
Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.

It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number:

Title:

Publication Date(s):

Withdrawal Date:

Withdrawal Note:

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number:

Title:

Author(s):

Publication Date(s):

URL/DOI:

Additional Information (if applicable)

Contact:

Latest revision of the

attached publication:

Related information:

Withdrawal
announcement (link):

Date updated: October 19, 2015

Federal Information Processing Standard (FIPS) 190

Guideline for the Use of Advanced Authentication Technology
Alternatives

September 28, 1994

October 19, 2015

FIPS 190 is obsolete and is being withdrawn.

Computer Security Division (Information Technology Laboratory)

FIPS 190 (September 28, 1994)

http://csrc.nist.gov/publications/PubsFIPSArch.html

https://www.federalregister.gov/a/2015-26429
(80 FR 63199)

Federal Information Processing Standards Publication 190

1994 September 28

ANNOUNCING THE

GUIDELINE FOR THE USE OF ADVANCED
AUTHENTICATION TECHNOLOGY ALTERNATIVES

Federal Information Processing Standards Publications (FIPS PUBS)
are issued by the National Institute of Standards and Technology
(NIST) after approval by the Secretary of Commerce pursuant to
Section 111(d) of the Federal Property and Administrative
Services Act of 1949 as amended by the Computer Security Act of
1987, Public Law 100-235.

1. Name of Guideline. Guideline For The Use Of Advanced
Authentication Technology Alternatives (FIPS PUB 190).

2. Category of Guideline. Computer Security, Subcategory
Access Control.

3. Explanation. This Guideline describes the primary
alternative methods for verifying the identities of computer
system users, and provides recommendations to Federal agencies
and departments for the acquisition and use of technology which
supports these methods. Although the traditional approach to
authentication relies primarily on passwords, it is clear that
password-only authentication often fails to provide an adequate
level of protection. Stronger authentication techniques become
increasingly more important as information processing evolves
toward an open systems environment. Modern technology has
produced authentication tokens and biometric devices which are
reliable, practical, and cost-effective. Passwords, tokens, and
biometrics can be used in various combinations to provide far
greater assurance in the authentication process than can be
attained with passwords alone.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National
Institute of Standards and Technology Computer Systems
Laboratory.

6. Cross Index.

 a. FIPS PUB 46-2, Data Encryption Standard.

 b. FIPS PUB 48, Guidelines on Evaluation of Techniques
 for Automated Personal Identification.

 c. FIPS PUB 74, Guidelines for Implementing and Using
 the NBS Data Encryption Standard.

 d. FIPS PUB 81, DES Modes of Operation.

 e. FIPS PUB 83, Guideline of User Authentication
 Techniques for Computer Network Access Control.

 f. FIPS PUB 112, Password Usage.

 g. FIPS PUB 113, Computer Data Authentication.

 h. FIPS PUB 171, Key Management Using ANSI X9.17.

 i. FIPS PUB 180, Secure Hash Standard.

 j. Special Publication 500-157, Smart Card Technology:
 New Methods for Computer Access Control.

 k. Special Publication 800-2, Public Key Cryptography.

Other NIST publications may be applicable to the use of this
guideline. A list (NIST Publications List 91) of currently
available computer security publications, including ordering
information, can be obtained from NIST.

7. Applicability. This guideline is applicable to all Federal
departments and agencies that use authentication
systems to protect unclassified information within computer and
telecommunication systems (including voice systems) that are not
subject to Section 2315 of Title 10, U.S. Code, or Section
3502(2) of Title 44, U.S. Code. This guideline may be used by
all Federal departments and agencies in designing, acquiring and
implementing authentication systems within computer and
telecommunication systems (including voice systems) that they
operate or that are operated for them under contract. Non-Federal
government organizations are encouraged to use this guideline
when it provides the desired security for protecting valuable or
sensitive information.

8. Applications. Authentication systems may be utilized in
various computer and telecommunication (including voice)
applications and in various environments (e.g., centralized
computer facilities, office environments, hostile environments).
The strength of an authentication system should be chosen
to provide a degree of assurance appropriate for the security
requirements of the application and environment in which the
system is to be utilized and the security services which the
system is to provide.

9. Specifications. Federal Information Processing Standards
(FIPS) Guideline 190, Guideline For The Use Of Advanced
Authentication Technology Alternatives (affixed).

10. Export Control. Many of the authentication systems
discussed in this guideline make use of cryptographic techniques
to strengthen the security of the authentication process. Certain
cryptographic devices and technical data regarding them are
deemed to be defense articles (i.e., inherently military in
character) and are subject to Federal government export controls
as specified in Title 22, Code of Federal Regulations, Parts
120-128. Some exports of cryptographic systems and technical

data regarding them must comply with these Federal regulations
and be licensed by the U.S. Department of State. Other exports
of cryptographic systems and technical data regarding them fall
under the licensing authority of the Bureau of Export
Administration of the U.S. Department of Commerce. The
Department of Commerce is responsible for licensing cryptographic
devices used for authentication, access control, proprietary
software, automatic teller machines (ATMs), and certain devices
used in other equipment and software. For advice concerning
which agency has licensing authority for a particular
cryptographic device, please contact the respective agencies.

11. Implementation Schedule. This guideline becomes effective
May 1, 1995.

12. Qualifications. The authentication technology described in
this guideline is based upon information provided by many sources
within the Federal government and private industry.
Authentication systems are designed to protect against
adversaries mounting cost-effective attacks on unclassified
government or commercial data (e.g., hackers, organized crime,
economic competitors). The primary goal in designing an
effective security system is to make the cost of any attack
greater than the possible payoff.

13. Where to obtain copies. Copies of this publication are
available for sale by the National Technical Information Service,
U.S. Department of Commerce, Springfield, VA 22161. When
ordering, refer to Federal Information Processing Standards
Publication 190 (FIPSPUB190), and title. When microfiche
is desired, this should be specified. Payment may be made by
check, money order, credit card, or deposit account.

Federal Information
Processing Standards Publication 190

1994 September 28

Specifications for

GUIDELINE FOR THE USE OF ADVANCED

AUTHENTICATION TECHNOLOGY

CONTENTS

1.
INTRODUCTION...
..............................
5
2. PRINCIPLES OF
AUTHENTICATION..
5
3. PASSWORD BASED
AUTHENTICATION..
7

 3.1
Overview...
.................................
7
 3.2 Factors Affecting Password
Security..
8
 3.2.1
 Composition...
...........................
8
 3.2.2
 Length..
...............................
9
 3.2.3
 Lifetime..
..............................
9
 3.2.4
 Source..
...............................
9
 3.2.5
 Distribution..
.............................
10
 3.2.6
 Storage...
...............................
10
 3.2.7 Entry and
Transmission...
..
11
 3.3 Problems with Password-Only
Authentication.....................................
11
 3.4
Example..
.................................
12
4. TOKEN BASED
AUTHENTICATION..
14
 4.1
Overview...
.................................
14
 4.2 Form
Factor...
...........................
14
 4.3 Workstation
Interface..
..............
15

 4.3.1 Contact
Interfaces...
..........
16
 4.3.2 Non-Contact
Interfaces...
..
18
 4.4 Processing
Capability...
................
19
 4.4.1 Memory
Tokens...
.........
19
 4.4.2 Microprocessor
Tokens...
21
 4.4.2.1 Hand Held Password
Generators.......................................
23
 4.4.3 Multi-Application
Tokens...
23
 4.5
Recommendations..
..........................
25
 4.6 The NIST Advanced Smartcard Access Control
System.....................
25
5. BIOMETRIC BASED
AUTHENTICATION..
35
 5.1
Overview...
.................................
35
 5.2 How Biometric Authentication Systems
Function...............................
35
CONTENTS (continued)

 5.3
Recommendations..
..........................
36
 5.4
Example..
.................................
37

6. COMBINATION
METHODS..
......
39
7. CRYPTOGRAPHY IN AUTHENTICATION SYSTEMS.........................
40
 7.1
Overview...
.................................
40
 7.2 Secret Key
Cryptography...
...........
40
 7.3 Public Key
Cryptography...
...........
41
 7.4 Cryptographic Authentication
Protocols...
43
 7.4.1
Kerberos...
...........................
43
 7.4.2
SPX..
.............................
46
8. GENERAL IMPLEMENTATION
GUIDELINES......................................
49
9.
CONCLUSION...
................................
53
REFERENCES...
.......................................
55

1. INTRODUCTION

This Guideline provides information and guidance to Federal
agencies on the use of advanced authentication technology as a
critical element in the design of effective access control
mechanisms for automated systems which process unclassified
information. As the trend toward networking continues, the
ability to verify the identity of system users with a high degree
of accuracy becomes more important. Systems which cannot
differentiate between requests for service by legitimate users
and unauthorized access attempts are vulnerable to a variety of
attacks. Although passwords are the traditional method for
verifying the identity of users, there are several alternative
methods which can enhance the security of an access
control system. This document describes these methods and
provides recommendations for their use. Each major section
contains an example authentication system based upon the

technology described in that particular section. The examples
are constructed specifically for the purposes of this document,
with the exception of the Advanced Smartcard Access Control
System presented in Section 4. However, all examples are based
on technology that is available now or is expected in the near
future. Discussion of specific commercial products does not
constitute an endorsement by NIST.

2. PRINCIPLES OF AUTHENTICATION

The broadest definition of authentication within computing
systems encompasses identity verification, message origin
authentication, and message content authentication [1].
The concept of identity verification specifically applies to
principals with information processing and decision making
capabilities, including human users, computing systems and
processes executing on those systems. From an authentication
standpoint, the term "user" applies to all these principals. This
Guideline focuses on technology and techniques for verifying the
identity of human users, but many of these techniques are equally
applicable to authentication of other principal types.
Authentication through knowledge of secret information or
possession of a unique physical authentication token are equally
valid for all the types of entities described above. On the other
hand, biometric authentication only makes sense in the context of
human users.

Reliable authentication mechanisms are critical to the security
of any automated information system. If the identity of
legitimate users can be verified with an acceptable degree of
accuracy, those attempting to gain access without proper
authorization can be denied permission to use the system. When a
legitimate user's identity is verified, access control techniques
are applied to mediate that user's access to system resources. If
a computer system cannot verify the identity of users and other
computers, the system will not be able to protect itself against
unauthorized access. A variety of methods are available for
performing user authentication, and these methods form the basis
for access control systems [2]. The three generally accepted
categories of methods for verifying the identity of a user are
based on something the user KNOWS, such as a password; something
the user POSSESSES, such as an authentication token; and some
PHYSICAL CHARACTERISTIC of the user, such as a fingerprint or
voice pattern. In order to use these characteristics to verify
the identity of an individual, computer systems use software,
hardware, or a combination of both.

In the past, it was relatively easy to protect computer systems
because they were typically installed in a centralized computing
facility. Since the terminals used to access the computer were
usually in the same building, only those persons having physical
access to the building would be able to use the terminals. With
the proliferation of networked computer systems, however, this
level of physical access control is no longer viable. The design
of open computing systems permits access to more systems, and
some of these access attempts may not be by legitimate users.

Users may be able to access network-connected computers from any
physical location on the network, and the logical connection
which supports a session between the user and a given computer
may travel through many communications circuits. The increasing
level of interconnection between computer systems has made it
possible to distribute and process information far more easily
than in the past. However, it has also become significantly more
difficult to identify system users based on physical location,
since the pathway between a user and the computing resources
accessed by that user may be impossible to trace.

Attackers often take advantage of the anonymity provided by
communications networks when attempting to break into a target
machine. A significant amount of effort is usually required to
locate and prosecute these attackers, primarily because of the
difficulty of tracing an attacker's access routes through
communications networks which may span international boundaries.

Networking not only makes it more difficult to identify system
users, it also increases the opportunities for unauthorized
parties to intercept authentication data passing through the
network during the course of a legitimate session between a user
and a remote host computer. User passwords are sometimes
transmitted through a network in plaintext form. If an attacker
is able to monitor the user's session, the attacker may be able
to record the user's password or other critical authentication
data. This would allow the attacker to pose as a valid user by
initiating a login on the remote host and submitting the user's
authentication data when the host requests it. Software is
readily available for monitoring network traffic, primarily for
the purpose of performance management and problem diagnosis.
Unfortunately, the same software is often quite effective at
capturing passwords as they are transmitted through a network.

Some systems apply a cryptographic algorithm to scramble
(encrypt) passwords before they are transmitted, so that the
plaintext password is not exposed. However, an attacker may still
be able to record the encrypted password, and gain access to the
host computer by submitting the encrypted value. In either case,
the host computer will be unable to distinguish between the
attacker and a valid user, and will grant access to the attacker.

In a modern automated information system, processes running on
one computer may interact with other computers in order to
transfer information or access common resources. These
interactions may take place across networks and involve machines
which are not located in the same facility. For example, many
electronic mail protocols require the transfer and routing of
information through computers which are heterogeneous in terms of
ownership and physical location. It is therefore necessary to
consider situations where one computer needs to verify the
identity of another computer, with or without intervention from a
human user. It is usually desirable in these cases to implement
some form of mutual authentication, whereby the identity
of each computer is verified simultaneously. Fortunately,
computers are capable of implementing cryptographic
authentication protocols which provide an efficient and secure

means for performing mutual authentication (Section 7).

Human users often access multiple services on multiple host
computers in modern automated information systems. Separate
authentication events may be required for each service a user
wishes to access, particularly if these services are resident on
separate host machines. Users might, for example, be required to
demonstrate possession of a physical authentication token for
each service. In some cases, services or host computers may even
use different authentication techniques which would, for example,
force users to memorize passwords for some services and carry
tokens or provide biometric scans for others. This situation
quickly becomes an unreasonable burden for users, and can lead to
poor security practices.

