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Reports on Computer Systems Technology 67 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 68 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 69 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 70 
methods, reference data, proof of concept implementations, and technical analyses to advance the 71 
development and productive use of information technology. ITL’s responsibilities include the 72 
development of management, administrative, technical, and physical standards and guidelines for 73 
the cost-effective security and privacy of other than national security-related information in federal 74 
information systems. 75 

Abstract 76 

Entropy models are frequently utilized in tests identifying either qualities of randomness or 77 
randomness uniformity of formal and/or observed distributions. The NIST special publications 78 
SP 800-22 [1] and SP 800-90 (A, B, & C) [2, 3, 4] discuss tests and methods leveraging both 79 
Shannon and min entropies. Shannon and min entropies represent two particular cases of Renyi 80 
entropy, which is a more general one parameter entropy model. Renyi entropy insightfully 81 
unifies Hartley, Shannon, collision, and min entropies and belongs to the class of one parameter 82 
entropy models, such as entropies named after Havrda-Charvat-Daroczy, Tsallis, Abe, and 83 
Kaniadakis. Renyi entropy along with the other members of the one parameter entropy models 84 
class can be in turn viewed as a case of the Sharma-Mittal entropy, which is a bi-parametric 85 
generalized entropy model. This NIST Internal Report (NISTIR) focuses on using Renyi and 86 
Tsallis entropy and divergence models to analyze similarities and differences between 87 
probability distributions of interest. The report introduces extensions for the traditional 88 
uniformity identification and measurement techniques that were proposed in the NIST special 89 
publications SP 800-22 and SP 800-90.  90 

Keywords 91 
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Note to Reviewers 93 

Some basic understanding of probability theory and familiarity with mathematical formalisms 94 
would allow readers to get deeper understanding of the topics discussed. The document is 95 
structured to make possible independent reading and understanding of each section. Small 96 
examples are presented to illustrate the observations presented in the document. 97 
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1 Introduction  

Entropy based distribution evaluation techniques are of particularly high interest in the fields of 
cryptography, crypto analysis, statistical security, and security automation. NIST special 
publications 800-22 [1] and 800-90 (A, B, & C) [2, 3, 4] use Shannon [5] and min entropy [6] 
models. Both Shannon and min entropies present particular cases of Renyi entropy [7]. This 
publication focuses on the similarities, differences, and relationships between Shannon, min and 
generalized (Renyi, Tsallis, etc.) entropies. In addition to entropy models, the distribution 
divergences may come into play, when comparing multiple distribution models to each other.  

Determining and evaluating empirical distributions from observations is an important problem in 
theoretical and applied computer security in particular and computer science in general. In the 
field of cryptography or crypto-analytics evaluating min or Shannon entropies is considered 
sufficient for accepting or discarding a particular model of randomness quality. Though in more 
general applications in security automation and artificial intelligence, the ability to distinguish 
two distributions on the basis of more than Shannon or min entropy leads to the questions: “How 
uniform is the distribution produced by the model examined?” and “How to pick a more 
uniform model out of a set of models?” This report illustrates a few ways and approaches of 
answering the above questions.  

2 Finite Discrete Probability Distributions and 𝞓𝞓n Simplexes 

Consider a finite discrete random variable 𝛏𝛏 defined over a probability space ⟨𝛀𝛀,𝕭𝕭,𝒑𝒑()⟩, where 
𝛀𝛀 is the universal set of events, 𝕭𝕭 is a Borel algebra over the events of 𝛀𝛀, and 𝒑𝒑() is the 
probability metric defined as a mapping of all elements of the algebra 𝕭𝕭 to the real interval [0,1]. 
Assume that random variable 𝛏𝛏 is taking values ξ(𝜔𝜔𝑖𝑖) on the countable set of events 𝝎𝝎 =
{𝜔𝜔𝑖𝑖|𝑖𝑖=1𝑛𝑛 } from 𝕭𝕭. The probability distribution for 𝛏𝛏 can be used as either a set 𝒑𝒑 or a vector 𝒑𝒑� of 
probabilities. The choices and structures of the set 𝛀𝛀 and of the algebra 𝕭𝕭 may present research 
interest, but will not be focus of this report. This report will mostly focus on the structure and 
interrelations of the probability values defined by the metric 𝒑𝒑() from ⟨𝛀𝛀,𝕭𝕭,𝒑𝒑()⟩, while 
neglecting the underlying structures of 𝛀𝛀, 𝕭𝕭, and the values ξ(𝜔𝜔𝑖𝑖).  

At the adopted level of abstraction, we will assume that a distribution family or simply a 
distribution is defined if a set of values 𝒑𝒑 = {𝑝𝑝𝑖𝑖|𝑖𝑖=1𝑛𝑛 } or an n-dimensional vector 𝒑𝒑� ≜ (𝑝𝑝𝑖𝑖|𝑖𝑖=1𝑛𝑛 ), 
correspondingly, is known. Any of the equivalent notations will be used for representing the 
given distributions as a set: 𝒑𝒑 ≝ [𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛] = {𝑝𝑝𝑖𝑖|𝑖𝑖=1𝑛𝑛 } = {𝑝𝑝(ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 } = {𝑝𝑝(𝑥𝑥 = ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 }, 
which will be used in cases when the order of probability values is not important. For the cases, 
when the order of the values matters the vector notation will be used 𝒑𝒑� ≝ (𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) =
(𝑝𝑝(ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 ) = (𝑝𝑝(ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 ) = (𝑝𝑝(𝑥𝑥 = ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 ).   

Note, that an arbitrary finite discrete distribution of cardinality n with the probabilities 𝑝𝑝(ξ𝑖𝑖) ≥ 0, 
can always be thought of as a vector 𝒑𝒑� ≜ (𝑝𝑝(ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 ) from an n-dimensional vector space with 
the additivity property ∑ 𝑝𝑝(ξ𝑖𝑖) = 1𝑛𝑛

𝑖𝑖=1 . The additivity to 1 hots to a simple geometrical 
interpretation of the expression ∑ 𝑝𝑝(ξ𝑖𝑖) = 1𝑛𝑛

𝑖𝑖=1 .  
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Consider a space of all possible real-valued n-element partitions {𝑝𝑝(ξ𝑖𝑖) ≥ 0|𝑖𝑖=1𝑛𝑛 } with the 
constraint ∑ 𝑝𝑝(ξ𝑖𝑖) = 1𝑛𝑛

𝑖𝑖=1  of the n-dimensional probability space. Under these constraints the 
additivity condition can be represented as: ∑ 𝑝𝑝(ξ𝑖𝑖) − 1 = 0𝑛𝑛

𝑖𝑖=1 , which is the canonical 
hyperplane equation in n-dimensional space. The vector orthogonal to the hyperplane is 𝑛𝑛� =
(1, . . . n times. . . ,1) and the resulting hyperplane intersects each of the axes 𝑝𝑝(ξ𝑖𝑖) at the 
following n points: ({𝑝𝑝(ξ1) = 1}, 0 … 0), (0, {p(ξ2) = 1}, 0 … 0), … (0, . .0, {p(ξ𝑛𝑛) = 1}). The 
same linear expression explains the (n-1) dimensionality of this set, which is one less than n - the 
dimension of the original space in consideration. This happens because the relation of any 
arbitrarily selected jth dimension with the other (n-1) dimensions can be expressed as follows: 

p�ξ𝑗𝑗� = 1 − � p(ξ𝑖𝑖)
𝑛𝑛

𝑖𝑖≠𝑗𝑗,𝑖𝑖=1

                                                           (𝐞𝐞𝐞𝐞.𝟏𝟏) 

The earlier hyperplane expression rewritten in the form of expression (𝐞𝐞𝐞𝐞.𝟏𝟏) demonstrates that 
any probability dimension, regardless of the dimension selection, is linearly dependent on the 
other n-1 dimensions. This structure, containing all possible discrete finite probability 
distributions of dimension n is usually called simplex, denoted as 𝛥𝛥𝑛𝑛, and defined as follows: 

𝛥𝛥𝑛𝑛 ≝ �(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛)|𝑝𝑝𝑖𝑖 ⩾ 0,�𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1,𝑛𝑛 > 1�                                  (𝐞𝐞𝐞𝐞.𝐞𝐞) 

Figure 1 demonstrates the two simplexes for the cases of n=2 and n=3. The illustrations below 
represent 2D domain subspace for binomial and 3D domain subspace for simplest multinomial 
distribution families: 

 

Figure 1: 2D and 3D Simplexes for all Possible Binomial and 3 Elements Multinomial Probability Distributions 

With the established terminology an entropy can be defined as a function 𝐻𝐻:𝛥𝛥𝑛𝑛 → 𝕽𝕽 reflecting 
an n-dimensional simplex 𝛥𝛥𝑛𝑛 into a set of real numbers. Simply speaking, an entropy function 
would yield a single (usually real) value for a given distribution that can be identified as a point 
in the simplex of the distribution corresponding dimensionality or higher. 
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3 Renyi Generalization of the Shannon, Hartley and Min Entropies 

For a given probability distribution, the Hartley, Shannon, collision and min entropies map the 
given distribution to a real number. The idea of generalizing the Hartley, Shannon, collision, and 
min entropies was presented by Alfred Renyi [7] more than 50 years ago. The generalization 
proposed by Renyi establishes correspondence of a given probability distribution 𝒑𝒑(𝛏𝛏) and a 
parameter 𝛼𝛼53T value to a real number. In this notation the Renyi entropy denoted as 𝐻𝐻𝛼𝛼( )𝛏𝛏  for a 
given parameter 𝛼𝛼 can be defined as follows: 

𝐻𝐻𝛼𝛼(𝛏𝛏) ≝
1

1 − 𝛼𝛼
log𝛽𝛽 ��𝑝𝑝(ξ𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

�;                                               (𝐞𝐞𝐞𝐞.𝟏𝟏) 

For a particular random variable 𝛏𝛏 defined with the corresponding probabilities 𝒑𝒑 = (𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) 
in the simplex 𝛥𝛥𝑛𝑛, a fixed 𝛼𝛼 (and a particular logarithm base 𝛽𝛽) 𝐻𝐻𝛼𝛼(𝛏𝛏) would simply produce a 
scalar real value. Following calculus methods one could analyze the changes of the resulting 
value as a function of varying random variables 𝛏𝛏 with the corresponding probability 
distributions 𝒑𝒑 = (𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) in the simplex 𝛥𝛥𝑛𝑛 and/or the parameter 𝛼𝛼. It’s useful to note, that 
for different values of the parameter 𝛼𝛼 > 0, the resulting Renyi entropy values for the same 
given distribution are usually different from each other, because Renyi entropy is a non-
increasing function of α. Detailed analysis of the Renyi entropy as the function of parameter α 
establishes that Renyi entropy can be viewed a generalization of Hartley, Shannon, collision, and 
min entropies at the values of  𝛼𝛼 = 0, 𝛼𝛼 = 1, α = 2, and 𝛼𝛼 → ∞ correspondingly [6].  

