expected way (a number as a number, a string as a string, etc.) Failure to ensure that 1147

datatypes match can cause data passed between OVAL and XCCDF to be misused, such as 1148

attempting to misinterpret a number as a string, or a string as a number. This can cause 1149

unpredictable results. 1150

7.5 Have a single CCE or CVE per rule when applicable. 1151

Rationale: Having a single identifier per rule, instead of multiple identifiers per rule, can 1152

produce more granular results. 1153

Background: From Section 3.2.4.1 of NIST SP 800-126 Revision 2 [1]: “Each <xccdf:Rule> 1154

element SHALL include an <xccdf:ident> element containing a CVE, CCE, or CPE 1155

identifier reference if an appropriate identifier exists.” Note that the <xccdf:ident> element 1156

may be used more than one time for a single <xccdf:Rule> element. 1157

Dependencies: This best practice is dependent on the best practice in Section 6.10 (Have a 1158

single CCE or CVE per definition when applicable.) 1159

Applicability: This applies to writing <xccdf:Rule> elements that reference a CCE or CVE 1160

identifier. 1161

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 31

Implementation: <xccdf:Rule> elements should be written granularly, so that each one 1162

applies to the fewest CCE or CVE identifiers possible. Generally this is driven by the number of 1163

identifiers used by the definition being referenced. There are some cases where a single rule will 1164

map to multiple identifiers, such as pointing to an OVAL vulnerability definition for multiple 1165

software flaw vulnerabilities in a single software component. 1166

Impact/Consequence: Having more granular rules produces more granular results. If many 1167

identifiers map to a rule, then testing for that rule simply indicates a collective result and does 1168

not indicate which identifier or identifiers are relevant for the host. This could significantly slow 1169

and complicate the process of remediating compliance issues and vulnerabilities on hosts. 1170

Example: 1171

<xccdf:Rule id="xccdf_gov.nist_rule_account_lockout_duration" 1172
selected="false" weight="10.0"> 1173
... 1174
 <xccdf:ident system="http://cce.mitre.org">CCE-9308-8</xccdf:ident> 1175
... 1176
</xccdf:Rule> 1177

7.6 If a patch checklist is required, use separate checklists for patches and 1178
configuration settings. 1179

Rationale: Patches change at a greater rate than configuration settings, so patch content should 1180

not be integrated into configuration setting content because of their differing maintenance cycles. 1181

Applicability: This is applicable whenever a patch checklist is required and there are also 1182

security configuration settings to be included in the checklist. This is not applicable when a 1183

patches up-to-date rule is being used, only when a full-fledged patch checklist is required. 1184

Implementation: Create two checklists, one for the patch material and one for the configuration 1185

settings. 1186

Impact/Consequence: If patch and configuration setting content is merged into a single 1187

checklist, then that checklist will have to be updated more frequently to keep the patch 1188

information current. This will cause new revisions of the entire checklist to be released, putting 1189

an unnecessary burden on checklist users who would have to compare the old and new checklists 1190

to determine that only the patch content has been changed. By separating the two types of 1191

content into separate checklists, users can retrieve updated copies of the patch checklist as 1192

needed without worrying about changes to the configuration checklist, which would be released 1193

separately on a less frequent schedule. 1194

 1195

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 32

8 SCAP Data Stream Style Best Practices 1196

This section discusses style best practices specific to SCAP data streams. 1197

8.1 Avoid using data stream identifiers to convey other information to automated 1198
parsers. 1199

Rationale: A data stream identifier is intended to be an identifier only and not to convey other 1200

information, such as packaging format information, so automated parsers will not know how to 1201

extract these meanings from the identifier. 1202

Applicability: This applies whenever creating or modifying an SCAP data stream. 1203

Implementation: Avoid including extraneous information when defining the @id attribute for a 1204

<ds:data-stream> element. An example is specifying “.zip” within the @id attribute value in 1205

order to indicate that the data stream has been zipped. 1206

Impact/Consequence: If parsing a data stream is dependent on automatically extracting 1207

additional values from within the @id attribute, this is likely to fail for many parsers, preventing 1208

the reading and processing of the data stream. Relying on this method even with parsers that 1209

support it may produce unpredictable results because of the nature of data streams. For example, 1210

suppose that the zipped nature of a data stream is indicated by including “.zip” in the @id 1211

attribute. If that data stream is unzipped, there is no mechanism for updating that @id attribute’s 1212

value to indicate that the data stream is no longer zipped. 1213

 1214

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 33

9 Best Practice Topics for Further Discussion 1215

This section details potential best practice topics where the authors feel that community feedback 1216

is needed before further developing the best practice. This section will only be included in the 1217

public comment draft, not the final version of the publication. 1218

9.1 Is it preferable to use plaintext or XHTML? 1219

Rationale: Plaintext supports greater interoperability but Extensible Hypertext Markup 1220

Language (XHTML) gives content authors the ability to specify style for human readability. 1221

Applicability: This applies to all SCAP elements that support XHTML. 1222

Implementation: Plaintext supports interoperability because some tools are not presenting 1223

XHTML, which is causing XHTML content to be stripped out. If structural markup is used in 1224