To address the problems described above, logon authentication
schemes have been developed that only require users to
authenticate once during a session. These approaches are commonly
referred to as unitary logon or single sign-on. Unitary logon is
generally a two-step process, in which the user first
authenticates to a principal. The principal may be the user's
workstation, a physical authentication token, or some other
device. Then, as the user requests access to various services,
the principal is responsible for authenticating the user to each
service. Conceptually, the principal acts as a proxy for the user
in conveying the original authentication event and automates
subsequent authentications with little or no intervention from
the user. These subsequent authentications are usually based on
strong cryptographic protocols which are secure across
communications networks. It should be noted that each service
accessed by a user must understand the protocol for interacting
with the principal responsible for authenticating the user. Also,
the principal must be responsible for determining the point at
which a given user's current authentication terminates. This
termination point is often tied to the end of a user's login
session.

3. PASSWORD BASED AUTHENTICATION

 3.1 Overview

The traditional method for authenticating users has been to
provide them with a secret password, which they must submit when
requesting access to a particular system. The majority of
computer systems in use today rely on passwords for
authentication. The primary advantage of password-only
authentication is that it can be implemented entirely in
software, thus avoiding the cost of special purpose
authentication hardware. However, password systems have a number
of disadvantages in practice which restrict their use to
applications with minimal security requirements, or situations
where password management can be strictly controlled. Password
based authentication is most effective when combined with other
authentication techniques.

 3.2 Factors Affecting Password Security

Passwords may be chosen as the sole means of authentication, or
may be combined with other authentication methods for improved
security. A number of factors affect the security of a system
which relies on passwords for authentication. These factors
include the composition, length, lifetime, source, ownership,
distribution, storage, entry, transmission, and authentication
period of the passwords. Federal Information Processing
Standards Publication 112 [3] describes these factors in detail,
and so they will be discussed only briefly in this document.

 3.2.1 Composition

The composition of a password refers to the range of values from
which each character of the password may be chosen. For example,
a particular implementation might allow each character of a
password to be chosen from the set of letters in the alphabet.
This would yield 26 possible values for each character, assuming
case insensitivity. For the purposes of this example, assume
that the host system allocates eight bits, or one byte, of
storage for each character. One byte can represent any of 256
possible values, which is approximately ten times the number of
letters in the alphabet. By restricting the range of possible
values for each character to the 26 letters of the alphabet, the
security of the password system is decreased. Exhaustive attacks
involve the submission of as many different password values as
possible in the hopes of finding one or more which are valid.
The work factor for someone attempting an exhaustive attack is
directly related to the number of possible values which must be
tried for each character of the password. However, it is often
necessary to restrict the range of allowable values for practical
reasons. Many keyboards do not allow the user to enter all
possible values for a character. Numeric keypads are often used
for the entry of Personal Identification Numbers (PINs), which
are passwords composed only of numeric characters. These keypads
are typically found in automated teller machines used by the
banking industry, but are also used in a variety of other access
control applications. A numeric keypad usually allows for the
entry of decimal digits 0 through 9, thus restricting the range
of each character of a PIN to ten possibilities.

It may also be necessary to restrict the range of allowable
password characters for mnemonic reasons. If password characters
are chosen at random from the full range of possible values,
users will find it difficult to remember these passwords.
Random combinations of characters are difficult to
remember since human users will interpret many of them as
nonsense. In such cases, users are much more likely to write
passwords down because they cannot be memorized easily.
Automated systems may use a password generator which produces
pronounceable non-word combinations of characters. For example,
passwords produced by this type of system might be of the form
consonant- vowel- consonant- consonant- vowel- consonant,
excluding words which appear in a dictionary. This approach
eliminates the threat of dictionary attacks, where words are
chosen in sequence from a dictionary for submission as passwords.
Users should be able to remember pronounceable non-words more

easily than totally random combinations of characters, reducing
the likelihood that passwords will be written down. Password
generation schemes are often a compromise between the security of
random password generation and the need to produce passwords
which users can remember.

 3.2.2 Length

The length of a password refers to the total number of characters
which make up the password. In combination with the range of
values allowed for each character, the length determines the
total number of possible password values. A password system
which uses the decimal digits zero through nine with a length of
four would have a range of ten to the fourth power, or ten
thousand possible password values. As the length and/or
composition parameters are increased, the number of possible
password values increases proportionally. Increasing these
parameters should have a positive effect on the overall security
of the system, since exhaustive attacks become more difficult.
However, system users will have more trouble remembering their
passwords as the length and composition are increased.

 3.2.3 Lifetime

If user passwords are not changed at reasonable intervals, it
becomes more likely that passwords could be compromised by
exhaustive search techniques. The lifetime of a password
determines the amount of time which an attacker can use to
attempt to compromise the password through exhaustive search or
other techniques. If an attacker manages to guess a password
which has been replaced with a new password, the attacker has
gained nothing.

This scenario assumes that the new password value bears no
relationship to the old password, as would be the case if new
passwords were generated randomly. In cases where users are
allowed to choose their own passwords, however, they frequently
choose values which are a variation on old password values. For
example, a user may choose the password "bbcdef" if the user's
previous password was "abcdef". The new password is easier to
remember, since it only differs from the old password by one
letter. This situation increases the risk that an attacker could
guess the new password value, since knowing the old password
would provide some information about the possible values of the
new password.

The password lifetime chosen for an application should balance
the apparent security of a short lifetime against the burden
placed on users when passwords are changed too often. Users may
become frustrated when required to constantly change and memorize
new passwords, making it more likely that trivial passwords will
be chosen.

 3.2.4 Source

The source which generates new passwords in a system has a major
impact on the security of that system. If passwords are

generated by an automated system, that system component will be
responsible for ensuring the security of password values.
Automated password generators will, by definition, know the value
of each new password in the system. Care must be taken in the
design and operation of password generators to ensure that they
can be trusted, since an access control system would be rendered
useless if the password generation process were not secure. NIST
has developed a standard for automated password generation [4].

Users may be allowed to choose their own passwords, rather than
having them chosen by an automated system. In these situations,
the passwords chosen by users should be checked by automated
means to ensure that weak passwords are rejected. For example,
the security policy of a system might set the following
requirements: user-chosen passwords must be at least six
characters in length, they must not appear in a dictionary of
English words, and they must differ from the user's previous
password by at least two characters. Any user-chosen passwords
not meeting these requirements would be rejected and the user
would be asked to choose another password.

 3.2.5 Distribution

Passwords which are generated automatically must be distributed
to system users. The communications lines which carry new
passwords from the host system to users should be protected from
attempts to intercept passwords. This can be difficult when
passwords must travel through networks which span organizational
and geographic boundaries. Encryption can be used to scramble
passwords which must travel through unprotected networks, so that
they become unintelligible to an attacker. In the case where
users choose their own passwords, the passwords must be sent to
the host system after they have been selected by the users.

Whether passwords are distributed in hardcopy form,
electronically, or through other means, the distribution process
should provide protection against disclosure. Sealed envelopes
with tamper-evident features are often used for distribution of
hardcopy passwords. If an unauthorized party intercepts a
tamper-evident envelope and opens it to read the password, the
envelope cannot be resealed and sent to the intended recipient
without evidence of tampering. This approach relies on the system
users to recognize and report suspected disclosure of hardcopy
passwords. If a password is compromised in this fashion, there
may be a short period of time before the legitimate user detects
and reports the compromise. An attacker may be able to use the
password to gain access to the system during this time, because
the password is considered valid until the user reports that it
has been compromised.

 3.2.6 Storage

In addition to the generation and distribution of passwords, a
system must store passwords for use in the authentication
process. When a user attempts to login to the system, the user
will submit a password which must be compared to the stored
password, or some one-way mapping thereof, which the system knows

to be valid for that user. Protection can be provided for
passwords by storing them in a physically separate area which can
only be accessed by authorized system components. Stored
passwords may also be protected by encryption or through the
application of a one-way mapping function before storage. Data
encryption is described in Section 7.1.
 3.2.7 Entry and Transmission

Users must submit passwords to the host system during a login,
and possibly at other times during a normal session. A user's
password may be subject to disclosure while the user is entering
the password. The terminal should not display the password as
the user enters it, so that others cannot read the password from
the user's display. Users should be allowed more than one
attempt to enter a password during a login, since the user may
accidently mistype the password. However, there should be a
limit to the number of incorrect password entry attempts to
protect against exhaustive search attacks, as described in
Section 3.2.1. Many systems allow three password entry attempts
before locking a user out. The user is then required to notify a
system administrator or security officer in order to obtain a new
password.

After the password has been entered, the user's terminal
transmits it to the host system unless the user is accessing the
host via a main system console. As the password travels from the
user's terminal to the host, it is subject to disclosure if the
line between the terminal and the host is not secure. The risk
of exposure during transmission of the password from the user's
terminal increases as a function of the complexity of the network
which connects the terminal to the host. Networks vary in
complexity depending on the number of access points, the number
of sessions which can be carried simultaneously, the degree of
physical protection provided for data on the network, and a
variety of other factors. Encryption of passwords prior to
transmission or the use of a cryptographic authentication
protocol which does not rely on transmission of plaintext
passwords can reduce or eliminate this risk. However, encryption
alone does not protect against replay because an attacker may be
able to record the encrypted password and play it back in
encrypted form to gain access. Inclusion of a time variant
parameter in the encrypted password message can protect against
replay attacks.

 3.3 Problems with Password-Only Authentication

Policies and procedures have been developed for the management of
password-only authentication techniques. However, these
techniques are sometimes difficult to implement effectively in
real-world situations. Some of the factors which influence the
security of a password system may be beyond the control of those
responsible for managing the system. During the development of a
computer system, it is common practice for the system developers
to use master passwords which provide total control over the
system for debugging purposes. These passwords are sometimes left
in the product, either inadvertently or intentionally, when the
system goes into production. When this is done intentionally, it

provides the developer with a convenient "back door" entry into
the customer's system which facilitates product support and
maintenance. However, this is a dangerous practice because an
intruder may be able to gain complete control over the system by
learning the developer's password. In addition, the customer may
not wish to trust the manufacturer with this level of control
over a system after it is installed at the customer's site.
Customers should verify that passwords used by the manufacturer
during system development and installation have been removed
before the system is used.

The password problem is multiplied when users access remote
computing resources through a network. Because it is difficult
to control physical access to remote terminals, it is possible
for an attacker to make repeated attempts to guess passwords on
host computers connected to the network. In addition, passwords
are often transmitted to a remote computer to authenticate the
user. Transmitting static passwords over a network in plaintext
form can drastically increase the opportunities for an attacker
to capture them directly from the communications line, or from a
computer which is acting as an intermediate node in the
transmission process. There have been numerous well-publicized
cases of intruders breaking into computer systems by guessing or
stealing passwords.

Authentication which relies solely on passwords has often failed
to provide adequate protection for computer systems for a number
of reasons. If users are allowed to make up their own passwords,
they tend to choose ones which are easy to remember, and
therefore easy to guess. If passwords are generated from a
random combination of characters, users often write them down
because they are difficult to remember. Systems which use only
passwords for authentication should provide strong mechanisms for
controlling the generation, distribution, and use of system
passwords. Password systems can be effective if managed
properly, but this is seldom the case. Advances in security
technology provide a number of alternative authentication methods
which can be used alone or in combination with passwords to
improve the security of an access control system.

 3.4 Example

A hypothetical system will be used to illustrate the application
of good password management techniques in an access control
system. This system consists of a number of host computers, or
servers, interconnected by a local area network. Users access
the services provided by the host computers through intelligent
workstations which may in some cases also serve as hosts for
other users. Only unclassified information is stored on and
processed by the system. A security officer is assigned for each
host, and in most cases also plays the role of system
administrator for that machine. Host systems rely entirely on
passwords to verify the identity of users requesting services.
This scenario is typical of many networked computer systems.

The security policy for all host computers in this hypothetical
network dictates certain rules for the generation, distribution,

and management of user passwords. Some of the processes required
by the security policy involve cryptographic techniques which are
described more fully in Section 7. The requirement for
cryptographic protection of passwords as they pass through the
network increases overall security. However, the use of
cryptography also complicates the authentication architecture. In
particular, protocols for the generation, distribution, and
management of cryptographic keys must be included. Certain
aspects of the security policy are enforced by the operating
system or special applications programs executing on the host
systems. For example, password length and composition are checked
automatically each time a user's password is changed. This check
is performed by the same software which is responsible for
managing changes to the password database. A simple set of rules
for password management in this system follows:

1. Passwords are composed of the characters available on
a standard computer keyboard, i.e., letters of the
alphabet, numeric digits, and punctuation. When passwords
are created, the system performs a series of checks to
make sure that the passwords chosen are not weak.

2. Passwords are at least six characters in length.

3. Passwords must be changed every four months. Users
are notified by the system when individual passwords
have reached the four month expiration date. The system
prompts individual users for new passwords, and does not allow
further access until a user's password has been properly
updated.

4. Passwords are distributed to users through personal
interaction with security officers, or through
delivery by a trusted courier in a sealed tamper-
evident envelope. Passwords are never distributed
through routine interoffice mail services.

5. Passwords are stored on host systems for comparison
purposes. Before storage, passwords are scrambled
using a one-way mapping algorithm to provide
protection for the stored values. The original
password values cannot be recovered from the
scrambled values, so when a user submits a password
for authentication purposes the system must one-way
map the password and compare the result to the scrambled
value originally stored for that user. Even if the
stored value is compromised, the plaintext password
must still be derived by exhaustive search.

6. When a user wishes to access services on a host
system, the user must submit a password. The
password is entered at the user's workstation, and
must often be transmitted to the host system via the
local area network. While the user is typing the
password, the workstation does not echo it to the
display. The workstation then encrypts the password
and a time-variant parameter, and transmits the result

to the host system. The host system decrypts the
password, recovering the original form of the password
entered by the user. The one-way mapping algorithm
is then applied to encrypt the password, and this
encrypted form is compared to the encrypted password
value in the password database for this user.
Encryption provides protection for the password as it
is transmitted through the network from the user's
workstation to the host system.

7. Users are not allowed to write down passwords, or to
share them with other users. Users are made aware of
this requirement before they are given access to the
system, and are also made aware of any corrective
actions which will be taken if this rule is
violated.