Strictly speaking, if one considers only discrete distributions, then the Renyi entropy can be seen 
as an implicit mapping of the given discrete distribution family generated by any permutations of 
the given distribution probabilities and a given parameter 𝛼𝛼 to a real number. Renyi entropy is 
not a bijection in the strict sense. Though for each of the distribution family (i.e. all distributions 
that can be obtained by permutation of the given probabilities) and the same parameter 𝛼𝛼 the 
corresponding Renyi entropy value will remain analytically the same because of the 
commutativity and associativity of the sum. This property of entropy value permutation 
invariance is rather important for practical applications. When working with arbitrary 
distributions the permutation invariance property of Renyi entropy permits use of safer 
computation techniques by sorting distribution probabilities in ascending order, which allows to 
minimize the rounding precision loss during computation.  

Considering the properties of logarithms, powers and generalized p-norms the following 
identities can be easily established: 

𝐻𝐻𝛼𝛼(𝛏𝛏) =  
𝛼𝛼

1 − 𝛼𝛼
log𝛽𝛽 ���[𝑝𝑝(ξ𝑖𝑖)]𝛼𝛼

𝑛𝑛

𝑖𝑖=1

𝛼𝛼

� =
𝛼𝛼

1 − 𝛼𝛼
log𝛽𝛽(‖𝐏𝐏‖𝛼𝛼);                        (𝐞𝐞𝐞𝐞.𝐞𝐞) 
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𝐻𝐻𝛼𝛼(𝛏𝛏) =
1

1 − 𝛼𝛼
log𝛽𝛽 ��𝑝𝑝(ξ𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

� = − log𝛽𝛽 � ��𝑝𝑝(ξ𝑖𝑖)[𝑝𝑝(ξ𝑖𝑖)]𝛼𝛼−1
𝑛𝑛

𝑖𝑖=1

𝛼𝛼−1

�;              (𝐞𝐞𝐞𝐞.𝐞𝐞) 

𝐻𝐻𝛼𝛼(𝛏𝛏) =
1

1 − 𝛼𝛼
log𝛽𝛽 ��𝑝𝑝(ξ𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

� = log𝛽𝛽 �
1

�∑ p(ξ𝑖𝑖)[p(ξ𝑖𝑖)]𝛼𝛼−1𝑛𝑛
𝑖𝑖=1

𝛼𝛼−1 �;            (𝐞𝐞𝐞𝐞.𝟒𝟒) 

As in the case of Shannon entropy the logarithm bases 𝛽𝛽 in (𝐞𝐞𝐞𝐞.𝟏𝟏) − (𝐞𝐞𝐞𝐞.𝟒𝟒) can be easily 
changed to desired value with a multiplicative adjustment factor. The two rightmost expressions 
in the identity expression (𝐞𝐞𝐞𝐞.𝐞𝐞) can be interpreted as the Renyi entropy 𝐻𝐻𝛼𝛼(𝛏𝛏) is the quantity 
proportional to a logarithm of ‖𝐏𝐏‖𝛼𝛼. Where  ‖𝐏𝐏‖𝛼𝛼 notation is used to represent a “p-norm” (or 
rather α-norm), also known as a Minkowski generalized norm. The non-negativity of each 
particular probability of the ith random variable value 𝑝𝑝(ξ𝑖𝑖) ≥ 0 makes the expression 
�∑ [𝑝𝑝(ξ𝑖𝑖)]𝛼𝛼𝑛𝑛

𝑖𝑖=1
𝛼𝛼  an α-norm. Otherwise, the middle part of the expression (𝐞𝐞𝐞𝐞.𝐞𝐞) would require 
component-wise absolute values by the p-norm (Minkowski norm) definition.  

3.1 Generalized Weighted Averages and Entropy 

Generalized weighted mean (GWM) M𝑞𝑞(�̅�𝑥,𝑤𝑤�) of the vector of values �̅�𝑥 = (𝑥𝑥𝑖𝑖|𝑖𝑖=1𝑛𝑛 )   and vector 
of the corresponding weights 𝑤𝑤� = (𝑤𝑤𝑖𝑖|𝑖𝑖=1𝑛𝑛 ) is defined as follows: 

M𝑞𝑞(�̅�𝑥,𝑤𝑤�) ≝ ��𝑥𝑥𝑖𝑖
𝑞𝑞𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑞𝑞

                                                 (𝐞𝐞𝐞𝐞.𝟓𝟓) 

At the parameter q tends to zero (𝑞𝑞 → 0) the GWM tends to the following expression: 

lim
𝑞𝑞→0

M𝑞𝑞(�̅�𝑥,𝑤𝑤�) = �𝑥𝑥𝑖𝑖
(𝑤𝑤𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

                                                 (𝐞𝐞𝐞𝐞.𝟔𝟔) 

Thus, the expressions (𝐞𝐞𝐞𝐞.𝐞𝐞) and (𝐞𝐞𝐞𝐞.𝟒𝟒) can be viewed as a negative logarithm of a GWM 
(𝐞𝐞𝐞𝐞.𝐞𝐞) or positive logarithm of the GWM’s inverse (𝐞𝐞𝐞𝐞.𝟒𝟒). Considering expressions (𝐞𝐞𝐞𝐞.𝟓𝟓)-
(𝐞𝐞𝐞𝐞.𝟔𝟔) and that any finite discrete probability distribution can be thought of as a vector (ordered 
tuple) of fixed dimension  as follows: 𝒑𝒑� = (𝑝𝑝(𝜉𝜉𝑖𝑖)|𝑖𝑖=1𝑛𝑛 ) = (𝑝𝑝(𝑥𝑥 = 𝜉𝜉𝑖𝑖)|𝑖𝑖=1𝑛𝑛 ), one can easily obtain 
the limit for the expression (𝐞𝐞𝐞𝐞.𝐞𝐞) at 𝛼𝛼 → 1 by noticing that the M𝛼𝛼−1(�̅�𝑝, �̅�𝑝) tends to 
lim
𝑞𝑞→0

M𝑞𝑞(�̅�𝑝, �̅�𝑝), hence the expression for  𝐻𝐻𝛼𝛼→1(𝛏𝛏) will take the Shannon entropy form[5], which is 

easily demonstrated by the following chain of identities: 

𝐻𝐻𝛼𝛼→1(𝛏𝛏) = −log𝛽𝛽 �M𝛼𝛼−1(�̅�𝑝, �̅�𝑝)�; = −log𝛽𝛽 ��𝑝𝑝(ξ𝑖𝑖)p(ξ𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� = −�𝑝𝑝(ξ𝑖𝑖) log𝛽𝛽 𝑝𝑝(ξ𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

   (𝐞𝐞𝐞𝐞.𝟕𝟕) 

More detailed additional analysis of the expressions (𝐞𝐞𝐞𝐞.𝐞𝐞)-(𝐞𝐞𝐞𝐞.𝟒𝟒) can be found in [6].  
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4 Renyi Entropy α-Spectrum  

Mathematical analysis of the analytical extension of the Renyi entropy as a function of α and the 
corresponding analysis of the function behavior around α → 1 in [6] demonstrate that the 
Shannon entropy [5] as well as Hartley and min entropies are just particular cases of the Renyi 
entropy at α = 1, α = 0, and α → ∞ correspondingly. For the case of α = 1 it also converges to 
the expression (𝐞𝐞𝐞𝐞.𝟕𝟕) value derived from the GWM properties above.  

Shannon entropy can be computed as follows [5, 8, 9, 10] and (𝐞𝐞𝐞𝐞.𝟕𝟕):  

𝐻𝐻𝛼𝛼=1(𝛏𝛏) ≝ 𝐻𝐻1(𝛏𝛏) ≝ 𝐻𝐻𝑆𝑆(𝛏𝛏) = �𝑝𝑝(ξ𝑖𝑖) log𝛽𝛽 �
1

𝑝𝑝(ξ𝑖𝑖)
� =

𝑛𝑛

𝑖𝑖=1

−�𝑝𝑝(ξ𝑖𝑖) log𝛽𝛽 𝑝𝑝(ξ𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

            (𝐞𝐞𝟒𝟒.𝟏𝟏) 

Hartley entropy [5] is the of Renyi entropy value at α → 0 and it can be computed as follows: 

𝐻𝐻𝛼𝛼=0(𝛏𝛏) ≝ 𝐻𝐻0(𝛏𝛏) ≝ 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚(𝛏𝛏) = log |𝛽𝛽 {𝑝𝑝(ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 :𝑝𝑝(ξ𝑖𝑖) > 0}| = log (𝛽𝛽 𝑛𝑛),                (𝐞𝐞𝟒𝟒.𝐞𝐞) 

|Where notation {𝑎𝑎𝑖𝑖|𝑖𝑖=1𝑛𝑛 : 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑛𝑛}| is used to present the cardinality of the set 
{𝑎𝑎𝑖𝑖}, interpreted as the count of the set elements, that satisfy the set condition. In the case of the 
discrete distribution (considered in this report) the condition is that the probability 𝑝𝑝(ξ𝑖𝑖) is 
positive and the cardinality of the set is 𝑛𝑛. The meaning of the value given by Hartley entropy is 
the logarithm of the non-zero elements count in the given distribution. 