XHTML, its textual elements can easily be transformed to other formats, negating the need to 1225

display XHTML. XHTML gives content authors much greater control over how their content is 1226

visually presented to users, unlike plaintext, which provides no control. 1227

Impact/Consequence: Requiring the use of plaintext over XHTML would take away style 1228

control from content authors while improving interoperability. Requiring the use of structural 1229

markup whenever using XHTML would remedy the problem somewhat, but not completely 1230

because of lack of tool support. Requiring the use of XHTML would make the creation of simple 1231

content overly complicated. 1232

 1233

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 34

Appendix A—Acronyms and Abbreviations 1234

Selected acronyms and abbreviations used in this paper are defined below. 1235

CCE Common Configuration Enumeration

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposures

FISMA Federal Information Security Management Act

IR Internal Report

ITL Information Technology Laboratory

NIST National Institute of Standards and Technology

NISTIR National Institute of Standards and Technology Internal Report

OCIL Open Checklist Interactive Language

OMB Office of Management and Budget

OVAL Open Vulnerability and Assessment Language

RFC Request for Comments

SCAP Security Content Automation Protocol

SP Special Publication

TMSAD Trust Model for Security Automation Data

USGCB United States Government Configuration Baseline

XCCDF Extensible Configuration Checklist Description Format

XHTML Extensible Hypertext Markup Language

 1236

NISTIR 8058 SCAP Version 1.2 Content Style Guide (Draft)

 35

Appendix B—References 1237

[1] NIST, NIST SP 800-126 Revision 2, The Technical Specification for the Security Content 1238

Automation Protocol (SCAP): SCAP Version 1.2, September 2011. 1239

http://csrc.nist.gov/publications/nistpubs/800-126-rev2/SP800-126r2.pdf and errata 1240

(http://csrc.nist.gov/publications/nistpubs/800-126-rev2/sp800-126r2-errata-1241

20120409.pdf) 1242

[2] NIST, NISTIR 7275 Revision 4, Specification for the Extensible Configuration Checklist 1243

Description Format (XCCDF) Version 1.2, September 2011. 1244

http://csrc.nist.gov/publications/nistir/ir7275-rev4/nistir-7275r4_updated-march-1245

2012_clean.pdf 1246

[3] NIST, NISTIR 7692, Specification for the Open Checklist Interface Language (OCIL) 1247

Version 2.0, April 2011. http://csrc.nist.gov/publications/nistir/ir7692/nistir-7692.pdf 1248

[4] The MITRE Corporation, The OVAL Language Specification, Version 5.10.1, January 1249

2012. https://oval.mitre.org/language/version5.10.1/OVAL_Language_Specification_01-1250

20-2012.pdf 1251

[5] The MITRE Corporation, The OVAL Language Windows Component Specification: 1252

Version 5.10.1 Revision 1, January 2012. 1253

https://oval.mitre.org/language/version5.10.1/OVAL_Windows_Component_Specificatio1254

n_01-19-2012.pdf 1255

[6] W3C, XML Schema. http://www.w3.org/XML/Schema.html 1256

[7] NIST, NISTIR 7802, Trust Model for Security Automation Data 1.0 (TMSAD), 1257

September 2011. http://csrc.nist.gov/publications/nistir/ir7802/NISTIR-7802.pdf 1258

[8] The MITRE Corporation, OVAL Repository. https://oval.mitre.org/repository/ 1259

[9] Kent Landfield, McAfee, “Content Development Best Practices” presentation. 1260

http://scap.nist.gov/events/2011/saddsp/presentations/Kent_Landfield-1261

Content_Best_Practices.pdf 1262

[10] Shane Shaffer, G2, Inc., “Content Development Best Practices” presentation, 1263

http://makingsecuritymeasurable.mitre.org/participation/devdays.html#2011 1264

[11] USGCB Checklist for Windows 7, 1265

https://web.nvd.nist.gov/view/ncp/repository/checklistDetail?id=295 1266

http://csrc.nist.gov/publications/nistpubs/800-126-rev2/SP800-126r2.pdf
http://csrc.nist.gov/publications/nistpubs/800-126-rev2/sp800-126r2-errata-20120409.pdf
http://csrc.nist.gov/publications/nistpubs/800-126-rev2/sp800-126r2-errata-20120409.pdf
http://csrc.nist.gov/publications/nistir/ir7275-rev4/nistir-7275r4_updated-march-2012_clean.pdf
http://csrc.nist.gov/publications/nistir/ir7275-rev4/nistir-7275r4_updated-march-2012_clean.pdf
http://csrc.nist.gov/publications/nistir/ir7692/nistir-7692.pdf
https://oval.mitre.org/language/version5.10.1/OVAL_Language_Specification_01-20-2012.pdf
https://oval.mitre.org/language/version5.10.1/OVAL_Language_Specification_01-20-2012.pdf
https://oval.mitre.org/language/version5.10.1/OVAL_Windows_Component_Specification_01-19-2012.pdf
https://oval.mitre.org/language/version5.10.1/OVAL_Windows_Component_Specification_01-19-2012.pdf
http://www.w3.org/XML/Schema.html
http://csrc.nist.gov/publications/nistir/ir7802/NISTIR-7802.pdf
https://oval.mitre.org/repository/
http://scap.nist.gov/events/2011/saddsp/presentations/Kent_Landfield-Content_Best_Practices.pdf
http://scap.nist.gov/events/2011/saddsp/presentations/Kent_Landfield-Content_Best_Practices.pdf
http://makingsecuritymeasurable.mitre.org/participation/devdays.html#2011
https://web.nvd.nist.gov/view/ncp/repository/checklistDetail?id=295