The requirement for encryption in item 6 contributes to the
security of the system, because passwords are not exposed in
plaintext form during transmission. The system design must
include workstations which have cryptographic capability, and a
protocol for managing the cryptographic keys which must be shared
between workstations and host computers. In addition, the
generation and verification of time-variant parameters requires
time synchronization between appropriate system components. These
requirements complicate the system design to a certain extent,
but the corresponding increase in security often justifies the
additional complexity in design.

An alternative approach would be to one-way map the password and
time-variant parameter before transmission over the network. The
host system one-way maps the plaintext password from secure
memory and compares the result to the received value. If the two
values are equal the user is authenticated, otherwise the
authentication attempt fails. This alternative does not require
the distribution of cryptographic keys, however it does require
secure storage of plaintext passwords at host computers.
Plaintext passwords could be encrypted under a secret storage
key for additional protection.

4. TOKEN BASED AUTHENTICATION

 4.1 Overview

The identity of a human user can be proven by requiring the user
to demonstrate possession of a physical object which is unique to
that user, or to a group of users. Objects used for this purpose
are known as authentication tokens. For example, a driver's
license would be considered an authentication token because it
can be used to prove the identity of its owner. Tokens designed
for use with automated authentication systems are encoded with
information which is used in performing the authentication
protocol required by the host system in order to verify the
identity of the token's owner [5]. Since the uniqueness of the
information stored on an authentication token is responsible for
proving the identity of its bearer to the host system, the

information must be protected against duplication or theft.
Advanced tokens usually contain a microprocessor and
semiconductor memory, and support sophisticated authentication
protocols which provide a high level of security.

 4.2 Form Factor

Authentication tokens are currently available in a variety of
physical forms. The size, shape, and physical materials from
which a token is manufactured are referred to collectively as the
token's form factor. These parameters affect the durability,
portability, security, and convenience for a given type of token.
For example, some tokens have electrical contacts mounted on the
outer surface of the token's casing. The electrical contacts are
connected to an integrated circuit embedded in the token. When
an electrostatic discharge of sufficient potential is applied to
the contacts, the integrated circuit may be damaged. Care must
be taken in the design of tokens with electrical contacts to
minimize the risk of damage from static discharges, since the
human body can accumulate a significant static charge in dry
weather. To compensate for this, some types of tokens have
contacts which are recessed in a conductive plastic casing [6].
This type of token is less susceptible to damage from stray
static discharges, because the casing of the token absorbs the
charge before it reaches the contacts. Other varieties of tokens
have no electrical contacts, further reducing the risk of static
damage. Each form factor involves trade-offs which must be
evaluated for a specific application. Tokens with recessed
contacts usually require a thicker casing than those with
surface-mounted contacts, which can make the token more difficult
to carry in a pocket. Customers can sometimes select from a
number of different form factors with the same functionality,
making it possible to choose the form factor which is best suited
to a particular application.

 4.3 Workstation Interface

Most authentication tokens require an electronic interface in
order to communicate with the workstation during the
authentication process. This interface is commonly known as a
reader/writer, because it reads data from and writes data to the
token. Reader/writers may be built directly into terminals or
workstations, or they may be separate devices which are connected
to a standard communications port or special purpose interface on
the workstation [7,8]. Reader/writers which are built into
workstations can provide a higher level of physical protection
for the communications path between the workstation and the
token, because there is no external cable which could be
monitored by an attacker. However, this type of reader/writer is
designed to work with the hardware of a specific host system and
may not be compatible with other types of computers. If it is
necessary to move reader/writers from one computer to another
frequently, an external reader/writer which connects to a
standard communications port will be more convenient.

Reader/writers vary in complexity and cost. Tokens which do not
have a microprocessor are essentially data storage devices which

contain the information required by a host system to verify the
identity of the token's owner. Reader/writers designed for use
with this type of token are usually microprocessor based, because
the reader/writer must be able to perform a fairly complicated
series of operations. In a typical implementation, the
reader/writer reads authentication data from the token, and then
uses this data to perform the authentication protocol required by
the host system. Since these intelligent reader/writers have
significant processing capabilities, they tend to be more
expensive. However, the additional capabilities of intelligent
reader/writers can be used to offload some of the processing
burden from the host system. Some types of intelligent
reader/writers can be programmed to work with a variety of host
communications protocols, or to work with several different
tokens.

Tokens which contain a microprocessor are often referred to as
intelligent or smart tokens. Most smart tokens can perform
communications functions such as data formatting, flow control,
and error detection and recovery. Smart token reader/writers can
be very simple, because the token typically requires only
hardware-level support from the reader/writer in order to
communicate with the host system. Since these reader/writers
require fewer components than an intelligent reader/writer, they
are often less expensive. Smart tokens can also work with
microprocessor based reader/writers, in applications where the
additional capabilities of an intelligent reader/writer are
required. The use of intelligent reader/writers usually adds to
the cost of the system, but this may be acceptable if the
additional functionality provided by the reader/writer is needed.

For a specific application, the expected ratio of tokens to
reader/writers is a major factor in determining the most
effective overall cost distribution for equipment.
In a situation where many low cost tokens will be used with a
relatively small number of reader/writers, the higher cost of
intelligent reader/writers is usually offset by the lower cost of
the tokens.

Some tokens do not need a reader/writer, because the user acts as
the communications link between the token and the host system.
This type of token usually has an integral keypad and display for
communications with the user. The user is required to manually
transfer authentication data between the token and the user's
terminal. Since these tokens operate without a physical
connection to the terminal or workstation, they can be used in a
variety of environments regardless of the type of terminal
available. However, the user may have to repeat the manual
authentication process each time the user logs on to a different
host on the network, since host computers cannot communicate
directly with the tokens. Tokens which use a reader/writer
interface can automate the authentication process so that the
user only needs to be involved in the initial authentication at
the beginning of a session. Subsequent authentications can be
performed automatically by the token as the user accesses
different host machines.

 4.3.1 Contact Interfaces

The types of interfaces between tokens and computers can be
broadly classified as either contact or non-contact. The
majority of tokens need to make actual physical contact with the
reader/writer to perform data transfer. For example, magnetic
stripe tokens (the kind used in automated teller machines) are
inserted into a reader/writer so that the magnetic stripe makes
contact with an electromagnetic sensing device. Most integrated
circuit tokens require an interface in which electrical contacts
located on the token physically touch matching contacts on the
reader/writer in order to supply such functions as power, ground,
and data signals. The physical arrangement and functional
definition of these contacts has an impact on the
interoperability of tokens and reader/writers, since these
devices cannot communicate unless the contacts are defined in the
same way.

No significant standards addressing the contact arrangement of
authentication tokens existed until 1990. Token manufacturers
relied on de facto standards, or developed their own proprietary
specifications. This made it difficult in many cases to use
tokens made by one vendor with reader/writers manufactured by
another vendor. In 1990, the International Organization for
Standardization (ISO) developed a standard for the dimensions and
location of contacts on integrated circuit cards, known as ISO
7816-2 [9]. Integrated circuit cards are commonly known as
smartcards. The ISO standard does not address contact
specifications for other types of tokens. The majority of
commercially available smartcards follow this standard, allowing
for some degree of interoperability between the products of
different manufacturers.

ISO 7816-2 specifies eight electrical contacts arranged in
two parallel rows of four contacts each. The contacts are
labelled C1 through C8, with the following assignments:

 C1 - Supply voltage C5 - Ground

 C2 - Reset C6 - Programming voltage

 C3 - Clock C7 - Data input/output

 C4 - Reserved C8 - Reserved

ISO places the contacts within 10.25mm of the left edge of the
card, approximately centered between the top and bottom edges of
the card. The supply voltage on C1 is typically +5 volts as
referenced to ground (C5). C2 is a microprocessor hardware reset
line. Most smartcards do not have an internal system clock, so
an external clock signal is provided on C3. C4 and C8 are
reserved for future use. Some smartcards contain Electrically
Programmable Read-Only Memory (EPROM), or Electrically Erasable
Programmable Read-Only Memory (EEPROM). Older EPROM and EEPROM
technologies require a programming voltage several times greater
than the power supply voltage. C6 provides the programming
voltage for cards which need it during memory write cycles. Most

of the smartcards available today use newer EPROM and EEPROM
technology which operates on +5 volts. These cards do not
require the programming voltage function of C6, because the
electrical energy required to write data to memory is derived
from the supply voltage on C1. Data exchange between the
smartcard and reader/writer is accomplished through C7, which is
a serial data connection. Data flows in both directions, and so
protocols which avoid the collision of data on this line must be
used. The ISO standard for contact dimensions and location
provides a basis for interoperability between smartcards and
reader/writers at the hardware level.

The token reader/writer provides the hardware level
components of the communications path between the token and the
host. However, the token and the host system must use a common
format for data exchange. Smart tokens often use a serial data
transmission protocol, although tokens are available which use
parallel protocols. Smartcards usually follow ISO standard
7816-3 [10], which specifies electronic signals and transmission
protocols. According to ISO 7816-3, a smartcard will respond to a
hardware reset with a series of characters which specify, among
other things, the format which will be used for data
transmission. ISO refers to the transmission protocol type as T,
which may be set to one of several values. T = 0 specifies an
asynchronous half duplex protocol, which is used by the majority
of smartcards at the present time. T = 1 is an asynchronous half
duplex block transmission protocol which allows for more
efficient transfer of large blocks of information. Although T =
1 is not used as often as T = 0 at present, the higher
performance of T = 1 will be required as more powerful smartcards
become available. ISO has reserved the protocol type T = 14 to
indicate protocols which have not been standardized. Systems
which conform to T = 14 are therefore not compliant with any of
the specific transmission protocols defined in 7816-3.
 4.3.2 Non-Contact Interfaces

Tokens are currently available which do not require physical
contact with the electrical connections on the reader/writer.
Non-contact interfaces increase the lifetime of tokens, and their
convenience to the user. Most non-contact interfaces involve
inductive coupling, capacitive coupling or a combination of the
two methods to transfer electrical power and data. These
interface technologies do not require physical contact with the
circuitry of the token. However the token must still be inserted
into the reader/writer since the two must be within relatively
close proximity (a few centimeters). Some non-contact interfaces
use optical coupling, whereby infra-red (IR) radiation is
modulated to provide control and data signals to the token. IR
tokens usually require a physical contact for the supply voltage,
because IR links cannot transfer enough energy to generate the
supply voltage for a token.

Another type of non-contact interface uses radio frequency (RF)
signals to transfer information between the token and
reader/writer. A token which uses an RF interface does not need
to make physical contact with conductors in the reader/writer.
Instead, the reader/writer combines power and data transmission

signals into a low power electromagnetic carrier (EMC) wave
which is received by a wire coil embedded in the token.
Circuitry in the token derives both a supply voltage and data
from the carrier. In most environments, it is not desirable to
use high-power radio frequency carrier signals due to possible
adverse health effects and electromagnetic interference with
other systems. Since the total power available to the token
from the RF signal is relatively low, RF tokens typically have
less data storage and processing capability than tokens which
use a contact interface. The majority of RF tokens which can
operate at a significant distance from a reader/writer use a
very simple authentication protocol. The reader/writer
transmits an RF signal to the token, which responds by sending
an identification number back to the reader/writer. This
protocol is often used for identification of shipping
containers and inventory control applications, where RF tokens
can be attached to a physical object.

Authentication tokens which use an RF interface offer some
advantages in terms of user convenience. When a user sits down
at a workstation equipped with an RF reader/writer, the
reader/writer can communicate with the user's RF token while it
is still in the user's pocket. Since the user does not need to
insert the token into the reader/writer, the authentication
process is transparent to the user.

RF technology has some limitations which should be factored into
the design of an authentication system which uses this type of
token. Because authentication data is transmitted between the
token and reader/writer via an RF signal, there is a significant
risk that this data could be received and recorded by an
unauthorized device monitoring the carrier frequency used by the
token and reader/writer. A sophisticated attacker could
construct a device which mimicks the functions of an RF
reader/writer, or modify a reader/writer for this purpose. This
device would be placed within the working range of a user's RF
token, without the user's knowledge. The device would activate
the user's token by transmitting an RF signal of the correct
frequency, and capture the identification number returned by the
token. Once a valid identification number is obtained in this
manner, the attacker could fabricate an RF device which would
allow the attacker to pose as a legitimate user.

There are several methods which can provide protection against
this type of attack. Users can be required to enter a password
which is independent of the identification number stored on the
user's RF token. In this case, user authentication would depend
on knowledge of a password and possession of a valid token. An
attacker would then be faced with the difficult task of guessing
the user's password, in addition to fabricating or stealing the
user's RF token. Another approach is to use an RF token with
enough processing power to implement secure authentication
protocols in which the data exchanged between the token and
reader/writer is different for each authentication. RF tokens
with significant processing power are difficult to design and
manufacture using current methods, but advances in technology
should make these products more available in the near future.

 4.4 Processing Capability

The processing capability of various authentication tokens ranges
from simple data storage to implementation of sophisticated
cryptographic authentication protocols. All tokens must be
capable of storing the information used to authenticate to a host
system in some form. In applications which require minimal
security, authentication data can be stored as a physical
pattern, such as a series of holes punched in a plastic card.
When this card is presented to an access control system, the
system examines the pattern of holes and compares it to a list of
currently valid patterns. If the pattern is determined to be
valid, the user is granted access to whatever resource the access
control system is protecting. However, it may be relatively easy
for an attacker to duplicate the physical pattern and thus create
a counterfeit authentication token. Because of this threat,
systems which rely on a physical pattern for user authentication
often require the generation of new authentication patterns and
issuance of new authentication tokens at frequent intervals to
reduce the amount of time an attacker has to produce a
counterfeit token. Authentication tokens with a higher level of
processing power can provide greater security in many
applications, but the relative cost of a token tends to increase
with processing capability.