Min entropy can be computed as follows: 

𝐻𝐻𝛼𝛼→∞(𝛏𝛏) ≝ 𝐻𝐻∞(𝛏𝛏) ≝ 𝐻𝐻min(𝛏𝛏) = min
∀𝑖𝑖=1,𝑛𝑛

�− log𝛽𝛽 𝑝𝑝(ξ𝑖𝑖)� = −log𝛽𝛽 max
∀𝑖𝑖=1,𝑛𝑛

{𝑝𝑝(ξ𝑖𝑖)}        (𝐞𝐞𝟒𝟒.𝐞𝐞) 

The meaning of the min entropy is the logarithm of the most likely event’s probability in the 
given distribution. 

Theoretically, either expression (𝐞𝐞𝐞𝐞.𝟏𝟏) or the interpretations (𝐞𝐞𝐞𝐞.𝐞𝐞)-(𝐞𝐞𝐞𝐞.𝟒𝟒) can be used to 
compute Renyi entropy spectrum analytically over the whole range of 𝛼𝛼 ∈ [0,∞). Unfortunately, 
despite analytically computable behavior of the 𝐻𝐻𝛼𝛼(𝛏𝛏) over 𝛼𝛼 ∈ [0,∞) the reality of the 
computer mathematics kicks in and the direct usage of the expressions (𝐞𝐞𝐞𝐞.𝟏𝟏)-(𝐞𝐞𝐞𝐞.𝟒𝟒)  can 
produce overflows, precision loss, or rounding errors as a result of computing the series needed 
to compute fractional powers, radicals, and logarithms called for in the expressions (𝐞𝐞𝐞𝐞.𝟏𝟏)-
(𝐞𝐞𝐞𝐞.𝟒𝟒). Since the series convergence is analytically guaranteed, 𝐻𝐻𝛼𝛼(𝛏𝛏) is continuous over α ∈
[0,∞), and the values and corresponding expressions that 𝐻𝐻𝛼𝛼(𝛏𝛏) tends to are known, when 
approaching the special points 𝛼𝛼 = 1, 𝛼𝛼 = 0, and 𝛼𝛼 → ∞ it is usually practical to compute 𝐻𝐻𝛼𝛼(𝛏𝛏) 
by using the expressions  (𝐞𝐞𝟒𝟒.𝟏𝟏), (𝐞𝐞𝟒𝟒.𝐞𝐞), and (𝐞𝐞𝟒𝟒.𝐞𝐞) correspondingly. 

When comparing (𝐞𝐞𝟒𝟒.𝐞𝐞) and (𝐞𝐞𝟒𝟒.𝐞𝐞) and assuming random variable 𝛏𝛏 distributed according to 
the discrete uniform distribution 𝑈𝑈𝑛𝑛 with the cardinality of the values |{𝑝𝑝(ξ𝑖𝑖)|𝑖𝑖=1𝑛𝑛 }| = 𝑛𝑛 and the 
probability of 𝑛𝑛 equally probable events 𝑝𝑝(ξ𝑖𝑖) =

{∀𝑖𝑖=1,𝑛𝑛}
1
𝑛𝑛

 ,  one can easily notice the following 

property, keeping in mind that 𝐻𝐻𝛼𝛼(𝛏𝛏) is monotonously non-increasing function of α [6]: 
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𝐻𝐻0(𝛏𝛏) = log (𝛽𝛽 𝑛𝑛) = −log �𝛽𝛽
1
𝑛𝑛
� = −log𝛽𝛽 max

∀𝑖𝑖=1,𝑛𝑛
�𝑝𝑝(𝜉𝜉𝑖𝑖) =

{∀𝑖𝑖=1,𝑛𝑛}
1
𝑛𝑛
� = 𝐻𝐻∞(𝛏𝛏)          (𝐞𝐞𝟒𝟒.𝟒𝟒)   

The expression (𝐞𝐞𝟒𝟒.𝟒𝟒) analytically conveys identical 𝐻𝐻𝛼𝛼(𝛏𝛏) values at both ends of the possible 
range of the α-values.  

When considering values 𝐻𝐻𝛼𝛼(𝛏𝛏) for a random variable 𝛏𝛏 over the whole range of parameter 
values 𝛼𝛼 ∈ [0,∞) the aggregated mapping of  𝛼𝛼 ∈ [0,∞) onto the set {𝐻𝐻𝛼𝛼(𝛏𝛏)}⊂[0,∞) is called 
the Renyi entropy 𝛼𝛼-spectrum for the random variable 𝛏𝛏 or for the distribution 𝒑𝒑(𝛏𝛏). The random 
variable values only implicitly identify probabilities, hence it should be noticed that the Renyi 
entropy α-spectrum, strictly speaking, is uniquely defined by the probability distribution 𝒑𝒑(𝛏𝛏). 

4.1 The 3 Distributions with Matching Hartley and 2 with Matching Min Entropies 

Compute Shannon, Hartley and min entropies for the distributions of cardinality 16: 

• 𝝽𝝽𝟏𝟏𝟔𝟔: uniform �̅�𝑝(𝝽𝝽𝟏𝟏𝟔𝟔)~𝑈𝑈16 = �̅�𝑝(𝝽𝝽𝟏𝟏𝟔𝟔)= � 1
16

; 1
16

; … ; 1
16
� 

• 𝛇𝛇𝟏𝟏𝟔𝟔: �̅�𝑝(𝛇𝛇𝟏𝟏𝟔𝟔) = � 1
10

; 3
50

; … ; 3
50
� ,  

• 𝛈𝛈𝟏𝟏𝟔𝟔: �̅�𝑝(𝛈𝛈𝟏𝟏𝟔𝟔) = � 1
10

; 1
10

; 1
10

; 1
10

; 1
20

… 1
20
�  

Shannon entropies (𝐞𝐞𝟒𝟒.𝟏𝟏) for logarithm base 𝛽𝛽 = 2 are easily computed as follows: 

𝐻𝐻𝛼𝛼=1R (ξ𝟏𝟏𝟔𝟔) = −�𝑝𝑝(ξ𝑖𝑖) log𝛽𝛽 𝑝𝑝(ξ𝑖𝑖)
16

𝑖𝑖=1

= −�
1

16
log2

1
16

16

𝑖𝑖=1

= −
16 ∗ (−4)

16
= 𝟒𝟒 

𝐻𝐻𝛼𝛼=1R (𝛇𝛇𝟏𝟏𝟔𝟔) = −�
1

10
log2

1
10

�+
3

50
log2

3
50

15

𝑖𝑖=1

� ≈ 𝐞𝐞.𝟗𝟗𝟗𝟗𝟓𝟓𝟏𝟏𝟗𝟗𝟕𝟕𝟏𝟏𝐞𝐞 

𝐻𝐻𝛼𝛼=1R (𝛈𝛈𝟏𝟏𝟔𝟔) = −�
4

10
log2

1
10

+
12
20

log2
3

50�
≈ 𝐞𝐞.𝟗𝟗𝐞𝐞𝟏𝟏𝟗𝟗𝐞𝐞𝟗𝟗𝟗𝟗𝟗𝟗𝟓𝟓 

Because all distributions have 16 positive (non-zero probability) elements, the Hartley entropy 
for all 3 distributions according to (𝐞𝐞𝟒𝟒.𝐞𝐞) can be computed as follows: 

𝐻𝐻𝛼𝛼=0R (ξ𝟏𝟏𝟔𝟔) = 𝐻𝐻𝛼𝛼=0R (ζ𝟏𝟏𝟔𝟔) = 𝐻𝐻𝛼𝛼=0R (η𝟏𝟏𝟔𝟔) = log (𝛽𝛽 16) = {assuming 𝛽𝛽 = 2}=4 

Applying the expression (𝐞𝐞𝟒𝟒.𝐞𝐞) the min entropies can be computed as follows: 

For ξ16 the min entropy is 𝐻𝐻𝛼𝛼→∞R (ξ𝟏𝟏𝟔𝟔) = = −log𝛽𝛽 max
∀𝑖𝑖=1,16

{𝑝𝑝(ξ𝑖𝑖)} = −𝑒𝑒𝑐𝑐𝑙𝑙2 �
1
16
� = 𝟒𝟒     

As max
∀𝑖𝑖,𝑝𝑝(𝛇𝛇𝐢𝐢)

� 1
10

; 3
50

; … ; 3
50
� = max

∀𝑖𝑖,𝑝𝑝(𝛈𝛈𝐢𝐢)
� 1
10

; 1
10

; 1
10

; 1
10

; 1
20

… 1
20
� = 1

10
 ⇒𝐻𝐻𝛼𝛼→∞R (𝛇𝛇16) = 𝐻𝐻𝛼𝛼→∞R (𝛈𝛈16)  

𝐻𝐻𝛼𝛼→∞R (𝛇𝛇16) = 𝐻𝐻𝛼𝛼→∞R (𝛈𝛈16) = −𝑒𝑒𝑐𝑐𝑙𝑙2 �
1
10
� ≈ 𝐞𝐞.𝐞𝐞𝐞𝐞𝟏𝟏𝟗𝟗𝐞𝐞𝟗𝟗𝟗𝟗𝟗𝟗𝟓𝟓  
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4.2 Renyi Entropy α-Spectrum for Uniform and non-Uniform Distributions 

Let’s consider the fact that 𝐻𝐻𝛼𝛼(𝛏𝛏) is a non-increasing as a function of α [6]. In the light of this, 
the expression (𝐞𝐞𝟒𝟒.𝟒𝟒) gives us a noteworthy property of the full α-spectrum of Renyi entropy 
𝐻𝐻𝛼𝛼(𝛏𝛏) over 𝛼𝛼 ∈ [0,∞) for the given 𝛏𝛏, when random variable 𝛏𝛏 is distributed according to the 
discrete uniform distribution with 𝑛𝑛 values 𝑈𝑈𝑛𝑛, yielding 𝐻𝐻𝛼𝛼(𝛏𝛏) as a constant function of α with 
the value: 

 𝐻𝐻𝛼𝛼(𝛏𝛏~𝑈𝑈𝑛𝑛) =
{∀α∈[0,∞)}

log (𝛽𝛽 𝑛𝑛) = −log �𝛽𝛽
1
𝑛𝑛
�                                     (𝐞𝐞𝟒𝟒.𝟓𝟓) 

In validating random number generators and other sources of high informational entropy the 
problem of identifying the best source or quantifying the quality of the random sequence by 
sampling can be frequently reduced to identifying which sampled sequences approximate the 
discrete uniform distribution 𝑈𝑈𝑛𝑛 as close as possible.  

To illustrate the idea of using the expressions (𝐞𝐞𝐞𝐞.𝟏𝟏) and (𝐞𝐞𝟒𝟒.𝟏𝟏) − (𝐞𝐞𝟒𝟒.𝟒𝟒) for the uniformity 
testing we present the 𝛼𝛼-spectrum of Renyi entropy behavior on a few synthetic data sets drawn 
from the distributions presented in the following table:  

Table 1: The Data for α-Spectrum of Renyi Entropy Illustration 

𝝃𝝃𝟏𝟏~ 𝐔𝐔𝟏𝟏𝟔𝟔 𝝃𝝃𝐞𝐞~ 𝐔𝐔𝟏𝟏𝟔𝟔 ±30% 𝝃𝝃𝐞𝐞 ~ 𝐔𝐔𝟏𝟏𝟔𝟔±60% 𝝃𝝃𝟒𝟒~ N(16,5) 𝝃𝝃𝟓𝟓~ N(16,1) 
Counts {p(𝝃𝝃𝒊𝒊)} Counts {p(𝝃𝝃𝒊𝒊)} Counts {p(𝝃𝝃𝒊𝒊)} Counts {p(𝝃𝝃𝒊𝒊)} Counts {p(𝝃𝝃𝒊𝒊)} 

100 0.06250 70.68681 0.04315 40.51917 0.02736 1.34990 0.000600 3.6709662E-48 5.3764423E-51 

100 0.06250 71.01797 0.04335 41.85771 0.02826 2.55513 0.001136 7.7935368E-42 1.1414298E-44 

100 0.06250 71.29977 0.04352 43.95745 0.02968 4.66119 0.002072 6.1171644E-36 8.9591076E-39 

100 0.06250 71.67738 0.04375 44.59065 0.03011 8.19754 0.003643 1.7764821E-30 2.6018092E-33 

100 0.06250 73.77597 0.04504 45.41941 0.03067 13.90345 0.006179 1.9106596E-25 2.7983235E-28 

100 0.06250 74.06512 0.04521 45.55111 0.03076 22.75013 0.010111 7.6198530E-21 1.1159923E-23 

100 0.06250 74.72694 0.04562 52.69224 0.03558 35.93032 0.015969 1.1285884E-16 1.6529137E-19 

100 0.06250 113.01434 0.06899 52.73876 0.03561 54.79929 0.024355 6.2209606E-13 9.1111260E-16 

100 0.06250 125.83834 0.07682 56.47474 0.03813 80.75666 0.035891 1.2798125E-09 1.8743943E-12 

100 0.06250 125.88873 0.07685 142.07325 0.09593 115.06967 0.051141 9.8658765E-07 1.4449415E-09 

100 0.06250 126.57872 0.07727 145.50200 0.09825 158.65525 0.070512 2.8665157E-04 4.1982561E-07 

100 0.06250 126.78433 0.07739 149.58985 0.10101 211.85540 0.094156 3.1671242E-02 4.6385228E-05 

100 0.06250 127.15765 0.07762 150.91161 0.10190 274.25312 0.121887 1.3498980E+00 1.9770405E-03 

100 0.06250 127.86247 0.07805 151.57614 0.10235 344.57826 0.153142 2.2750132E+01 3.3319504E-02 

100 0.06250 128.34226 0.07835 158.09023 0.10675 420.74029 0.186991 1.5865525E+02 2.3236412E-01 

100 0.06250 129.43859 0.07901 159.46121 0.10767 500.00000 0.222217 5.0000000E+02 7.3229253E-01 

 

The data in the Table 1: The Data for α-Spectrum of Renyi Entropy Illustration were synthesized 
as follows: 

• �̅�𝑝(𝛏𝛏𝟏𝟏) = {𝑝𝑝(𝜉𝜉𝑖𝑖)|𝑖𝑖=116 } – all counts are the same taking probabilities of  𝑝𝑝(𝜉𝜉𝑖𝑖) =
{∀𝑖𝑖=1,16}

1
16
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• �̅�𝑝(𝛏𝛏𝐞𝐞) = {𝑝𝑝(𝜉𝜉𝑖𝑖)|𝑖𝑖=116 } – all counts are taking randomized probabilities of up to 30% of the 
original uniform probability  𝑝𝑝(𝜉𝜉𝑖𝑖) =

{∀𝑖𝑖=1,16}
1
16

± 𝐫𝐫𝐫𝐫𝐫𝐫 �0, 30% of 1
16
�. The columns are 

sorted in increasing order to emphasize discrepancy with the normal distribution 
samples. 

• �̅�𝑝(𝛏𝛏𝐞𝐞) = {𝑝𝑝(𝜉𝜉𝑖𝑖)|𝑖𝑖=116 } – all counts are taking randomized probabilities of up to 60% of the 
original uniform probability  𝑝𝑝(𝜉𝜉𝑖𝑖) =

{∀𝑖𝑖=1,16}
1
16

± 𝐫𝐫𝐫𝐫𝐫𝐫 �0, 60% of 1
16
�. The columns are 

sorted in increasing order to make discrepancy with the normal distribution samples 
more obvious. 

• �̅�𝑝(𝛏𝛏𝟒𝟒) = {𝑝𝑝(𝜉𝜉𝑖𝑖)|𝑖𝑖=116 } – all counts are computed as thousand times the normal distribution 
with mean a = 16 and deviation σ = 5 at arguments 𝑥𝑥 = [1,16]. 

• �̅�𝑝(𝛏𝛏𝟓𝟓) = {𝑝𝑝(𝜉𝜉𝑖𝑖)|𝑖𝑖=116 } – all counts are computed as thousand times the normal distribution 
with mean a = 16 and deviation σ = 1 at arguments 𝑥𝑥 = [1,16]. 

The resulting data sampling are charted as the following histograms: 

Figure 2: The Histograms of the Synthetic Data Set 

The α-spectrum of Renyi entropy for the five discrete synthetic distribution samples 𝛏𝛏𝟏𝟏, 𝛏𝛏𝐞𝐞, 
𝛏𝛏𝐞𝐞, 𝛏𝛏𝟒𝟒, and 𝛏𝛏𝟓𝟓 described and charted above was computed on a selected number of points, 
yielding the α-spectrum of Renyi entropy lines 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝟏𝟏 , 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝐞𝐞 , 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝐞𝐞 , 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝟒𝟒 , and 
𝐻𝐻𝛼𝛼(𝝃𝝃 )𝟓𝟓 . The lines were plotted on the same system of coordinates at the [11] same scale 
resulting in the following chart: 
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Figure 3: Renyi Entropy α-Spectrum for the Five Discrete Synthetic Distributions ξ1, ξ2, ξ3, ξ4, and ξ5  

The obvious observation is that the 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝟏𝟏  (horizontal teal colored line) at the top of the chart in 
Figure 3 corresponds to the sample of the discrete uniform distribution as was predicted by the 
expressions (𝐞𝐞𝟒𝟒.𝟒𝟒)and (𝐞𝐞𝟒𝟒.𝟓𝟓).  

An intuitively visual interpretation of the Renyi entropy α-spectrum can be deduced from the 
line curvature of the two entropy α-spectrum graphs built for 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝐞𝐞  and 𝐻𝐻𝛼𝛼(𝛏𝛏 )𝐞𝐞 . The two 
weakened uniform distributions: 𝛏𝛏𝐞𝐞 with up to ±30%, and 𝛏𝛏𝐞𝐞 with up to ±60% randomly 
introduced inconsistency with uniformity (orange and red lines correspondingly) have general 
curvatures increasing with the size of the introduced inconsistency. Overall, the more Renyi 
entropy α-Spectrum graph of the given distribution deviates from the uniform distribution graph 
(horizontal line) the less uniform quality the distribution in question has. 

5 Renyi Divergence α-Spectrum and Renyi Entropy  

In order to determine how different are two distributions (or the samples drawn from 
distributions) Kulback-Leibler divergence is frequently used in the classical information theory. 
Renyi divergence [6], [11] generalizes the classical notion of the Kulback-Leibler divergence 
and can be defined for the case of finite discrete distributions and 𝛼𝛼 > 0 as follows: 

𝐷𝐷𝛼𝛼(𝛏𝛏 ∥ 𝛇𝛇) ≝  
1

𝛼𝛼 − 1
log𝛽𝛽�𝑝𝑝(ξ𝑖𝑖)𝛼𝛼𝑝𝑝(ζ𝑖𝑖)1−𝛼𝛼

𝑛𝑛

𝑖𝑖=1

                                     (𝐞𝐞𝟓𝟓.𝟏𝟏) 

Similarly, to the relation established for the Hartley, Shannon, and min entropies the Renyi 
divergence between the two distributions (or samples drawn from distributions) can be 
continuously extended for the cases of 𝛼𝛼 → 0, 𝛼𝛼 → 1, and 𝛼𝛼 → ∞ .  