 4.4.1 Memory Tokens

If the authentication data is stored in a magnetic, electronic,
or optical form, more sophisticated methods are required to
decode the data. This makes it more difficult for an attacker to
duplicate the token, because the attacker must understand the
interface between the token and the host system in order to
extract the authentication data and store it on a counterfeit
token. Magnetic stripe tokens fall into this class, as do tokens
containing integrated circuit memories. The data stored on these
tokens is often encrypted to provide additional protection from
disclosure. The encryption process is typically based on the
user's password or Personal Identification Number (PIN), so the
authentication data cannot be decrypted unless the user's
password or PIN is known.

Memory tokens based on semiconductor technology are essentially
memory chips mounted in a package which is more durable than the
standard Dual Inline Package (DIP) used for most integrated
circuits [11]. In addition, memory tokens use contact or
non-contact interfaces designed to operate with token
reader/writers. The reader/writer provides access to the control
and data lines of the integrated circuit, so that a host system
can read information from and write information to the token.
The primary difference between a semiconductor memory token and a
standard computer memory chip is that a user can easily remove
the token from a host system. The user can therefore exercise
some degree of physical control over the information stored on
the token.

Most memory tokens use EPROM or EEPROM as the primary storage

medium. These memory technologies are widely used in electronic
products, including computer systems. Both EPROM and EEPROM are
in-circuit programmable nonvolatile memory technologies, meaning
that data which is written to memory locations will be retained
when system power is turned off. Most microprocessor based tokens
contain a small amount of Random Access Memory (RAM) for use as a
scratchpad area. However, some memory tokens also use RAM
technology for long term storage of data across multiple
sessions. Since RAM retains data only as long as power is
applied, tokens which use RAM for nonvolatile storage typically
contain a battery to avoid loss of data when external power is
withdrawn.

The type of memory technology used in a token is an important
factor in the design of token based authentication systems. EPROM
is a write-once technology, where data can only be written to a
specific memory location once. When all memory locations have
been used, no new data can be stored on the chip. However, most
EPROM chips can be erased by exposure to ultraviolet light and
re-used. For security reasons, tokens which use UV-eraseable
semiconductor memory often have features which prevent the
erasure of data in this manner. EPROM tokens can eventually run
out of storage space when data has been written to all memory
locations. These tokens are most useful in applications where the
data stored in the token's memory does not need to be updated
frequently.

EEPROM technology combines the data retention characteristics of
EPROM with the ability to re-use memory locations. Current
EEPROM technologies are rated at ten thousand write cycles per
memory location, and will retain stored data for ten years. These
ratings are more than adequate for most applications involving
authentication tokens, since the expected lifetime of a token is
usually much less than ten years. EEPROM tokens are useful in
applications where data must be modified often, because the token
will not become unuseable when all memory locations have been
filled. Many applications require the ability to change data
stored on authentication tokens, such as user passwords or
cryptographic keys. Some tokens store audit trail data which is
updated frequently.

Memory tokens based on optical storage technology can store large
amounts of data, often in the range of several megabytes. Data
is read from optical storage tokens with circuitry similar to
that used in commercial audio compact disc players. However,
writing data to this type of token requires comparatively
sophisticated and correspondingly expensive equipment. Optical
tokens are most often used in applications which require high
storage capacity and infrequent updates to information stored on
the card. The amount of data which a token must store and the
number of times this data will be modified are critical factors
in determining the type of memory technology best suited to a
particular application [11].

 4.4.2 Microprocessor Tokens

The most sophisticated integrated circuit tokens contain a

microprocessor in addition to semiconductor memory.
Microprocessor based tokens are often referred to as smart
tokens, since they have some degree of data processing
capability. Smart tokens have some unique features which can
enhance the security of an authentication system. The
microprocessor of a smart token can control access to sensitive
data stored on the token. Many smart tokens require the
submission of a password or PIN, or some other form of
authentication, before the token will allow a host system to read
data from or write data to the token's memory. The microprocessor
acts as a gateway between sensitive data stored on the token and
the host system, providing a higher level of protection for the
data than can be attained with memory-only tokens. Some smart
tokens have hardwired control logic designed to perform a small
number of relatively simple functions, such as password checking
and data transfer. However, the majority of smart tokens contain
a more general purpose microprocessor which can execute programs
stored in the token's memory. Executable programs stored in
nonvolatile memory are referred to as firmware. Smart tokens with
sufficient processing power and storage space can implement
cryptographic algorithms in firmware. A smart token with
cryptographic capabilities is a very effective tool for
implementing secure authentication protocols.

Before smart tokens with EPROM or EEPROM became available,
firmware was usually stored in Read-Only Memory (ROM). The
contents of ROM are fixed during the semiconductor manufacturing
process, and cannot be changed thereafter. This characteristic
of ROM provides protection against inadvertent or malicious
modification of data and executable code. However, a system
designer may wish to modify smart token firmware during the development
phase of a project. If the smart token architecture requires
that firmware be stored in ROM, the designer must use a software
simulator or hardware emulator for firmware development.

Software simulators are effective in some situations, but they
often do not provide a realistic representation of the behavior
of the smart token hardware in real time. Hardware emulators
can accurately portray the dynamics of smart token hardware, but
these devices tend to be expensive and somewhat complicated to
use. Some smart tokens can store firmware in EPROM or EEPROM,
making it possible to change the firmware during the development
process. Tokens which can be reprogrammed in this manner are
useful in situations where system specifications are subject to
frequent change during the development and prototyping cycles,
since the token firmware can be modified to meet different
specifications. Precautions should be taken to insure that smart
token firmware can only be modified by authorized parties, since
the firmware plays a critical role in the security of an
authentication system. Microprocessor tokens typically also
contain a small amount of RAM for use as working storage during a
session.

Smart tokens which contain EPROM or EEPROM can be vulnerable to
attacks which take advantage of the electrical characteristics of
these memory technologies. Each time data is written to memory,
a pulse of electrical energy must be supplied to the token

through the programming voltage contact or the supply voltage
contact. By monitoring these pulses, it is possible to detect
the start of memory write cycles. If power to the token is
withdrawn as soon as the beginning of a write cycle is detected,
the token may not be able to complete the write cycle.

In some cases, an attacker may be able to use this process to
circumvent the security of the token. Smartcards, for example,
often require the submission of a password or PIN to verify the
identity of the cardholder before the card will perform any
subsequent operations. If an attacker manages to steal one of
these cards from a valid user, the attacker will not be able to
use the card to gain access to a host system because the card
will not operate unless it receives the user's password. In this
situation, the attacker will probably attempt to guess the user's
password through exhaustive search techniques.

Many smartcards have a protection mechanism which will render the
card inoperable if some number of incorrect passwords are
submitted in sequence. This number is usually small enough that
the chances of guessing the password before the card becomes
inoperable are insignificant. However, the smartcard must store
a count of the current number of consecutive failed password
submissions. This count must be incremented each time another
consecutive failure occurs, and is therefore normally stored in
EPROM or EEPROM. In this situation, an attacker may be able to
take advantage of the information provided by the electrical
pulse of energy which occurs during memory writes. The attacker
can submit passwords to the card, and immediately withdraw the
supply voltage each time the card attempts to increment the
counter which keeps track of password failures. Since the card
will not be able to update the counter before power is withdrawn,
the mechanism for limiting the number of consecutive password
failures will not operate. Given enough time, the attacker could
complete an exhaustive search to find the correct password.
Submission of the correct password would not cause the card to
update the counter, and the attacker would be able to detect this
since the electrical pulse of energy associated with a memory
write would not occur.

The attack described above is not limited to password guessing.
Smart tokens often need to store information in nonvolatile
memory which indicates the successful completion or failure of a
security-critical process. For example, most tokens perform a
series of exchanges with a host computer during the user
authentication process. The token must keep track of which
authentication steps have been completed successfully so that
subsequent steps cannot be executed in the wrong sequence. If
an attacker can keep the token from accurately recording sequence
information, the security of the system may be compromised.
However, a relatively simple mechanism can be implemented which
reduces the risk associated with this type of attack. If the
token writes data to memory regardless of the success or failure
of an operation, an attacker will not be able to distinguish
between a positive or negative result. In the case of password
guessing, the attacker might still be able to keep the token from
updating a counter representing the submission of failed

passwords. However, the attacker would never know when the
correct password was submitted because the token would attempt a
memory write in all cases. Many smart token manufacturers use
this protection mechanism in their products.

 4.4.2.1 Hand Held Password Generators

One time password generators and handheld challenge response
calculators are microprocessor based authentication tokens which
do not require a physical connection to host systems. These
devices communicate directly with human users through an onboard
display and some form of keypad. Users relay authentication data,
such as passwords or encrypted challenges, between tokens and
host systems manually. The following discussion explains the
operation of these devices in general terms, but many variations
are possible.

One time password generators create a sequence of passwords which
are synchronized in some manner with host systems. Each password
is only valid for one authentication, and so cannot be recorded
and replayed to gain access. Synchronization is often based on a
secret initial seed value which is permuted at specific time
intervals, or possibly each time an authentication event occurs.
Without knowledge of the secret value and the number of times it
has been permuted, an oberver cannot predict the next password in
the sequence even if one or more previous passwords are known.
Some password generators require the user to enter a PIN via the
onboard keypad before the device will generate a password.

Challenge response calculators accept a random challenge from the
host system, which is read by the user and entered through the
calculator's keypad. The calculator then encrypts the
challenge with a secret cryptographic key and displays the
result. The user enters the encrypted challenge on the host
keyboard, and the host verifies the encryption. This process
requires each participant in the authentication process to
possess a copy of the secret cryptographic key. Challenge
response calculators typically require users to enter a PIN
before executing the authentication exchange with a host system.

Authentication tokens that do not require an electronic interface
for communications with host systems can be used in a wide range
of environments, since all general purpose computer terminals can
display random challenges and accept passwords or encrypted
challenges as keyboard input. One time password generators and
challenge response calculators eliminate the cost of the special
purpose interfaces required by other types of tokens.

 4.4.3 Multi-Application Tokens

Some authentication tokens are capable of serving more than one
application. Tokens with sufficient memory capacity and
processing power can implement several authentication protocols,
to accommodate host computer systems which use these different
protocols. Multi-application tokens can also support functions
which do not relate directly to the security mechanisms of a
system, but increase the level of convenience for system users.

For example, a user may wish to store a configuration file on an
authentication token which is read by a host system during the
login process to customize the user's environment. Another
possible application involves the process of tracking personnel
records and medical information, which can be particularly
difficult in an environment where people are transferred
frequently or work in different locations on a daily basis.
Medical records or other personal data can be stored on tokens,
making it easy for users to carry job related information from
place to place. Authentication tokens have the additional
benefit of built-in mechanisms to protect information stored on
the token from unauthorized access.

Memory tokens can support multiple applications in a
straightforward manner. Each application treats the tokens as
data storage devices containing information which is specific to
the owner of the token and the particular application. However,
there are some drawbacks to this approach. Since memory tokens
have no processing power, they cannot enforce separation of data
used by different applications. Since all the available data can
be accessed, one application could modify the data owned by
another application. The applications must therefore be trusted
not to access data on the token owned by another application
unless the access is explicitly allowed. Particularly when
applications are running on different host systems, this creates
problems in terms of defining which application can access which
sections of the token memory, and in enforcing this definition.
Memory tokens can be used in a multi-application environment if
applications running on the host system incorporate the proper
controls to insure that data stored on the tokens is accessed in
the proper manner.

Microprocessor tokens can be programmed to deal effectively with the
requirements of a multi-application environment. Since the
firmware of a microprocessor token controls access to data stored
in the token's memory, the token itself can determine which
applications are allowed to access specific data storage areas on
the token. System designers can shift the responsibility for
managing the low level details of secure data storage to the
token firmware, so that host applications can use the services
provided by the token in a standard manner. It is possible to
implement a hierarchical file structure in the memory of a token
which consists of multiple directories, each owned by a different
application. Since this type of file structure is common in many
computing environments, applications can access data stored on a
token in much the same way that files stored on other types of
nonvolatile media are accessed. Depending upon the host
environment, the only custom software required might be a device
driver designed to communicate with the token reader/writer,
since these devices normally use a communications protocol which
is different from the protocols used by standard system
peripherals. An intelligent reader/writer could be designed to
emulate the functions of a standard peripheral, such as a disk
drive. This would eliminate the need for a custom device driver,
since the system would be able to communicate with the
reader/writer through a standard device driver.

Token based authentication provides a relatively high level of
security with minimal inconvenience to system users if
implemented correctly. However, users sometimes perceive
authentication technology as more of an impediment than an
essential requirement for the protection of valuable resources.
The value-added aspect of multi-application tokens can encourage
the use of secure token based authentication systems, because
these tokens have the ability to perform a variety of tasks which
contribute to user acceptance. The primary factors which limit
the number and complexity of the applications which a token can
support are the total memory capacity and processing power of the
token. In some cases a multi-application token may not be as
well suited to the needs of a specific application as a single
purpose token. Multi-application tokens can also be more
expensive due to the additional capability. As token technology
progresses, these factors will become less of a limitation.

 4.5 Recommendations

>From a security standpoint, the strength of token based
authentication lies in the fact that the device containing the
information which verifies the identity of the user is portable.
Therefore, the authentication information can be kept in the
user's possession. The greatest threat to the security of this
type of system is the possibility that an attacker could steal a
valid token in order to pose as an authorized user. A
sophisticated attacker might also be able to counterfeit a token.
These threats can be reduced by requiring the user to submit a
password or PIN when the token is used for authentication. There
should be a limit to the number of consecutive incorrect PIN
submissions, in accordance with section 3.2.7. Without the
password, a stolen or counterfeited token would not allow an
attacker to gain access to the system. This can significantly
increase the level of assurance since a user's identity is
verified based on something the user knows in addition to
possession of the token. Compromise of one user's token should
only compromise that user, not the entire system. Use of tokens
with cryptographic capabilities can contribute greatly to the
security of an authentication system. In addition, the use of
passwords or PINs in combination with authentication tokens is
recommended for applications where this approach is practical.