An interesting relation can be noticed by analyzing the Renyi divergence of an arbitrary 
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distribution from a discrete uniform random variable 𝛇𝛇 of n outcomes defined as 𝛇𝛇~𝑈𝑈𝑛𝑛 =
�1
𝑛𝑛

, 1
𝑛𝑛

, 1
𝑛𝑛

… , 1
𝑛𝑛
� . If we describe the arbitrary distribution of 𝛏𝛏 as 𝛏𝛏~𝑃𝑃 = {𝑝𝑝(ξ1) = 𝑝𝑝1,𝑝𝑝(ξ2) =

𝑝𝑝2, … ,𝑝𝑝(ξ𝑛𝑛) = 𝑝𝑝𝑛𝑛} the expression (𝐞𝐞𝟓𝟓.𝟏𝟏) can yield the following identities: 

𝐷𝐷𝛼𝛼(𝛏𝛏~𝑃𝑃 ∥ 𝑈𝑈𝑛𝑛) =
1

𝛼𝛼 − 1
log𝛽𝛽���

1
𝑛𝑛�

1−𝛼𝛼

𝑝𝑝𝑖𝑖𝛼𝛼�
𝑛𝑛

𝑖𝑖=1

=
1

𝛼𝛼 − 1�
log𝛽𝛽 �

1
𝑛𝑛�

1−𝛼𝛼

+ log𝛽𝛽�𝑝𝑝𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

� (𝐞𝐞𝟓𝟓.𝐞𝐞) 

By opening the brackets in (𝐞𝐞𝟓𝟓.𝐞𝐞) and using (𝐞𝐞𝐞𝐞.𝟏𝟏), (𝐞𝐞𝟒𝟒.𝟒𝟒), and (𝐞𝐞𝟒𝟒.𝟓𝟓) we obtain the 
following: 

𝐷𝐷𝛼𝛼(𝑃𝑃 ∥ 𝑈𝑈𝑛𝑛) = log𝛽𝛽(𝑛𝑛) −
1

1 − 𝛼𝛼
log𝛽𝛽�𝑝𝑝𝑖𝑖𝛼𝛼

𝑛𝑛

𝑖𝑖=1

= log𝛽𝛽(𝑛𝑛) − 𝐻𝐻𝛼𝛼(𝑃𝑃) = 𝐻𝐻𝛼𝛼(𝑈𝑈𝑛𝑛) − 𝐻𝐻𝛼𝛼(𝑃𝑃)  (𝐞𝐞𝟓𝟓.𝐞𝐞) 

The expression (𝐞𝐞𝟓𝟓.𝐞𝐞) analytically proves the observation from Figure 3. The expression 
(𝐞𝐞𝟓𝟓.𝐞𝐞) also hints that a discrete uniform distribution 𝑈𝑈𝑛𝑛 of n events is indeed a very special 
distribution because the Renyi divergence can be computed for any value of the parameter 𝛼𝛼 ∈
[0,∞) by using Renyi entropy of the discrete uniform distribution of equal cardinality instead of 
the whole expression (𝐞𝐞𝟓𝟓.𝟏𝟏).  

The expression (𝐞𝐞𝟓𝟓.𝐞𝐞) was analytically derived without any assumptions on the possible values 
of the parameter 𝛼𝛼 and due to that should hold for ∀𝛼𝛼 ∈ [0,∞). Though in practice, as noticed 
before, while computing 𝐷𝐷𝛼𝛼(𝑃𝑃 ∥ 𝑈𝑈𝑛𝑛) for 𝛼𝛼 approaching the special for 𝐻𝐻𝛼𝛼(𝑃𝑃) points 𝛼𝛼 = 1, 𝛼𝛼 =
0, and 𝛼𝛼 → ∞ it may be computationally safer to use expressions (𝐞𝐞𝟒𝟒.𝟏𝟏), (𝐞𝐞𝟒𝟒.𝐞𝐞), and (𝐞𝐞𝟒𝟒.𝐞𝐞) 
correspondingly instead of relying on the analytical convergence. 

5.1 Plotting Renyi Entropy and Divergence for the Distributions of Example 4.1 

Renyi entropy (including Shannon, Hartley and min) and Renyi divergence α-spectrums are 
shown for the following discrete finite distributions of the events space cardinality 16, assuming 
the logarithm base 𝛽𝛽 = 2: 

• 𝝽𝝽𝟏𝟏𝟔𝟔: uniform �̅�𝑝(𝝽𝝽𝟏𝟏𝟔𝟔)~𝑈𝑈16 = �̅�𝑝(𝝽𝝽𝟏𝟏𝟔𝟔)= � 1
16

; 1
16

; … ; 1
16
� 

• 𝛇𝛇𝟏𝟏𝟔𝟔: �̅�𝑝(𝛇𝛇𝟏𝟏𝟔𝟔) = � 1
10

; 3
50

; … ; 3
50
� ,  

• 𝛈𝛈𝟏𝟏𝟔𝟔: �̅�𝑝(𝛈𝛈𝟏𝟏𝟔𝟔) = � 1
10

; 1
10

; 1
10

; 1
10

; 1
20

… 1
20
� 

As was established in the Example 4.1 all distributions ξ𝟏𝟏𝟔𝟔, 𝛇𝛇𝟏𝟏𝟔𝟔, and 𝛈𝛈𝟏𝟏𝟔𝟔 have the same Hartley 
entropy: 𝐻𝐻𝛼𝛼=0R (ξ𝟏𝟏𝟔𝟔) = 𝐻𝐻𝛼𝛼=0R (ζ𝟏𝟏𝟔𝟔) = 𝐻𝐻𝛼𝛼=0R (η𝟏𝟏𝟔𝟔) = log (2 16) =4. The two distributions 𝛇𝛇𝟏𝟏𝟔𝟔, and 
𝛈𝛈𝟏𝟏𝟔𝟔 have the same min entropy: 𝐻𝐻𝛼𝛼→∞R (𝛇𝛇16) = 𝐻𝐻𝛼𝛼→∞R (𝛈𝛈16) = −𝑒𝑒𝑐𝑐𝑙𝑙2 �

1
10
� ≈ 𝐞𝐞.𝐞𝐞𝐞𝐞𝟏𝟏𝟗𝟗𝐞𝐞𝟗𝟗𝟗𝟗𝟗𝟗𝟓𝟓. By 

computing the Renyi entropy values for some of the intermediate values of the parameter 𝛼𝛼 the 
following entropy chart will result: 
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For the Renyi divergence α-spectrum the expression (𝐞𝐞𝟓𝟓.𝐞𝐞) would yield similarly looking chart, 
with the top and bottom swapped and uniform distribution divergence from itself is zero. 

 

These entropy and divergence charts for the revisited Example 4.2 hint that even though the 
Hartley and min entropies for both distributions 𝛇𝛇𝟏𝟏𝟔𝟔, and 𝛈𝛈𝟏𝟏𝟔𝟔 are a match, it is inevitable that there 
exists a value (or possibly set of values) 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 from inside the interval  𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 ∈ [0 + ε,∞) or 
({𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚} ⊂ [0 + ε,∞)) where the distance between the entropy lines would reach maximum.
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6 Tsallis Entropy and Tsallis Entropy α-Spectrum  

Shannon’s initial works in the field of information theory [8, 9, 10] lead to the development of 
entropy properties formulated in the Shannon-Khinchin axioms [12]. When presented to the 
scientific community, the model of Renyi entropy complied with the Shannon-Khinchin axioms 
formulated in [12] and was readily accepted due to that compliance.  

Further work on various entropy and divergence models in 1960s and 1970s led to development 
of the generalized entropy models described in the relatively obscure scientific magazines of the 
Eastern Bloc and India. The two models were: Havrda-Charvat-Daroczy one parameter entropies 
[13, 14], and Sharma-Mittal two-parameter entropies [15].  

The criticism of Renyi entropies for the insufficient stability properties, considered unacceptable 
for real world processes modeled in the experimental physics, by Lesche [16] in the early 1980s 
lead to rediscovery of one of the entropy generalizations (Havrda-Charvat-Daroczy entropy) by 
Constantino Tsallis, who in the late 1980s published the paper [17] rediscovering and refreshing 
some of the ideas presented earlier by Havrda, Charvat, and Daroczy [13, 14]. The Tsallis 
entropy (sometimes supplemented with the names of Havrda, Chrvat, and Daroczy, depending 
historical awareness) is defined as follows: 

𝐻𝐻𝛼𝛼𝑇𝑇(𝝽𝝽) ≝
1

𝛼𝛼 − 1�
1 −�𝑝𝑝(ξ𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

�;                                                      (𝐞𝐞𝟔𝟔.𝟏𝟏) 

Despite the absence of the logarithm in the expression (𝐞𝐞𝟔𝟔.𝟏𝟏), the Tsallis entropy 𝐻𝐻𝛼𝛼𝑇𝑇(𝑋𝑋) 
converges to Shannon entropy at 𝛼𝛼 → 1 as shown in [17] and is Lesche stable. Like the other 
entropy functions, Tsallis entropy maps an n-dimensional simplex 𝛥𝛥𝑛𝑛 into a real number for a 
given value of 𝛼𝛼 and on all distributions defined in the n-dimensional simplex 𝛥𝛥𝑛𝑛 the discrete 
uniform distribution 𝑈𝑈𝑛𝑛 maximizes the entropy value for all values of 𝛼𝛼 ∈ [0,∞). These 
properties of the Tsallis entropy are not at all that surprising if one looks at the Taylor series 
decomposition of the function ln(𝑥𝑥). 

ln(𝑥𝑥) = �
(−1)𝑖𝑖+1

𝑐𝑐

∞

𝑖𝑖=1

(𝑥𝑥 − 1)𝑖𝑖 = (𝑥𝑥 − 1) + �
(−1)𝑖𝑖+1

𝑐𝑐

∞

𝑖𝑖=1

(𝑥𝑥 − 1)𝑖𝑖                 (𝐞𝐞𝟔𝟔.𝐞𝐞) 

−ln(𝑥𝑥) = �
(−1)𝑖𝑖

𝑐𝑐
(𝑥𝑥 − 1)𝑖𝑖

∞

𝑖𝑖=1

 = (1 − 𝑥𝑥) + �
(−1)𝑖𝑖

𝑐𝑐

∞

𝑖𝑖=2

(𝑥𝑥 − 1)𝑖𝑖                   (𝐞𝐞𝟔𝟔.𝐞𝐞) 

Consider Renyi entropy expressed as (𝐞𝐞𝐞𝐞.𝟏𝟏) with logarithm base 𝛽𝛽 = 𝑠𝑠, substitute log-function 
with the series representation (𝐞𝐞𝟔𝟔.𝐞𝐞) yields the following Renyi entropy expression: 

𝐻𝐻𝛼𝛼(𝝽𝝽) ≜
1

1 − 𝛼𝛼
ln ��𝑝𝑝(ξ𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

� =  
1

1 − 𝛼𝛼
��

(−1)𝑗𝑗+1

𝑗𝑗 ���𝑝𝑝(ξ𝑖𝑖)𝛼𝛼
𝑛𝑛

𝑖𝑖=1

� − 1�
𝑖𝑖

�
∞

𝑗𝑗=1

       (𝐞𝐞𝟔𝟔.𝟒𝟒) 
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For the values 𝛼𝛼 → 0 the argument of the logarithm [∑ 𝑝𝑝(ξ𝑖𝑖)𝛼𝛼𝑛𝑛
𝑖𝑖=1 ] tends to zero, which reduces 

the residual tail weight of the Taylor series. By regrouping the summed elements, and 
substituting  𝑝𝑝(ξ𝑖𝑖) ≜ 𝑝𝑝𝑖𝑖 in expression (𝐞𝐞𝟔𝟔.𝟒𝟒) to save space the relation of Tsallis and Renyi 
entropies can be expressed as follows:  

𝐻𝐻𝛼𝛼(𝛏𝛏) =  
1

𝛼𝛼 − 1�
1 − ��𝑝𝑝𝑖𝑖𝛼𝛼

𝑛𝑛

𝑖𝑖=1

�� +
1

𝛼𝛼 − 1�
�

(−1)𝑗𝑗

𝑗𝑗

∞

𝑗𝑗=2

��𝑝𝑝𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

− 1�
𝑖𝑖

�               (𝐞𝐞𝟔𝟔.𝟓𝟓) 

The first summand in (𝐞𝐞𝟔𝟔.𝟓𝟓) is Tsallis entropy, hence (𝐞𝐞𝟔𝟔.𝟓𝟓) can be rewritten as follows: 

𝐻𝐻𝛼𝛼(𝛏𝛏) = 𝐻𝐻𝛼𝛼𝑇𝑇(𝛏𝛏) +
1

𝛼𝛼 − 1�
�

(−1)𝑗𝑗

𝑗𝑗

∞

𝑗𝑗=2

��𝑝𝑝𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

− 1�
𝑖𝑖

�                              (𝐞𝐞𝟔𝟔.𝟔𝟔) 

The interpretation of Tsallis entropy as a first degree approximation of Renyi entropy (𝐞𝐞𝟔𝟔.𝟔𝟔) by 
Taylor series, and the fact that series (𝐞𝐞𝟔𝟔.𝐞𝐞) converges on 𝑥𝑥 values defined by |𝑥𝑥 − 1| ≤ 1 
(which translates to convergence in 𝑥𝑥 ∈ [0; 2]) allows us to think of the Tsallis entropy as less 
non-linear (no log) version of the Renyi entropy, or as Renyi entropy without the Taylor series 
tail.  

The finite discrete uniform distribution 𝑈𝑈𝑛𝑛 maximizes the entropy value for all parameter values 
𝛼𝛼 ∈ [0,∞), which means that for any random value produced distribution 𝝵𝝵 with probabilities 
from the n-dimensional simplex (𝒑𝒑�(𝝵𝝵) ∈ 𝛥𝛥𝑛𝑛) the uniform distribution  𝐻𝐻𝛼𝛼𝑇𝑇(𝛏𝛏 ∼ 𝑈𝑈𝑛𝑛) ⩾ 𝐻𝐻𝛼𝛼𝑇𝑇(𝝵𝝵). It 
is also easy to deduce from the expression (𝐞𝐞𝟔𝟔.𝟏𝟏) that the limit of Tsallis entropy for any 
distribution with n non-zero probabilities is lim

𝛼𝛼→0
𝑇𝑇𝛼𝛼(𝑈𝑈𝑛𝑛) = (𝑛𝑛 − 1). Combining this limit with 

the maximization inequality 𝐻𝐻𝛼𝛼𝑇𝑇(𝛏𝛏 ∼ 𝑈𝑈𝑛𝑛) ⩾ 𝐻𝐻𝛼𝛼𝑇𝑇(𝝵𝝵) shows that at 𝛼𝛼 → 0 the Tsallis entropy for 
any finite discrete distribution of cardinality not more than n will stay at or below (𝑛𝑛 − 1).  

At another side of the 𝛼𝛼-spectrum, when 𝛼𝛼 → ∞: the sum ∑ 𝑝𝑝(ξ𝑗𝑗)𝛼𝛼𝑛𝑛
𝑗𝑗=1  tends to zero, the part of 

the Tsallis entropy (𝐞𝐞𝟔𝟔.𝟏𝟏) in the brackets tends to 1, and the � 1
𝛼𝛼−1

� tends to zero, which makes 
Tsallis entropy for any finite discrete distribution tend to zero at infinity lim

𝛼𝛼→∞
𝐻𝐻𝛼𝛼𝑇𝑇(𝝵𝝵) = 0. These 

two properties of Tsallis entropy give a hint that there may be a range of 𝛼𝛼 values where the 
plain differences in Tsallis entropy uniform and examined α-spectrums could reach the 
maximum value. This observation is important if one were to directly apply the expression 
(𝐞𝐞𝟓𝟓.𝐞𝐞) relating Renyi divergences and Renyi entropies to Tsallis entropies directly and obtain 
“Renyi-like” divergence of Tsallis entropies. 

6.1 Note About Tsallis Entropy α-Spectrums for Example 4.1 Distributions 

Examining the distributions from Example 4.1, it can be seen that the lines of Tsallis entropy α-
spectrums appear too close to each other making it difficult to visually separate them, which is 
an unfortunate side-effect of the Lesche stability so coveted in physics. These 3 distributions 
from Example 4.1 will be further examined in the subsequent sections.  
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6.2 Tsallis Entropy α-Spectrums of the Example 4.2 Distributions 

Consider the same synthetic finite discrete distributions described in the Example 4.2:  
𝛏𝛏𝟏𝟏~𝐔𝐔𝟏𝟏𝟔𝟔;  𝛏𝛏𝐞𝐞~𝐔𝐔𝟏𝟏𝟔𝟔 ± 𝐞𝐞𝟗𝟗%; 𝛏𝛏𝐞𝐞~𝐔𝐔𝟏𝟏𝟔𝟔 ± 𝟔𝟔𝟗𝟗%; 𝛏𝛏𝟒𝟒~𝑵𝑵(𝟏𝟏𝟔𝟔,𝟓𝟓);  𝛏𝛏𝟓𝟓~𝑵𝑵(𝟏𝟏𝟔𝟔,𝟏𝟏). For the given 
distributions Tsallis entropy α-spectrum graphs shape up as follows: 

 

This graph displays already described properties of Tsallis entropies at the 𝛼𝛼 → 0 and 𝛼𝛼 → ∞. 
Due to Lesche stability, the uniform distribution 𝛏𝛏𝟏𝟏 and modified uniform distributions 𝛏𝛏𝐞𝐞 and 𝛏𝛏𝐞𝐞 
are located exceedingly close to each other, unlike in the Renyi entropy graph. To separate the 
graphs visually, the following rescaled fragment of the same chart is included below:  
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7 Differential “Renyi-like” Tsallis Entropy α-Spectrums Divergence 

As previously explained, the expression (𝐞𝐞𝟓𝟓.𝐞𝐞) relates the Renyi divergence of an arbitrary 
distribution to the uniform one and expresses the divergence in the terms of the difference in the 
corresponding Renyi entropies. Strictly speaking, the sequence of identities that lead to the 
expression (𝐞𝐞𝟓𝟓.𝐞𝐞) would not yield the resulting expression similar to (𝐞𝐞𝟓𝟓.𝐞𝐞) when applied to 
Tsallis entropy. On the other hand, the elegance and simplicity of the expression makes it quite 
universal. So, directly applying (𝐞𝐞𝟓𝟓.𝐞𝐞) “in principle” to Tsallis entropy α-spectrums would 
yields a graph of “Renyi-like” divergence of Tsallis entropies. This quantity, computed for 
multiple values of α would yield “Renyi-like” divergence of Tsallis entropy α-spectrums and can 
be defined as follows.  

𝐷𝐷𝛼𝛼𝑅𝑅𝑅𝑅(𝛈𝛈~𝑃𝑃(η) ∥ 𝝽𝝽~𝑈𝑈𝑛𝑛) = 𝐻𝐻𝛼𝛼𝑇𝑇(𝝽𝝽) − 𝐻𝐻𝛼𝛼𝑇𝑇(𝛈𝛈)                                           (𝐞𝐞𝟕𝟕.𝟏𝟏) 

7.1 Differential “Renyi-type” Divergence Applied to Tsallis Entropy α-Spectrums of the 
Example 4.1 Distributions 

Plot Tsallis entropy “Renyi-like” divergences for these distributions of the cardinality 16: 

• 𝝽𝝽𝟏𝟏𝟔𝟔: uniform �̅�𝑝(𝝽𝝽𝟏𝟏𝟔𝟔)~𝑈𝑈16= � 1
16

; 1
16

; … ; 1
16
� 

• 𝛇𝛇𝟏𝟏𝟔𝟔: �̅�𝑝(𝛇𝛇𝟏𝟏𝟔𝟔) = � 1
10

; 3
50

; … ; 3
50
� ,  

• 𝛈𝛈𝟏𝟏𝟔𝟔: �̅�𝑝(𝛈𝛈𝟏𝟏𝟔𝟔) = � 1
10

; 1
10

; 1
10

; 1
10

; 1
20

… 1
20
� 

 

The difference between the distributions 𝛇𝛇𝟏𝟏𝟔𝟔 and 𝛈𝛈𝟏𝟏𝟔𝟔 in this graph, compared to the graph of 
Renyi divergences plotted in 5.1, looks more obvious as it is peaking in perceptually confined 
space of α-values. As well as in example  5.1 the distribution 𝛈𝛈𝟏𝟏𝟔𝟔 diverges from uniform 
distribution much further than 𝛇𝛇𝟏𝟏𝟔𝟔. Tsallis entropy and “Renyi-like” divergences seem to keep 
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the “uniformity” quality of the distributions preserved, while making it easier to distinguish 
“more uniform” distributions from “less uniform”. 