The type of authentication token selected for a particular
application will depend on a number of factors. The simpler
tokens which store data on a magnetic stripe tend to be less
expensive, but may require relatively complex interface devices.
These tokens are often easy to counterfeit, because
authentication data can be read from the token by anyone with an
appropriate interface. Integrated circuit tokens are generally
more expensive, particularly when they contain microprocessor
circuitry. However, microprocessor tokens can provide a
very high level of security at a reasonable cost.

 4.6 Example - The NIST Advanced Smartcard Access Control System

NIST has developed an Advanced Smartcard Access Control System
(ASACS) in collaboration with several commercial vendors. This

system is described in "An Overview of the Advanced Smartcard
Access Control System (ASACS)"[12], and several related documents
[13,14,15,16,17,18,19]. A condensed version of the ASACS system
overview is presented here, as an example of one approach to the
development of a smartcard based authentication system. The
primary goal of the ASACS project was to develop an advanced
smartcard system which exploits recent advances in semiconductor
and cryptographic technologies for secure login authentication.
ASACS also provides secure data storage, automated key
management, and digital signature capabilities. The services
supported by the ASACS implementation are designed for use within
networking environments, including both local area networks and
wide area networks such as the Internet.

The ASACS smartcard provides cryptographic capabilities based on
standard cryptographic algorithms and techniques, in combination
with software running on a host computer. Many of the underlying
concepts applied to the design of ASACS have been successfully
demonstrated in the NIST/Datakey Token Based Access Control
System (TBACS) [6] as well as the Smartcard Access Control System
(SACS) [20] projects. Each of these systems provides token-based
secure access to a host computer through a cryptographic
handshake protocol based on the Data Encryption Standard (DES)
algorithm. However, the ASACS project involves the development
of a smartcard with greater capabilities through the addition of
public key cryptographic functions. A new smartcard
reader/writer with significantly greater capabilities has also
been developed for ASACS. The ASACS reader/writer has
computational capabilities, and includes a microprocessor,
programmable memory, a keypad, and an LCD display. These features
support the needs of mobile users who require a portable
reader/writer for authentication from remote sites. To
demonstrate the capabilities of ASACS, several applications have
been developed, most notably a system maintenance program and
several other useful demonstration programs. In addition, ASACS
has been integrated with the Privacy Enhanced Mail (PEM)
system.

 4.6.1 System Overview

Figure 1 depicts the ASACS system components. A user possessing
a smartcard inserts the card into the reader/writer which is
attached to a local workstation. The workstation is connected to
a local area network (LAN), which in turn may be connected to
other networks. The smartcard may be used to control the user's
access to both the local workstation as well as to other
workstations and host computers on the attached networks.

Figure 1: ASACS system components

>From an architectural standpoint, ASACS is divided into several
different functional layers, comprising both the hardware and
software components of the system (Figure 2). The lowest
layer consists of the ASACS hardware, including the public key
smartcard and either the SACS reader/writer or the ASACS portable
reader/writer. The next layer of ASACS is comprised of host
system software, which is functionally divided into four layers.
This software provides a convenient and standard method for
integrating the ASACS public key smartcard into a wide variety of
host system application software. The top layer is a Smartcard
Application Program Interface (SCAPI) which is directly accessed
by applications software to interface with the ASACS system. The
other layers provide command set interfaces for the smartcard
commands and the reader/writer commands, a smartcard
communications protocol, and hardware-level I/O support.

Finally, the top layer of ASACS represents the various
applications with which the ASACS system can be integrated.
ASACS can be integrated into these applications using either the
SCAPI or the command set interfaces. A security officer
maintenance program and several demonstration programs, including
a signature utility program and a login manager, were developed as
a part of the ASACS project. In addition, using the SCAPI, the
ASACS system has been integrated into an implementation of the
Internet Privacy Enhanced Mail system.

Figure 2: ASACS layered system architecture
 4.6.2 The ASACS Smartcard

The ASACS smartcard is based on the Smartcard Access Control
System (SACS) developed by NIST under a previous contract. The
SACS and ASACS smart cards contain an integrated circuit
microprocessor designed specifically for smart card applications
[21]. This processor is configured with 256 bytes of RAM, 10K
bytes of ROM, and 8K bytes of EEPROM. In order to meet ISO
requirements for contact spacing and arrangement, the processor
has pads for power (+5V), ground, clock (10MHz), reset, and
serial I/O [9]. An ISO-standard micromodule is bonded to the
processor, and this assembly is then mounted in a plastic card
with the same dimensions as a standard credit card.

 4.6.2.1 Smartcard Firmware

The ASACS public key smartcard firmware implements a set of
commands which support card maintenance, key management, user
authentication, data storage, and data encryption and
authentication. Access control software running on a host
computer issues commands to the smartcard through the
reader/writer interface. The firmware of the card then executes
the requested function and returns the appropriate response to
the host computer. It is the responsibility of the host access
control software to mediate the authentications between the user,
the user's smartcard, and the host computer.

The ASACS command set is the successor to the smartcard command
set developed for the Smartcard based Access Control System
(SACS). The cost and time constraints of the ASACS project did
not allow for the production of a new ROM mask. Therefore, the
ROM mask developed for the SACS project was also used for the
ASACS smartcard. ASACS retains the symmetric key capabilities of
the original SACS system, since the authentication protocol is
based on the DES algorithm. This challenge-response
authentication protocol provides a rapid and secure method for
two parties to perform mutual identity verification based upon
the possession of a shared secret key and the use of that key to
encrypt randomly generated cryptographic challenges. This
protocol is described in detail in NIST Special Publication
500-157 [22]. The ASACS smartcard is capable of accepting or
generating the initial cryptographic challenge, and therefore
complies with the requirements of ANSI X9.26 [23] for secure
sign on.

The principal difference between the ASACS and SACS command sets
is the addition of public key cryptographic capabilities. There

are certain arithmetic operations, such as modular exponentiation
and modular multiplication, which are common to a variety of
public key algorithms. These operations have been implemented in
the ASACS firmware as distinct routines which can be used to
support most of the currently available public key algorithms.
The development and optimization of firmware which performs these
modular operations is the most difficult aspect of implementing
public key cryptography on a smartcard. A variety of public key
algorithms can be realized in the ASACS smartcard firmware by
calling the low-level arithmetic routines in the required
sequence. Both the Digital Signature Algorithm (DSA), which has
been proposed by NIST as a Digital Signature Standard (DSS) [24],
and the Rivest-Shamir-Adleman (RSA) [25] cryptographic algorithm
have been implemented in the ASACS smartcard firmware.

Figure 3 depicts the layout of the ASACS smartcard memory from a
high level perspective. The majority of the firmware is stored
in ROM, including a bootstrap routine and code for the commands
from the SACS smartcard. The DES [26] algorithm is also located
in ROM. The EEPROM contains the firmware for the public key
algorithms, a command interpreter, and a jump table which points
to the firmware routines associated with each command. Since the
addresses in the jump table can be

Figure 3: ASACS smartcard memory layout

modified, new firmware routines can be loaded into EEPROM to
replace existing routines and to add new functions. Specific
locations in EEPROM are reserved for the storage of symmetric and
asymmetric key components. In addition, a number of general
purpose data storage zones are available in EEPROM.
See [13] for a more detailed description of the ASACS public key
smartcard.

 4.6.3 Smartcard Reader/Writer

The ASACS public key smartcard can be interfaced to a workstation
using either the SACS reader/writer or the new ASACS portable
reader/writer. Both the SACS and the ASACS reader/writers provide
an RS-232 serial communications connection between the smartcard
and the host computer. RS-232 was chosen because a serial port is
standard equipment on the majority of computers. Therefore, the
reader/writer can be connected to most computers without the need
for a custom interface or hardware modifications.

 4.6.3.1 SACS Reader/Writer

The SACS reader/writer is a relatively unsophisticated device
which simply serves as a direct I/O interface between the
smartcard and a host. It cannot perform any processing itself
since it does not contain a microprocessor. Its main purpose is
to provide power, ground, clock and I/O signals to a SACS or an
ASACS smartcard. To interface the smartcard to the host, the
reader/writer performs level conversion between the 12V RS-232
I/O signals used by the host and the 5V I/O signals used by the
card. See [7] for a more detailed description of the SACS
reader/writer.

The SACS reader/writer features an ISO standard smartcard
receptacle, external power and data indicator lights, and an
RS-232 port for connecting to a host. In addition, the SACS
reader/writer's card receptacle features a locking mechanism
which holds the card internally after insertion into the
reader/writer, and an automatic ejection mechanism to remove the
card from the reader/writer.

An RS-232 cable is required to attach the SACS reader/writer to a
host, whereupon it functions as data communications equipment
(DCE). Signals are sent by the reader/writer to the host which
indicate that the reader/writer is powered-up and that a card is
inserted. The SACS reader/writer is a rectangular box
approximately 2 1/2 inches high, 5 inches deep, and 5 inches
wide. An ISO smartcard receptacle and indicator lights are
located on the front of the reader/writer, and the power cord and
RS-232 jacks in the rear. The power supply for the SACS
reader/writer is internal.

The SACS reader/writer is designed to accept a smartcard whose
physical characteristics, dimensions and contact locations adhere
to ISO 7816, Parts 1 and 2 [9,27]. The electrical signals that
the SACS reader/writer supplies to the smartcard also meet most
of the requirements specified in ISO International Standard 7816,
Part 3 [10], with the exception of the initial clock (CLK)
frequency, which is 10MHz as opposed to 3.5795.

 4.6.3.2 ASACS Portable Reader/Writer

The ASACS portable reader writer was built to provide
functionality not offered by the earlier SACS reader/writer. As
a portable device, it allows users the option to authenticate
themselves using hosts not equipped with a smartcard
reader/writer. Several significant improvements have been made
to the design of the reader/writer. The overall size has been

reduced to less than half that of the SACS reader/writer, so that
the device can easily be carried for use at remote sites. The
new reader/writer is powered by rechargeable batteries, and
includes a transformer for use with 110V line power. The front
panel has a keypad and liquid crystal display which allow the
user to interact directly with the smartcard. This feature is
useful in situations where the reader/writer cannot be connected
to the user's workstation. A protocol has been developed which
allows the user to perform authentications manually via the
keypad and display. A remote host computer can then require
manual ASACS authentication even if the user's workstation is a
terminal with no processing capability. In this case, all
interactions with the card are through the keypad and display.
After the user personal identification number (PIN) has been
submitted to the card, the remote host will generate a random
challenge and send this to the user's workstation. The user
reads this challenge from the screen and types it on the
reader/writer keypad. The smartcard encrypts the challenge and
displays the encrypted result, so that the user can submit it to
the remote host. When a serial connection to the workstation is
available, the user still has the option of entering the PIN
through the keypad on the reader/ writer. Since the user's PIN
does not travel through the workstation, system security is
enhanced.

The ASACS reader/writer has an 8-bit microprocessor with 256
bytes of internal RAM. In addition, the reader/writer has 256
bytes of EEPROM used for data and setup parameter storage, 32K
bytes of RAM used for scratch pad and data buffering, and an
industry standard 32K byte EPROM chip which holds firmware
implementing the internal logic and external commands. The EPROM
chip can be easily removed for custom firmware development. See
[8] for detailed specifications for the ASACS portable
reader/writer and firmware.

The reader/writer supports a set of commands that are executed
directly on the reader/writer, as opposed to on the smartcard.
These commands use the same protocol that is used for smartcard
commands. Several of the reader/writer commands allow the host
to load the default parameters into the reader/writer's
non-volatile memory to control such things as baud rate, and the
date/time. These same default values can also be specified
manually from the keypad by pressing the F1 key to access the
reader/writer's set-up menu. Another command can be used by the
host to determine if a smartcard is inserted into the
reader/writer. Two commands can be used to temporarily put the
reader/writer in manual keypad entry mode. The first of these
two commands, as discussed above, is used by the host to allow
the user to enter their PIN to the smartcard via the
reader/writer's keypad. The latter command can be called to
allow the user to perform a manual challenge/response with a
remote host. The remaining reader/writer commands can be used by
the host to utilize the ASACS reader/writer's communications
buffer for more efficient DES encryption, DES decryption or MAC
calculation with the smartcard.

 4.6.4 Smartcard Layered Interface

The ASACS host system software is comprised of a set of four
interface layers. Each layer corresponds to a specific set of
functions needed to integrate the ASACS system into a software
application on a host system (see Figure 2).

 4.6.4.1 Smartcard Applications Program Interface

The Smartcard Application Program Interface (SCAPI) [14] was
developed to provide a consistent, but robust interface designed
to ease the integration of smartcard technology into
applications. The SCAPI is intended to insulate applications
from the differences among the various smartcards, as well as
differences likely to appear as smartcard technology evolves.
The SCAPI is not tied to specific smartcards or to specific
capabilities (e.g., memory capacity) of smartcards. In fact, the
SCAPI can be, and has been, completely implemented in software,
thus providing a simple, but useful tool for integrating
smartcard technology into applications. The functional
capabilities of a particular smartcard determines how much of the
SCAPI functionality is implemented in software on the host
computer and how much is performed on the smartcard. Thus, as
technology advances, more of the SCAPI functionality may be
directly implemented on the card or on the reader/writer while
leaving applications unaffected.

The SCAPI currently defines four types of functions:

Initialization Functions,
Account Functions,
Cryptographic Functions, and
File and Directory Functions.

The SCAPI is intended to be consistent with the ANSI C standard.
The file functions are designed to map directly onto those
defined by Kernighan and Ritchie [28]. Since C is known for its
portability, it makes sense to extend this platform independence
to smartcard systems. Further, this flexibility and consistent
feel for C programmers is likely to promote the use of the SCAPI.
The directory functions reflect widely used operating system
calls. Unfortunately, ANSI C does not address the cryptographic
functionality to which smartcard technology is so well-suited.
Therefore, the SCAPI defines a set of cryptographic functions
which provide an algorithm-independent interface for
cryptographic operations which may be implemented on a smartcard.