7.2 Differential “Renyi-type” Divergence Applied to Tsallis Entropy α-Spectrums of the 
Example 4.2 Distributions 

Consider the same synthetic finite discrete distributions described in 4.2: 

 𝛏𝛏𝟏𝟏~𝐔𝐔𝟏𝟏𝟔𝟔;  𝛏𝛏𝐞𝐞~𝐔𝐔𝟏𝟏𝟔𝟔 ± 𝐞𝐞𝟗𝟗%; 𝛏𝛏𝐞𝐞~𝐔𝐔𝟏𝟏𝟔𝟔 ± 𝟔𝟔𝟗𝟗%; 𝛏𝛏𝟒𝟒~𝑵𝑵(𝟏𝟏𝟔𝟔,𝟓𝟓);  𝛏𝛏𝟓𝟓~𝑵𝑵(𝟏𝟏𝟔𝟔,𝟏𝟏) 

The “Renyi-type” divergence from uniform computed for Tsallis entropy α-spectrums according 
to (𝐞𝐞𝟕𝟕.𝟏𝟏) results in the following chart: 

 

As it was the case with example 7.1, the most notable property of the “Renyi-type” divergence 
quantity is that the computed values, specifying how different the entropy α-spectrum lines of the 
distribution are from the uniform distribution are concentrated and reach maximum in the 
relatively small range of the lower α-values of the spectrum. This particular property might be 
attractive from the statistical and computational points of view (subject to additional research 
and analysis) as at these smaller α-values of the α-spectrum all the probability values of the given 
probability distribution contribute to the computation of the resulting quantity, which contrasts 
the expression (𝐞𝐞𝟒𝟒.𝐞𝐞) for Renyi entropy at 𝛼𝛼 → ∞ (min entropy) that utilizes only the largest 
probability value out of the whole distribution. The reason for the min entropy’s popularity for 
uniformity evaluation is that the maximum probability event of the distribution is the “easiest to 
guess” event as well. The “easiest to guess” event corresponds to the worst case scenario, which 
allows to establish upper boundary for cryptographic applications, where it is frequently used. In 
security automation, artificial intelligence, and other entropy applications Tsallis entropy and 
“Renyi- like” divergence could be of more use due to such properties as relative ease of 
computing (no log) and the α-spectrum discriminating part being quite well confined.  
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8 Tsallis Divergence α-Spectrums 

Similar to the Taylor series tail-cutting expression for Tsallis and Renyi entropies demonstrated 
in expressions (𝐞𝐞𝟔𝟔.𝟓𝟓) − (𝐞𝐞𝟔𝟔.𝟔𝟔) the Tsallis divergence α-spectrum can be derived from the 
Renyi divergence as follows:  

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏 ∥ 𝛇𝛇) ≝  
1

𝛼𝛼 − 1��
�𝑝𝑝(ξ𝑖𝑖)𝛼𝛼
𝑛𝑛

𝑖𝑖=1

𝑝𝑝(ζ𝑖𝑖)1−𝛼𝛼� − 1�                                     (𝐞𝐞𝟗𝟗.𝟏𝟏) 

When applied to compute the Tsallis divergence for an arbitrary and uniform distributions the 
analytical outcome does not look as satisfyingly simple as expression (𝐞𝐞𝟓𝟓.𝐞𝐞) does for the 
analytically derived relation of the Renyi entropies and the Renyi divergence.  

Let’s assume that a discrete uniform random variable 𝛇𝛇 of n outcomes is defined as 𝛇𝛇~𝑈𝑈𝑛𝑛 =
�1
𝑛𝑛

, 1
𝑛𝑛

, 1
𝑛𝑛

… , 1
𝑛𝑛
� . If we describe an arbitrary distribution of random variable 𝛏𝛏 as 𝛏𝛏~�̅�𝑝(𝛏𝛏) =

{𝑝𝑝(ξ1) = 𝑝𝑝1,𝑝𝑝(ξ2) = 𝑝𝑝2, … , 𝑝𝑝(ξ𝑛𝑛) = 𝑝𝑝𝑛𝑛} the expression (𝐞𝐞𝟗𝟗.𝟏𝟏) would yield the following 
sequence of identities: 

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏~𝑃𝑃 ∥ 𝛇𝛇~𝑈𝑈𝑛𝑛) =
1

𝛼𝛼 − 1��
�𝑝𝑝𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

�
1
𝑛𝑛�

1−𝛼𝛼

� − 1� =
1

𝛼𝛼 − 1��
1

𝑛𝑛(1−𝛼𝛼)��𝑝𝑝𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

−1� 

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏~𝑃𝑃 ∥ 𝛇𝛇~𝑈𝑈𝑛𝑛) =
1

𝛼𝛼 − 1
�
∑ 𝑝𝑝𝑖𝑖𝛼𝛼𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛(1−𝛼𝛼)

𝑛𝑛(1−𝛼𝛼) � = �
𝑛𝑛(1−𝛼𝛼) −∑ 𝑝𝑝𝑖𝑖𝛼𝛼𝑛𝑛

𝑖𝑖=1
(1 − 𝛼𝛼)𝑛𝑛(1−𝛼𝛼) �          (𝐞𝐞𝟗𝟗.𝐞𝐞) 

Unfortunately, the (𝐞𝐞𝟗𝟗.𝐞𝐞) does not come close to the simplicity of (𝐞𝐞𝟔𝟔.𝟔𝟔). 

8.1 Tsallis Divergence α-Spectrums of the Example 4.1 Distributions 

Examine the Tsallis divergences for the finite discrete distributions of the cardinality 16 from the 
uniform distribution  𝝽𝝽𝟏𝟏𝟔𝟔: 

• 𝝽𝝽𝟏𝟏𝟔𝟔: uniform �̅�𝑝(𝝽𝝽𝟏𝟏𝟔𝟔)~𝑈𝑈16= � 1
16

; 1
16

; … ; 1
16
� 

• 𝛇𝛇𝟏𝟏𝟔𝟔: �̅�𝑝(𝛇𝛇𝟏𝟏𝟔𝟔)~ � 1
10

; 3
50

; … ; 3
50
� ,  

• 𝛈𝛈𝟏𝟏𝟔𝟔: �̅�𝑝(𝛈𝛈𝟏𝟏𝟔𝟔)~ � 1
10

; 1
10

; 1
10

; 1
10

; 1
20

… 1
20
� 

The Tsallis divergence property noted while charting the graph is the high sensitivity to the order 
of the probability values in the distribution representation and consequentially the actual order of 
summation. In order to successfully plot the graphs below it is useful to notice, that all three 
distributions are sorted in ascending order. Until the sorting of the summands code was added the 
structure of the graph for obviously non-uniform distribution 𝛇𝛇𝟏𝟏𝟔𝟔 was almost indistinguishable 
from the graph of uniform distribution 𝝽𝝽𝟏𝟏𝟔𝟔, which for the distributions of the higher cardinality 
may present quite a challenge, especially for the nearly uniform distributions or samples. As a 
result, the following chart was plotted: 
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8.2 Tsallis Divergence α-Spectrums of the Example 4.2 Distributions 

Consider the same synthetic finite discrete distributions described in 4.2 and used in 6.2, and 7.2: 
𝛏𝛏𝟏𝟏~𝐔𝐔𝟏𝟏𝟔𝟔;  𝛏𝛏𝐞𝐞~𝐔𝐔𝟏𝟏𝟔𝟔 ± 𝐞𝐞𝟗𝟗%; 𝛏𝛏𝐞𝐞~𝐔𝐔𝟏𝟏𝟔𝟔 ± 𝟔𝟔𝟗𝟗%; 𝛏𝛏𝟒𝟒~𝑵𝑵(𝟏𝟏𝟔𝟔,𝟓𝟓);  𝛏𝛏𝟓𝟓~𝑵𝑵(𝟏𝟏𝟔𝟔,𝟏𝟏). Tsallis divergence 
from uniform distribution α-spectrums computed as (𝐞𝐞𝟗𝟗.𝐞𝐞) yields the following chart: 

  

If Tsallis divergence α-spectra are used to assess the distribution’s uniformity, the proximity of 
the sloping part of the graph to the point 𝛼𝛼 = 0 and the tangential angle (computed as either 
derivative or divided differences value) of the Tsallis divergence at the consequential values of 𝛼𝛼 
can be utilized as a practical indicator of the examined distribution’s uniformity. 
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As in the case of the Renyi entropy, Tsallis divergence 𝛼𝛼-spectrum computed for the same 
distribution is zero, which can be easily deduced from the following identities: 

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏 ∥ 𝛏𝛏) = −  
1

𝛼𝛼 − 1��
�𝑝𝑝(𝛏𝛏𝒊𝒊)𝛼𝛼
𝑛𝑛

𝑖𝑖=1

𝑝𝑝(𝛏𝛏𝒊𝒊)1−𝛼𝛼� − 1� =
1

𝛼𝛼 − 1��
�𝑝𝑝(𝛏𝛏𝒊𝒊)1
𝑛𝑛

𝑖𝑖=1

� − 1� 

For any distribution element on the n-dimensional simplex 𝛥𝛥𝑛𝑛, considering the very definition of 
the simplex, the following must hold: ∑ 𝑝𝑝(𝛏𝛏𝒊𝒊)𝑛𝑛

𝑖𝑖=1 = 1, hence  

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏 ∥ 𝛏𝛏) = −  
1

𝛼𝛼 − 1��
�𝑝𝑝(𝛏𝛏𝒊𝒊)1
𝑛𝑛

𝑖𝑖=1

� − 1� =
1

𝛼𝛼 − 1
(1 − 1) =

0
𝛼𝛼 − 1

≡ 0 for  ∀𝛼𝛼         (𝐞𝐞𝟗𝟗.𝐞𝐞) 

The structure of the expression (𝐞𝐞𝟗𝟗.𝟏𝟏) can explain the computational instability of Tsallis 
divergence 𝛼𝛼-spectrum at the larger values of 𝛼𝛼 computed directly. At the values 𝛼𝛼 → ∞ the 
corresponding 𝑝𝑝(ζ𝑖𝑖)1−𝛼𝛼 tends to infinity exponentially, while 𝑝𝑝(ξ𝑖𝑖)𝛼𝛼 converges to zero. The 
computer math for the floating point multiplication leads to rounding errors at multiplication 
operations and addition. In some cases, it may be better to use the expression (𝐞𝐞𝟗𝟗.𝟏𝟏) in the 
following form: 

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏 ∥ 𝛇𝛇) ≝  
1

𝛼𝛼 − 1��
��

𝑝𝑝(ξ𝑖𝑖)
𝑝𝑝(ζ𝑖𝑖)

�
𝛼𝛼𝑛𝑛

𝑖𝑖=1

𝑝𝑝(ζ𝑖𝑖)� − 1�                               (𝐞𝐞𝟗𝟗.𝟒𝟒) 

In other cases, sorting the summands helps. Unfortunately, for some distributions the rounding 
errors can mount to undesirable side effects. Fortunately, for the purposes of identifying 
uniformity, the expression  (𝐞𝐞𝟗𝟗.𝐞𝐞) allows to perform two sorts in the course of computing the 
value of 𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏 ∥ 𝛇𝛇). The expression (𝐞𝐞𝟗𝟗.𝟒𝟒) can be adopted for uniformly distributed 𝛇𝛇 as follows: 

𝐷𝐷𝛼𝛼𝑇𝑇(𝛏𝛏 ∥ 𝛇𝛇~𝑈𝑈𝑛𝑛) =  
1

𝛼𝛼 − 1��
1
𝑛𝑛�

��𝑛𝑛𝑝𝑝(ξ𝑖𝑖)�
𝛼𝛼

𝑛𝑛

𝑖𝑖=1

−1� =
1

𝑛𝑛(𝛼𝛼 − 1)��
��𝑛𝑛𝑝𝑝(ξ𝑖𝑖)�

𝛼𝛼
𝑛𝑛

𝑖𝑖=1

�−𝑛𝑛�   (𝐞𝐞𝟗𝟗.𝟓𝟓) 

The expressions (𝐞𝐞𝟗𝟗.𝟓𝟓) and (𝐞𝐞𝟗𝟗.𝐞𝐞) allow to sort the elements of the distribution in question and 
then the can be sorted as well before the execution of the addition. For computing Tsallis 
divergence from uniform distribution 𝛇𝛇 for the nearly uniform distribution 𝛏𝛏 the expression 
(𝐞𝐞𝟗𝟗.𝟓𝟓) is giving the least rounding errors due to 𝑛𝑛𝑝𝑝(ξ𝑖𝑖) ≈ 1, which naturally reduces the order 
difference between the summands in the expression. 