 4.6.4.2 Smartcard and Reader/Writer Command Set Interfaces

The Command Set Interface Layer consists of C language object
module libraries. The libraries each provide a set of C function
calls, each directly corresponding to a command from the firmware
command sets for the public key smartcard [15] and the portable
reader/writer [16]. The function which represents a particular
command is called with the appropriate input data for that
command as arguments. The function returns the output data from
the command and a status code. Status codes are mapped onto a
set of error messages defined in a header file. This layer is

called indirectly through the SCAPI, thus making the choice of
reader/writer invisible to the application.

 4.6.4.3 Communications Protocol and Hardware I/O Interface

The Smartcard Communications Protocol Layer transmits the data
assembled by the Command Set Interface Layer to the ASACS
portable reader/writer and the public key smartcard. The data is
transmitted according to the communications protocol used by both
the reader/writer and the smartcard. The Communications Protocol
Layer interacts with the Hardware I/O Interface in order to send
and receive each byte of the data.

The Hardware I/O layer consists of a software driver which
provides low-level input/output routines for communicating with
the smartcards. Currently, the Hardware I/O Layer consists of a
serial interface, since both the SACS and ASACS reader/writers
employ serial interfaces. This layer can support other types of
hardware interfaces for reader/writers that do not employ an
RS-232 interface.

The Serial I/O Interface is written to be as portable as possible
across a broad range of hardware/software platforms, such as
SUNOS (Sun's UNIX Operating System) and MSDOS. However, some
systems may require that this layer be customized. The
interface to this layer is clearly defined, and can be modified
with minimal effort.

 4.6.5 Applications Software

 4.6.5.1 Security Officer Maintenance Program

The Security Officer Maintenance (SOMAINT) Program [17] provides
functions which are used by a security officer or system manager.
These functions include the initialization of cards for new
users, synchronization and maintenance of key databases stored on
the cards and host computers, deactivation of cards, and
reactivation of cards which have been inadvertently deactivated
or corrupted. The programs which support the system management
functions are restricted to use by authorized security managers
through the standard UNIX operating system file protections.

 4.6.5.2 Signature Utility Program

The DSS Signature Utility Program [18] was developed to
demonstrate the generation and verification of digital signatures
using the ASACS public key smartcard. The program utilizes the
hash algorithm specified in the Standard Hash Standard (SHS) [29]
to calculate a hash value on a file of arbitrary size. The hash
value is transmitted by the host computer to the smartcard, which
applies the Digital Signature Algorithm (DSA) to this value to
generate a digital signature with the cardholder's private key.
The signature can then be verified by the host computer or the
smartcard using the cardholder's public key.

 4.6.5.3 Login Manager

The ASACS Login Manager [19] is a collection of programs which
control login access to host computers. These programs manage
the series of authentications between the user, the smartcard,
and a host computer. When a user requests access to the host,
the login manager establishes communications with the user's card
through the reader/writer. The login manager prompts the user
for the user PIN, and transmits it to the card in order to
authenticate the user to the card. The card and host will then
authenticate to each other using a random challenge-response
protocol based on the DES. This protocol provides a means for
rapid authentication of two parties with protection from
wiretapping and playback attacks. If the authentications are
successful, the user is granted a session on the host.

The login demonstration software also supports login
authentication to remote host computers. When a system user
wishes to access a remote computer, the user executes a program
which communicates with the user's card to obtain a list of host
computers with which the card shares authentication keys. This
list of host computer names is displayed in a menu, so that the
user can select the particular host to access. The software
establishes a connection with the ASACS authentication server
process running on the remote host selected by the user. The
remote host then performs the challenge-response authentication
with the user's card in order to verify the identity of the user.

 4.6.5.4 Privacy Enhanced Mail

The Internet Privacy Enhanced Mail (PEM) protocols are an
extension to the existing Internet electronic mail protocol (RFC
822) which provide simple end- to-end security services including
optional message confidentiality, message integrity, and source
authentication with non-repudiation. The protocols are described
in a 4 part series of Internet Requests for Comments [30,31,32,33].

The PEM security services are provided through the use of
standard cryptographic techniques, including message encryption
using the DES in the Cipher Block Chaining (CBC) mode of
operation to protect message text and the RSA algorithm to
provide for distribution of DES keys, digital signatures using
RSA algorithm in conjunction with either Message Authentication
Code (MAC), Message Digest Algorithm MD2 [34], or the Message
Digest Algorithm MD5 [35]. RSA public keys are managed as public
key certificates using a distributed certification hierarchy
based on CCITT X.509 [36].

The TIS Privacy Enhanced Mail (TIS/PEM) System is a UNIX-based
implementation of PEM [37]. At the core of the TIS/PEM system is the
Local Key Manager (LKM), which, as its name implies, is
responsible for all the local key management activities on a
multi-user host system. This includes (1) maintaining a database
for local users' private keys, (2) controlling the use of private
keys to compute digital signatures and decrypt message tokens
(encrypted message encryption keys), (3) maintaining a database
for local and remote users' public key certificates, and (4)
providing access to validated public key certificates. In
addition, the LKM shares the responsibility for the registration

of a local user, that is, the generation of a public/private key
pair and the construction and digital signing of a certificate
embodying the public key.

The ASACS system was integrated with the TIS/PEM system by
integrating it with the LKM. In particular, a user's private key
is generated by the LKM and then stored on the smartcard, where
it remains in the protected confines of the smartcard. When
called upon to perform the cryptographic operations involving the
user's private key, the LKM, instead of performing those
operations directly, now invokes the functions of the smartcard
via the SCAPI. The smartcard then performs the necessary
computation of a digital signature or decryption of a message
token, using the private key stored on the smartcard.

The storage of a user's private key provides added protection
that cannot be achieved in a shared database. The inherent
security features of the smart card restrict access to the
private key to the user, who must authenticate to the card before
the private key can be used.

5.0 BIOMETRIC BASED AUTHENTICATION

 5.1 Overview

Certain physical features of the human body are relatively unique
from individual to individual. Facial photographs and
fingerprints have long been used for personal identification,
particularly by law enforcement agencies. Biometric
authentication is the measurement of a unique biological feature
used to verify the claimed identity of an individual through
automated means. The biometric authentication mechanism will
strive to measure a unique biological feature to the degree that
only one person may be authenticated as a specific user. The
biological feature may be based on a physiological or behavioral
characteristic. The physiological characteristics measure a
physical feature such as a fingerprint or face. The behavioral
characteristics measure your reaction or response such as your
signature or voice. The most used biometrics are fingerprint,
retinal and voice authentication devices.

 5.2 How Biometric Authentication Systems Function

The biometric authentication mechanism typically has two modes:
enrolling and verifying. For initial use of the biometric, each
user must be enrolled by a system administrator who verifies that
each individual being enrolled is an authorized user. The
enrolling process is the storing of an individual's biological
feature (physical characteristic or personal trait) to be used
later to verify the user's identity.

The biological feature is typically acquired by a hardware device
which is at the front end of the biometric authentication
mechanism. The front end component for these systems is a device
known as a sensor. When a physical feature is presented to the
sensor, the sensor produces a signal which is modulated in

response to variations in the physical quantity being measured.
If, for example, the sensor is a microphone used to capture a
voice pattern, the microphone will produce a signal whose
amplitude (voltage or current) varies with time in response to
the varying frequencies in a spoken phrase.

Because the signals produced by most biometric sensors are analog
in nature, it is necessary to convert these signals into a
digital form so that they can be processed by computer. An
analog to digital converter is therefore the next stage in most
biometric authentication systems. Analog to digital converters
take an analog input signal and produce a digital output stream,
which is a numeric representation of the original analog signal.
The analog biological feature is converted to a digital
representation. Rather than use raw data from the sensor,
biometric systems often process this data to extract only the
information relevant to the authentication process. Further
processing may be done in order to enhance differences and
compress data. Once digital representation has been processed to
the desired point, the digital representation is then stored; the
stored digital biological feature is called a template. Most
biometric devices will take multiple samples during the
enrollment process to account for degrees of variance in the
measurement of these features.

Once the user is enrolled, the biometric is used to verify the
user's identity. When the user needs to be authenticated, the
user's biological feature is acquired from the sensor. The
sensor's analog information is converted to a digital
representation. Then, this digital representation is compared to
a stored biometric template. The digital representation used for
verification is called the live scan. The live scan typically
does not exactly match the user's stored template. Since there
are almost always variations in biometric measurements, these
systems can not require an exact match between the user's
original enrollment template and a current pattern. Instead, the
current pattern is considered valid if it is within a certain
statistical range of values. A comparison algorithm is used to
determine if the user being verified is the same user as was
enrolled.

The comparison algorithm yields a result of how close the digital
representation is to the stored template. If the result falls
into an "acceptable" range, an affirmative response is given; if
the result falls into an "unacceptable" range, a negative
response is given. The "acceptable" differs for each biometric.
For some biometrics, the system administrator may set the level
of the acceptable range. If this level is set too low, the
biometric fails to be a valid authentication mechanism. If this
level is set too high, the authorized users may have trouble
being authenticated. This pattern matching is fundamental to the
operation of any biometric system, and therefore should be
considered a primary factor when evaluating a specific biometric
product.

In general, most available biometric authentication mechanisms
function as is stated in the above paragraphs. One key feature

of biometrics is the template. The accumulated templates of all
users are referred to as the template data base. Each system
will require separate template databases for its authorized
users. This database will require the same protections as the
password databases. For each biometric system the size of the
templates will vary. When testing these systems for accuracy,
templates should be examined to determine if unique biometric
features are adequately represented.

Another aspect of templates that affects the biometric
authentication is the template retrieval for the comparison
algorithm. The template may be used for identification or
verification of users. Most devices use a verify, but some use
identify. A biometric identify will take a live scan and compare
it against the entire template data base to determine if any fall
within the acceptable comparison algorithm range. A biometric
verify will only compare a single user's template based on who
the user claims to be. For example, a user will type in a user
name and then take a live scan for verification. The comparison
algorithm will only use the template used for that user name.
Verification biometrics are typically faster because they do not
have to compare the live scan against the entire template
database.

 5.3 Recommendations

When choosing a biometric authentication system, performance
should be of importance. The performance of biometric
authentication systems can be categorized by two measures, the
False Acceptance Rate (FAR) and the False Rejection Rate (FRR)
[38]. The FAR, also called type 2 errors, represents the
percentage of unauthorized users who are incorrectly identified
as valid users. The FRR, also called type 1 errors, represents
the percentage of authorized users who are incorrectly rejected.
The levels set in the comparison algorithm have a direct effect
on these rates. How these rates are determined is fundamental to
the operation of any biometric system, and therefore should be
considered a primary factor when evaluating a biometric system.
Some caution should be given to the FAR and FRR numbers from
manufacturers because these numbers are extrapolated from small
user sets and the assumptions for the extrapolations are
sometimes erroneous. The physiological biometrics tend to have a
better false acceptance rate because of the stability of the
measured characteristic and because a behavioral characteristic
is more likely able to be duplicated by other users.

These performance factors should be coupled with the type of
users that will use the biometric. Some user factors may include
learning curve and alternate access for those who may not be able
to use the biometric. For each device the user must become
familiar with the device for proper live scans to be taken. A
nominal time that users take before the false rejection rate
drops off is two weeks. Another user consideration is that not
all users may be able to use the biometric. A user may have an
impairment which prevents them from taking an acceptable scan.
An alternate method is needed to grant those users access, or a
biometric should be selected based on the needs of each set of

users. When selecting a biometric, user acceptance should also
be considered. Some biometrics have met with resistance from
users because they are too invasive.

An ideal biometric is a non-invasive biometric with continuous
authentication. In other words, the user does not need to take
any additional action to be authenticated, and because it is
non-invasive, the live scan may be done continuously. The
continuous authentication will ensure another individual is not
allowed access after an individual authenticated for access.
Video facial scans and typing pattern biometrics are techniques
which lend themselves to continuous authentication.

Once the type of biometric authentication mechanism has been
established, the authentication mechanism must be attached to the
access mechanism in the system. Typically, the sensor is an
external hardware box with the analog to digital converter in it.
The data compression and comparison algorithm is implemented with
a combination of hardware and software. The path between the
comparison algorithm to the access mechanism must be a trusted
path. The output of most comparison algorithms is a pass or fail
response which may be duplicated if the path is available. Also
note if the sensor is shared for access to several systems, each
system should have its own comparison algorithm and template data
base.

 5.4 Example

The example system for this section will be based on fingerprint
biometrics, in combination with smartcards. Each system user is
required to go through an enrollment process, during which the
user's digitized fingerprint template is obtained. This template
data is compressed and stored on a smartcard, which is issued to
the user. In addition, a cryptographic authentication protocol
is used to prove the identity of the smartcard to host computer
systems and vice-versa. The smartcard therefore must share a
cryptographic key with each host system that the user is allowed
to access. These keys are loaded onto the smartcard during the
enrollment process at the same time the fingerprint template is
loaded. The fingerprint scanning hardware is built into the
smartcard reader, so that only one device is required to
communicate with the card and acquire the live fingerprint scan.
At the end of the enrollment process, the user is given a
smartcard containing the encrypted fingerprint template and
cryptographic keys.

When a user wishes to log onto the system, the user inserts their
smartcard into a reader/writer attached to a workstation. The
user then provides a live fingerprint scan through the scanning
mechanism built into the reader/writer. The reader/writer sends
the live scan to the smartcard, which compares it to the template
stored during enrollment. If the comparison is successful, the
smartcard engages the workstation in a cryptographic handshake
using the key it shares with the workstation. An alternative to
the cryptographic handshake would be for the card to transmit a
straightforward positive signal to the workstation. However, if
the smartcard transmitted a simple positive/negative response to

the workstation in place of the cryptographic handshake, an
attacker might be able to duplicate the positive response and
gain unauthorized access to the system. Another alternative
would be to encrypt the current date and time and transmit this
value to the workstation. No two encryptions should contain the
same date and time, and so playback attempts could be easily
detected.