9 Evaluation with Entropy and Divergence α-Spectrums 

When analyzing entropy/randomness models or sources the traditional questions a researcher 
usually looks to answer are: 

1. What is the maximum obtainable entropy of the model examined? 
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2. What is the average entropy of the model examined? 
3. What is the worst case entropy of the model examined? 

At the first glance it would seem that these 3 questions can easily be answered with the values of 
Hartley, Shannon and min entropies correspondingly. 

The 1st question can be answered by the property of either the Renyi or Tsallis entropies as the 
value of both the Renyi and Tsallis entropies at 𝛼𝛼 → 0 essentially counts the number of 
distribution events with non-zero probability: as a logarithm of the count in the case of Renyi 
entropy or as the count reduced by one in the case of Tsallis entropy. Considering that the 
computational complexity of the Tsallis entropy is one logarithm function less computationally 
complex, the Tsallis entropy at 𝛼𝛼 → 0: 𝐻𝐻𝛼𝛼→0𝑇𝑇 (𝛏𝛏) seems to be slightly more practical 
computationally. The Tsallis entropy 𝐻𝐻𝛼𝛼→0𝑇𝑇 (𝛏𝛏) is also easier to interpret as (𝐻𝐻𝛼𝛼→0𝑇𝑇 (𝛏𝛏) + 1) is an 
exact count of distribution events of non-zero probability. Though in the case of very large 
cardinality distributions the same argument can make use of Renyi entropy 𝐻𝐻𝛼𝛼→0(𝛏𝛏) (equivalent 
to the Hartley entropy) more practical. 

The 2nd question can be answered by Shannon entropy value, which is theoretically the same 
asymptotical value of Tsallis and Renyi entropies at 𝛼𝛼 → 1: 𝐻𝐻𝛼𝛼→1+𝑇𝑇 (𝛏𝛏), 𝐻𝐻𝛼𝛼→1−𝑇𝑇 (𝛏𝛏), 𝐻𝐻𝛼𝛼→1+(𝛏𝛏), 
and 𝐻𝐻𝛼𝛼→1−(𝛏𝛏) all theoretically should be converging to Shannon entropy. Though because of 
computationally complicated asymptotical behavior of both Tsallis and Renyi entropies at 𝛼𝛼 → 1 
the direct Shannon entropy calculation by using the expression (𝐞𝐞𝟒𝟒.𝟏𝟏) or the statistical methods 
from the NIST special publication 800-22 [1] are the preferred method of answering the question 
about the model’s average entropy. 

The answer to the 3rd question seems straightforward and is given by the min entropy value 
𝐻𝐻𝛼𝛼→∞(𝛏𝛏), which is usually computed by using one of the formulae in the chain of identities of 
the expression (𝐞𝐞𝟒𝟒.𝐞𝐞). Though the question and the answer do not seem complicated, the simple 
distributions 𝛇𝛇𝟏𝟏𝟔𝟔, and 𝛈𝛈𝟏𝟏𝟔𝟔 from the example 4.1 demonstrate that there are non-identical finite 
discrete probability distributions that may have same min-entropy and Hartley entropy. The 
distributions from the example 4.1 demonstrated that despite matching Hartley and min entropies 
the Renyi entropy α-spectrums can be different for all 𝛼𝛼, but 𝛼𝛼 = 0 and 𝛼𝛼 → ∞. So, the general 
randomness of the distributions 𝛇𝛇𝟏𝟏𝟔𝟔, and 𝛈𝛈𝟏𝟏𝟔𝟔 in all cases but the worst is different.  

Unfortunately, there may be are multiple possible answers to the question “How uniform is the 
distribution produced by the model examined?”. As the answer would depend on the information 
available and obtainable in the particular application. Considering the type, cardinality and 
computational resources available, the uniformity analysis can be performed in multiple ways, 
some of which were illustrated above.  

Distribution uniformity evaluation can be performed by examining Renyi entropy 𝛼𝛼-spectrum 
explained and illustrated in section 4, which allows us to estimate uniformity of the distribution 
quite well. In the cases when the separation between the 𝛼𝛼-spectra is not sufficient, the min 
entropy can be of assistance. Renyi entropy 𝛼𝛼-spectrum analysis is effectively equivalent to the 
use of Renyi divergence described in the section 5 of the document. In the cases when Renyi 
divergence 𝛼𝛼-spectrum analysis is used the use of the expression (𝐞𝐞𝟓𝟓.𝐞𝐞) should be used, because 
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a direct use of expression (𝐞𝐞𝟓𝟓.𝟏𝟏) can lead to the computational artifacts caused by the rounding 
and loss of precision during computation. 

The Tsallis entropy at 𝛼𝛼 → 0 (section 6) is an excellent candidate to replace Hartley entropy for 
estimating the count of non-zero probability events in the examined distribution. Though the 
Lesche stability makes the Tsallis entropy 𝛼𝛼-spectra less useful for distribution’s uniformity 
identification or testing as explained in 6.1. On the other hand, the “Renyi-like” divergence of 
Tsallis entropy 𝛼𝛼-spectra, presented and illustrated in section 7, may be useful for uniformity 
analysis, security automation, and some artificial intelligence applications due to the divergence 
quantity spectrum being consistently concentrated in the confined range of the parameter 𝛼𝛼 lower 
values.  

Caution should be exercised when the Tsallis divergence 𝛼𝛼-spectrum (section 8) is used for 
identifying uniformity of the distributions. While allowing to evaluate the degree of uniformity 
present in the given distribution, the inherent computational instability of the Tsallis divergence 
given by expressions (𝐞𝐞𝟗𝟗.𝟏𝟏) − (𝐞𝐞𝟗𝟗.𝐞𝐞) demands to pay more attention to possible computational 
artifacts. For example, Tsallis divergence of two identical distributions is analytically zero as 
demonstrated by (𝐞𝐞𝟗𝟗.𝐞𝐞). Never the less, when computed using either expression (𝐞𝐞𝟗𝟗.𝟏𝟏) or 
(𝐞𝐞𝟗𝟗.𝐞𝐞) instead of (𝐞𝐞𝟗𝟗.𝐞𝐞) the computed values were diverging from the expected value of 0 in 
the conducted experiments. Hence, the Tsallis divergence 𝛼𝛼-spectrum should be used directly for 
identifying uniformity of the distributions very carefully. Though it is possible that there are 
analytical transformations capable of making Tsallis divergence computationally stable.  

10 Generalized Entropy and Divergence Models 

The main focus of this report is expansion of the traditional toolset of the Shannon [1] and min 
entropies [2, 3, 4] for randomness and uniformity analysis with more delicate tools allowing 
more detailed distribution analysis. The models based on Renyi and Tsallis entropies reviewed 
above are not in any way unique and further research into usability of the more general models 
of entropy may yield better methods for randomness and uniformity identification. A few more 
general entropy models are listed below. 

Sharma-Mittal entropy is known [15] to generalize in one analytical expression Renyi, Tsallis, 
and a few other entropy models with two parameters, unlike one as in the cases of Renyi and 
Tsallis entropies. Sharma-Mittal entropy is usually defined as follows: 

𝐻𝐻𝛼𝛼,𝛽𝛽
𝑆𝑆𝑀𝑀(ζ) ≝

1
2(1−𝛽𝛽) − 1

���𝑝𝑝𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

�

(𝛽𝛽−1)
(𝛼𝛼−1)

− 1� 

Sharma-Mittal entropy is actively researched in the field of information and coding theory [18, 
19]. Sharma-Mittal entropy derived divergences, cross-entropies and relative entropies are also 
interesting topic of research.   

Other generalized entropy models can be built by using the idea of Kolmogorov-Nagumo 
quasilinear functional average and an invertible function 𝜑𝜑 and function’s inverse 𝜑𝜑−1instead of 
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the arithmetic GWM presented in section 3.1. The Kolmogorov-Nagumo quasilinear averages 
can replace the generalized averages yielding the entropy sometimes referred to as Tsallis 
quasilinear entropy [6, 20]: 

𝐻𝐻𝛼𝛼,𝜑𝜑
𝑇𝑇𝑇𝑇𝑇𝑇(ζ) ≝ log𝛼𝛼 φ−1 ��𝑝𝑝𝑖𝑖φ(𝑝𝑝𝑖𝑖−1)

𝑛𝑛

𝑖𝑖=1

� = log𝛼𝛼 φ−1 ��𝑝𝑝𝑖𝑖𝜑𝜑 �
1
𝑝𝑝𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

� 

Extensive analysis of entropies’ statistical properties was performed in [21]. The analysis, 
challenging, and completeness examination of Shannon-Khinchin axioms is also an active 
research area [22]. Multiple models of distributions divergence, relative entropies, and cross-
entropies are also intensively researched and may be readily applied to the problems of 
randomness and uniformity identification.     
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