Although the fingerprint biometric is the primary authentication
mechanism in this example system, the use of a smartcard to store
the enrollment template eliminates the need to store templates in
databases on host systems. Users can carry templates with them
by carrying the cards. In addition, templates do not need to be
transmitted across network pathways because the comparison is
done locally. The cryptographic keys which the cards and host
systems use for authentication must be distributed when cards are
set up during enrollment, but once the keying relationships have
been established no sensitive information is exchanged between
the cards and host systems during the login process. In
contrast, live scans would need to be transmitted to a host
system for each authentication if the comparisons were not done
locally by the smartcard or reader/writer. This would increase
the opportunities for attacks which involve interception and
playback of live scans, although the data could be encrypted to
reduce this risk. The approach described in this example has the
following advantages: the enrollment database is distributed onto
smartcards which each system user can carry; the distance which
the live scan must travel between the acquisition hardware and
the comparison process is short; and the authentication response
between the card and a host system is cryptographically secure.

This example authentication system makes the assumption that the
smartcard has sufficient processing power to compare a live
fingerprint scan to the stored template. Existing smartcard
architectures would have difficulty supporting a computationally
intensive biometric comparison algorithm. The comparison process
could be implemented more easily in the reader/writer using
current technology. However, the approach chosen for this
example is intended to illustrate the security advantages of
including both template storage and the comparison algorithm on a
smartcard. As smartcard technology progresses and biometric
algorithms are improved, this approach should become more
practical. It may even be possible to build the live scan
sensors into the smartcard in the future.

6. COMBINATION METHODS

Passwords, authentication tokens, and biometrics are subject to a
variety of attacks. Passwords can be guessed, tokens can be
stolen, and even biometrics have certain vulnerabilities.
These threats can be reduced by applying sound design principles
and system management techniques during the development and
operation of an authentication system. One method which can
substantially increase the security of an authentication system
is to use a combination of authentication techniques.

For example, an authentication system might require users to
present an authentication token and also enter a password. By
stealing a user's token, an attacker would still not be able to
gain access to the host system, because the system would require
the user's password in addition to the token. Although it might
be possible to guess the user's password, the host system can
make this extremely difficult by locking the user out after a
specified number of invalid passwords have been presented in
succession. Once a user's account has been locked in this manner,
only the appropriate system administrator or security officer
should be able to unlock the account.

Tokens can also be used to store biometric templates for user
authentication. After enrollment, the user's unique template
could be stored on a token, rather than in a file on the host
system. When the user requests access to the system, a current
template would be generated and compared to the enrollment
template stored on the user's token. It would be preferable for
this comparison to be carried out internally by the token, as in
the example of Sec. 5, because the enrollment template would
never need to leave the token. However, this is often not
possible due to the complexity of the algorithms used for the
comparison. The microprocessors typically used in smart tokens
are not capable of executing these algorithms in a reasonable
period of time. If the template comparison is done by the host
system, the host must provide adequate assurance that user's
templates cannot be compromised. In addition, the token and host
system should implement an authentication protocol which assures
that the host system is obtaining the template from a valid
token, and that the token is submitting the template to a valid
host. The ideal situation would be to have both the biometric
sensors and the comparison algorithm implemented on the token.
If this were the case, the token could perform the entire
biometric authentication process. Technological advances should
make it possible to realize this goal in the future.
7. CRYPTOGRAPHY IN AUTHENTICATION SYSTEMS

 7.1 Overview

Cryptography is the process of scrambling information in such a
manner that it becomes unintelligible, and can only be
unscrambled by the intended recipient(s). In cryptographic
terms, this process involves the encryption of plaintext data to
produce ciphertext, and the subsequent decryption of ciphertext
to recover the original plaintext. Encryption and decryption are
therefore inverse processes. Cryptographic processing depends on
the use of keys, which are of primary importance in the security
of a cryptographic system. Cryptographic keys are conceptually
similar to the keys used with padlocks, in the sense that data
can be locked, or encrypted, through the use of a key in
conjunction with a cryptographic algorithm. Symmetric key
algorithms decrypt data with the same key used for encryption
[26]. Asymmetric key algorithms use a pair of keys, consisting
of a public key component and a private key component, which have
a specific mathematical relationship [24]. Symmetric and
asymmetric key algorithms are commonly referred to as secret key
and public key algorithms, respectively. Cryptography plays a

major role in information security, and is a critical component of
authentication technology.

 7.2 Secret Key Cryptography

The primary feature which distinguishes secret key algorithms is
the use of a single secret key for cryptographic processing.
Secret key cryptography has been in use for thousands of years in
a variety of forms. Modern implementations usually take the form
of algorithms which are executed by computer systems in hardware,
firmware or software. The majority of secret key algorithms are
based on operations which can be performed very efficiently by
digital computing systems. In 1977, the National Institute of
Standards and Technology developed Federal Information Processing
Standards Publication 46, which describes the DES secret key
cryptographic algorithm [26,39,40]. The use of DES is mandated
for applications within the federal government which require
cryptographic processing of sensitive unclassified information.
The DES algorithm has been implemented in a wide variety of
commercial products, including many which deal with
authentication. This algorithm can be implemented with reasonable
efficiency in the firmware of a smart token, and a number of DES
based smart tokens are commercially available.

There are a variety of authentication protocols which rely on
cryptography. One of the most fundamental of these is the
challenge-response protocol [23], which can be readily implemented
between a host computer system and a smart token or biometric
device, or another computer system. As an example, assume
that a host computer system shares a secret cryptographic key
with an authentication device, such as a smart token. The host
system and authentication device both have cryptographic
capabilities, each using the shared secret key for encryption and
decryption. The challenge-response protocol could proceed as
follows:

1. The host system generates a random number RN1 and
transmits this number to the authentication device.

2. The authentication device encrypts RN1
and generates a second random number RN2. The
encrypted value of RN1 and the plaintext value of
RN2 are sent back to the host system.

3. The host decrypts RN1 and compares the resulting
plaintext to the value transmitted in step 1. If
the two values match, the host system is satisfied
that the authentication device is in possession of
the correct secret key, and hence the identity of
the authentication device is verified.

4. The host encrypts RN2 and transmits this value to the
authentication device. The authentication device
then decrypts RN2 and compares the plaintext value to
the original value for RN2 transmitted in step 2. If
the two values match, the authentication device

accepts the claimed identity of the host system.

There are several aspects to this type of protocol which affect
the security of an authentication system. The protocol is
dependent on the possession of shared secret keys for proof of
identity. The protection provided for these keys is of utmost
importance, since an unauthorized party who obtained a valid key
could perform the encryption required during the authentication
process and thereby pose as a legitimate user.

The challenge-response protocol provides mutual authentication,
meaning that the identity of each party involved in the
authentication process is verified. Computer users have
traditionally been required to provide proof of identity to host
computer systems, with little or no assurance that the claimed
identity of the host system is correct. This situation leads to
the possibility that a user could be spoofed by a bogus host
computer which mimics a legitimate computer. The user's password
and possibly other sensitive information could be collected by
the bogus computer, since the user has no mechanism for verifying
the identity of the host computer systems. Mutual
authentication protocols provide users with the ability to
differentiate between legitimate hosts and computers which are
attempting to spoof users.

 7.3 Public Key Cryptography

Recent advances in cryptographic technology have led to the
development of public key cryptographic algorithms. These
algorithms are referred to as "asymmetric", because they rely on
two different keys to perform cryptographic processing of data.
These keys are generated and used in pairs consisting of private
and public key components.

Public key cryptosystems make possible authentication schemes in
which a secret can be verified without the need to share that
secret. In public key cryptography each user independently
generates two mathematically related keys. One is typically made
public, so it is referred to as the public key. The other is
kept private so it is referred to as the user's private key. The
public key becomes in effect part of the user's identity, and
should be made as well known as necessary, like a phone number.
Conversely, the private key should be known only to the user,
since it can be used to prove ownership of the public key and
thus the user's identity. It is computationally infeasible to
derive a user's private key from the corresponding public key, so
free distribution of the public key poses no threat to the
secrecy of the private key.

The private key can be used to create what are known as digital
signatures [24]. Similar to a written signature, a digital
signature is unique to the signer except that it is much more
difficult to forge, and can be verified electronically. This is
made possible by the fact that in public key cryptosystems,
digital signatures are generated with the private key component
of the public/private key pair. The corresponding public key is
used to verify the signature. Since a given user's private key

does not need to be shared with other parties, there is a strong
association between the user's identity and possession of the
private key. Digital signatures can be used for authentication as
follows: when a host system wishes to verify the identity of a
user who is in possession of a particular private key, the host
system can challenge the user with an electronic message. The
user would sign this message with the private key and return the
signature to the host system. The host can then verify the
signature, and thus the identity of the user, with the user's
public key. Since only one specific user possesses a particular
private key, a signature generated by this key is strong proof of
the user's identity. These authentication messages usually
contain a time variant parameter, to prevent replay of old
messages. This approach requires that the host system have access
to the public key of the user from a trusted source. If system
users have access to signature verification capability,
mutual authentication protocols can be supported. The
security of authentication protocols based on public key
cryptography is dependent on the level of protection provided for
private keys, and the degree to which a verifier trusts the
source of public keys. The CCITT X.500 recommendation describes
one approach to the design of a directory service for the
certification and management of public keys [41].

Public key cryptography can in theory be more convenient for
authentication than secret key cryptography since it is not
necessary for two parties wishing to authenticate each other to
share a secret key. Hence, a less complicated key distribution
system may be required. Also, public key cryptography makes it
possible to place the authentication information under the direct
control of the system user. For access control, this is
especially helpful since secret authentication information need
not be distributed throughout the system. However, public
key systems generally require arithmetic operations which are
difficult for small microprocessors. This can cause problems in
the design of authentication systems since it is often necessary
for the cryptographic algorithms to be implemented on a small
device with limited processing power. It can be very difficult to
obtain satisfactory performance from a smart card or
reader/writer in terms of public key operations. However, this
deficiency can be compensated for to some extent by distributing
operations between the authentication system and the host
computer system. In addition, advances in integrated circuit
technology are increasing the capabilities of devices such as
smart cards to the point where an acceptable level of performance
can be attained in the implementation of public key algorithms.
Hybrid approaches are also possible, where public key
cryptography is used to distribute keys for use by secret key
algorithms. NIST Special Publication 800-2 [42] provides a
comprehensive survey of public key technology.

 7.4 Cryptographic Authentication Protocols

Cryptographic algorithms and the devices which implement them are
important components of many authentication systems. In order
for these components to work together effectively to accomplish
the authentication process, protocols must be established to

specify how the cryptographic algorithms will be used [1]. A variety
of cryptographic authentication protocols have been developed by
members of the private sector, the federal government, and the
academic community. Since any computer system which uses
cryptographic authentication will require one or more of these
protocols, it is useful to compare two representatives which are
well documented and appear to be gaining widespread support. The
Kerberos authentication system, developed by the Massachusetts
Institute of Technology, is based on secret key cryptography.
Digital Equipment Corporation has produced a distributed
authentication service known as SPX, utilizing public key
cryptography. A short description of these protocols is included
in this document for those wishing to understand the issues
involved in the design and selection of authentication protocols
in general, and in no way implies an endorsement by the National
Institute of Standards and Technology. Also, these protocols are
continually evolving and the reader should consult current
references for an accurate description of the most recent version
of these protocols. The Distributed Authentication Security
Service (DASS) which serves as the basis for the SPX
implementation has become a series of Internet Requests For
Comment (RFCs) [43,44,45,46], and is no longer supported by
Digital Equipment Corporation as a product. Kerberos Version 5
corrects many of the deficiencies of Version 4, and has also
been accepted as Internet RFC 1510 [47]. Kerberos Version 4 is
discussed in this section.

Kerberos and SPX are similar in a number of ways. Both protocols
are designed to reduce the risk of impersonation in an
environment of networked computer systems. Each protocol relies
on cryptographic techniques to provide strong authentication of
users and host computer systems. Further, Kerberos and SPX both
use a trusted third party to manage the cryptographic keying
relationships which are critical to the authentication process.
System users have a significant degree of control over the
workstations which are used to access network services, and these
workstations must therefore be considered untrusted. The
following discussion focuses on the major characteristics of
Kerberos and SPX, and should not be considered a complete
technical definition of either protocol. For example, delegation
of authority and authentication which crosses the boundaries of
multiple key distribution centers are not discussed.

 7.4.1 Kerberos

Kerberos was developed to provide distributed network
authentication services at MIT [48]. In this environment, users
access a network of computing resources through workstations
which are assumed to be untrusted. An unscrupulous user might
therefore be able to subvert a given workstation with relatively
little difficulty. A primary threat in this type of
client-server system is the possibility that one user will be
able to claim the identity of another user, thereby gaining
access to system services without the proper authorization. To
protect against this threat, Kerberos provides a trusted third
party accessible to network entities, which supports the
services required for authentication between these entities.

This trusted third party is known as the Kerberos key
distribution server, which shares secret cryptographic keys
with each client and server within a particular realm.

The Kerberos authentication model is based upon the presentation
of cryptographic tickets to prove the identity of clients
requesting services from a host system, or server [48]. Since a
computer workstation typically performs the client side of an
authentication protocol on behalf of a human user, the term
"client" in the following discussion will refer to a specific
system user and the computer workstation associated with that
user. A summary of the Kerberos authentication process follows
(see also Figure 4):

1. The user initiates a login process on a workstation.
The workstation login process transmits a ticket request to the
key distribution server. The ticket request contains the client
identity, the identity of the target service, and the current
time.

2. The key distribution server retrieves the secret keys for the
client and the service. A ticket is prepared, consisting of: a
temporary session key for use by the client and the service,
the client identity, the service identity, a timestamp, the
workstation address, and the validity interval of the ticket.
The ticket is then encrypted under the key of the service. The
encrypted ticket, temporary session key, identity of the service,
validity interval, and timestamp are encrypted under the client's
secret key.

3. The encrypted response packet is sent from the key
distribution service to the client.

4. When the client receives the encrypted response packet, the
client's secret key is generated by performing a one-way
encryption of the user's password. Using this key, the client
decrypts the response packet and verifies the origin of the
message based on the timestamp and client identity. The client
then creates an authenticator consisting of the client identity,
client address, and a timestamp. This authenticator is encrypted
under the temporary session key.

5. The client sends the authenticator and the ticket obtained in
step 4 to the service.

6. The requested service decrypts the ticket using its secret
key and verifies the contents of the ticket, proving that the
ticket originated from the key distribution server. The
temporary session key is obtained from the ticket and used to
decrypt the authenticator. The information stored in the
authenticator proves the identity of the client to the requested
service, which can then respond to the service request in the
appropriate manner.

7. The service may optionally return an authenticator to prove
its identity to the client.

Although a detailed analysis of the Kerberos protocol is beyond
the scope of this document, several points are worth noting.
Kerberos eliminates the need for each client to share a unique
authentication key with each service, placing the responsibility
for managing keying relationships on the Kerberos key
distribution center. Use of a key distribution/key translation
center as a trusted third party in secret key authentication
protocols is a fairly common technique for reducing the total
number of keying relationships which must be managed [49].
However, the key distribution server requires a very high level
of protection, since an attacker could theoretically gain access
to keys for all clients and servers within a given realm by
compromising the key distribution server for that realm.

Since a user's secret key is a one way function of the user's
password, these keys are subject to many of the same attacks used
against password based authentication systems which apply a one
way function to user's passwords before storing them. Anyone can
request a ticket from the key distribution service, so an
attacker could obtain a ticket for any given user by transmitting
the client name, service name, and timestamp to the key
distribution service. The attacker could then attempt to guess
the user's password, and thus the user's secret key, off-line.
It would be easy to tell when the correct password had been
guessed, because the resulting secret key would decrypt the
encrypted ticket obtained from the key distribution service
correctly. Possession of a user's password would then allow the
attacker to pose as that user. Good password management
techniques are essential to minimize the risk of such attacks.

Figure 4: Authentication sequence and data structures for Kerberos

 7.4.2 SPX

SPX is an implementation of the Distributed Authentication
Security Service (DASS) [44], an authentication architecture based on
public key cryptography. As in Kerberos, the primary goal of
SPX is to prevent system users from claiming the identity of
other users in a distributed computing environment. The SPX
architecture includes an Application Programming Interface, known
as the Generic Security Services Application Programming
Interface (GSS-API) [45,46].

A certificate distribution center is used to distribute public
key certificates. User enrollment services are provided by the
login enrollment agent facility, which generates and distributes
encrypted authentication data.

The functions of a certificate distribution center in SPX are
similar to those of the Kerberos key distribution center. In
both systems, users are required to register cryptographic keys
with a trusted third party, so that network entities can access
these keys as required during authentication exchanges. However,
public key cryptography provides some advantages in the key
management process of SPX. Since the keys stored in the
certificate distribution center are public, disclosure is not a
threat. If an attacker were to obtain the public key for a
particular client from the certificate distribution center, it
would not allow the attacker to pose as the client. The attacker
would need to compromise the private key of the client, or generate
a new public/private key pair and replace the client's registered
public key with the new public key without being detected. The
SPX authentication sequence follows (see also Figure 5):

1. A client requests a public key certificate for a service from
the certificate distribution center. The certificate
distribution center returns the certificate, which binds the
identity of the service to the public key of that service.

2. The client verifies the certificate with the public key of a
trusted certification authority. The client then generates a DES
authentication key for this session, and creates a ticket
consisting of a delegation public key and a validity interval.
The ticket is signed by the client's private key. An
authentication token is then constructed from the client's
identity, the ticket, the DES session key encrypted under the
service's public key, a signature on the encrypted DES key, and
an authenticator consisting of a timestamp and cryptographic
checksum.

3. The client's authentication token is transmitted to the service.

4. The service uses its private key to decrypt the DES session
key stored in the token, and then uses this DES key to verify the
timestamp within the authenticator. Verification of the

timestamp proves that the token is valid within the limits set
for the lifetime of authentcation tokens.

5. The service requests a certificate for the client from the
certificate distribution center.

6. The validity of the token is accepted at this point, but the
association between the client who sent the token and the
identity claimed by that client has not yet been proven. The
server extracts the client's public key from the certificate
obtained in step 5, and verifies the signature associated with
the ticket. If the signature is valid, the service accepts the
identity of the client.

7. Mutual authentication is an option in the SPX architecture.
In situations where there is a need for the service to
authenticate to the client, the DES session key obtained from the
client's authentication token in step 1 is used to calculate a
cryptographic checksum on a timestamp, creating a new
authenticator. This authenticator is returned to the client, who
verifies the authenticator based on the validity of the
cryptographic checksum.

Figure 5: Authentication sequence and data structures for SPX

If the checksum is correct, the client knows that the checksum
was generated with the original DES session key. Since this DES
key was encrypted under the service's public key in the original
authentication token, only the service's private key could have
decrypted it.

The fundamental difference between Kerberos and SPX lies in the
choice of secret key versus public key cryptography. Management
of cryptographic keys is a primary issue in any system which
relies on these keys for authentication. Both protocols place
the responsibility for key management on a trusted third party.
The role played by the certificate distribution center in SPX is
similar to the Kerberos Key Distribution Center. However, public
key cryptography provides some advantages in the key management
process of SPX. Since the keys stored in the certificate
distribution center are public, disclosure is not a threat. If an
attacker were to obtain the public key for a particular client
from the certificate distribution center, it would not allow the
attacker to pose as the client. The client's public key can only
be used to verify the client's signature, and so the attacker
would need to compromise the private key of the client or
generate a new public/private key pair and replace the client's
registered public key with the new public key without being
detected. Since Kerberos is based on secret key cryptography,
compromise of a particular Kerberos Key Distribution Center key
database means that the secret keys which the Center shares with
each client have been compromised [50]. An attacker could then
use these secret keys to assume the identity of any of the
clients registered with the Center. Kerberos therefore requires a
greater level of protection for the key database of the trusted
third party than does SPX.

The security of the Kerberos and SPX protocols can be enhanced
through the use of authentication tokens with cryptographic
capabilities. If the cryptographic operations required by the
authentication protocols are performed by smart tokens,
workstations need not be trusted with all aspects of the
cryptographic process. Providing adequate protection for
cryptographic keys stored on workstations running untrusted
operating systems is a difficult problem. Smart tokens can
eliminate the need to store keys on client's workstations, since
the keys can be kept on the tokens instead. Both protocols are
compatible with smart token technology, and an implementation of
the Kerberos system which utilizes a smartcard for cryptographic
processes has been demonstrated [51]. Kerberos Version 5
specifically supports the use of authentication tokens as an
option for stronger authentication [47].

8. GENERAL IMPLEMENTATION GUIDELINES

There are numerous factors which must be considered when an
organization decides to implement an advanced authentication
system. The following general guidelines are intended to assist
those responsible for evaluating, procuring, and integrating
these systems:

8.1 RISK ANALYSIS - A thorough analysis should be done to
determine what parts of the system in question are vulnerable to
attack, and to prioritize these vulnerabilities in terms of
severity and likelihood.

8.2 PRODUCT EVALUATION AND SELECTION - Once the risks
associated with a host system have been identified, this
information can be used to develop the requirements for an
authentication system. A cost-benefits analysis should be
included in this process to ensure the acquisition of a product
which will meet the organizational security requirements in a
cost effective manner. the authentication system will have to
meet several requirements in order to function effectively in a
given environment. The organization responsible for selecting the
authentication system should decide whether sufficient in-house
expertise exists to evaluate the available options. In some cases
it is more cost-effective to hire a consultant who is familiar
with the available technology. Whether the evaluation is done
in-house or by a consultant, the following items should be
considered:

8.2.1 Resources - There are a variety of resources which should
be consulted when evaluating authentication systems. Vendor
product literature can be very helpful in describing specific
details of product operation, and in understanding the range of
products offered. There are several annual conferences devoted
to computer security, network access control, and authentication
technology. In addition to the papers presented at these
conferences, there are usually large vendor exhibit halls and
product forums. Many organizations, particularly those in the
government sector, have published information on the selection
and integration of advanced authentication technology. These
publications are often the result of practical experiences gained
during the implementation of these systems, and so can be
particularly useful.

8.2.2 Integration into existing environment - This factor is
discussed further in the next section, but is an important
consideration when selecting a product. All other features of an
authentication system may be irrelevant if the product cannot be
integrated into the customer's computing environment.

8.2.3 Custom design - There are cases where a commercial
product which meets the needs of an organization may not be
available. In these cases, the organization may decide to do a
custom design using in-house resources. This alternative would
be most practical for large organizations with experienced system
design and support groups, or for smaller organizations with a
high level of expertise in computer access control systems.
Vendors are often willing to work with customers to modify
existing products or design new products to meet custom
requirements. An arrangement which often works well is for the
customer and vendor to work together on the design of the system,
and for the vendor to then manufacture the product.

8.2.4 Cost and performance - The relationship between cost and
performance can be relatively complex for authentication
technology. Similar products from different vendors may vary
widely in cost, depending on the vendor's manufacturing and
development techniques and marketing philosophies. In general,
it can be expected that devices with a higher performance level
will cost more, but individual cases should be evaluated

carefully. The general approach should be to procure the
authentication system which provides the required level of
security and other performance factors at a minimum cost.

8.2.5 Accuracy - The accuracy of an authentication system
refers to the ability of that system to correctly identify
authorized system clients while recognizing unauthorized clients.
Since this is the primary function of an authentication system,
accuracy is directly related to the level of security provided by
the system. There are no widely accepted standards for evaluating
the accuracy of the authentication process, and results published
by vendors may not be objective. For these reasons, an
organization should thoroughly understand the applicable test
methodologies and run independent tests where necessary to
determine the accuracy of an authentication system in terms which
are relevant to the environment in which the system will be used.

8.2.6 Reliability - An authentication system should be capable
of operating in its intended environment for a reasonable period
of time. During this time period, the system is expected to
perform at or above a level which insures an appropriate amount
of protection for the host system. If the authentication system
fails, it should be in such a way as to minimize the chances for
unauthorized access during the failure.

8.2.7 Maintainability - All hardware and software systems
require some form of maintenance. The components of an
authentication system should be evaluated to determine the level
of maintenance which the system will require. One of the goals
in the design of an authentication system should be to minimize
the maintenance requirements within the constraints of system
cost, performance, and available technology.

8.2.8 Commercial availability - Large-scale networking of
computer systems and distributed computing are relatively recent
developments, and are the driving forces behind the need for more
effective methods for authenticating system clients. Therefore, the
market for advanced authentication technology is not fully
developed and somewhat unstable. Because many commercially-
available authentication systems have not yet been sold in
quantity, an organization which is considering the use of this
technology should evaluate the vendor's ability to produce
systems in quantity which meet pertinent quality control
standards. Contracts written to procure authentication systems
should provide some form of protection for the customer in the
event that the vendor is unable to produce systems in the
quantities required.

8.2.9 Upgradeability - Because the technology of advanced
authentication systems is continually developing, it is desirable
for any authentication system to be able to accommodate the
replacement of outdated components with new ones. A modular
approach to the design of an authentication system, with clearly
defined interfaces between the system components, will facilitate
the process of upgrading to new technology.

8.2.10 Interoperability - A wide variety of computing platforms

and security architectures are in use today. Any authentication
system should be designed to work with as many of these diverse
platforms as possible, or at least to require a minimum of
modifications to work in different environments.

8.2.11 Reputation of manufacturer - Obtaining satisfactory
service during the selection, installation, and long term
operation of an authentication system can be difficult if the
manufacturer is uncooperative. If the manufacturer goes out of
business, other vendors may be unwilling to provide service for
the original manufacturer's system, with which they are
unfamiliar. Customers can request a list of references from
prospective vendors for products and services which have been
provided to other customers in the past. In addition, the
resumes of key individuals working on the vendor's staff can
sometimes be examined to determine whether an adequate level of
expertise is available.

8.3 SYSTEM INTEGRATION - The integration of an authentication
system into an existing computer environment can be very
difficult. Few operating systems, if any, contain well-defined
entry points for replacing the default authentication mechanism
supplied with the operating system. This is partly because there
is no widely accepted standard for the interface between an
operating system and an authentication device. Until such a
standard becomes available, there are three general options:

8.3.1 In some cases, the vendor who provides the authentication
system may have already integrated it into certain operating
systems. If the authentication system meets the requirements of
the customer and the customer is using the specified operating
system, then the system integration has already been
accomplished.

8.3.2 Operating system vendors may select certain security
architectures for incorporation into their systems. If these
architectures include an authentication technology which the
customer finds acceptable, then the operating system may be
purchased with the appropriate authentication mechanism as part
of the package.

8.3.3 Often, it will be necessary to customize the
authentication system and perhaps modify the host operating
system so that the two can communicate. This will involve
cooperation between the operating system vendor, the
authentication system vendor, and the customer, unless the
customer has sufficient expertise to perform the integration
in-house. A prototyping approach is strongly recommended, due to
the complexity of this type of project. Implementing such a
system on a small scale first can be very helpful in determining
what problems will be encountered in a full-scale implementation.

8.4 SYSTEM MAINTENANCE - After an authentication system has
been selected and installed, it must be maintained. Long term
plans for system maintenance should be developed by the customer
or provided by the vendor long before the system is installed,
because the cost of maintaining a system can easily exceed the

initial acquisition cost if the system is to be in operation for
a reasonable length of time. Provisions must be made for
assigning responsibilities for system administration so that new
clients can be enrolled, inactive accounts can be deleted, and
system malfunctions can be identified and corrected.

The majority of authentication systems employ cryptography, which
means that some form of cryptographic key management system will
be necessary. The key management component may be provided by the
authentication system vendor, but the process of maintaining and
distributing keys usually requires active participation by the
host system. Since the security of a cryptographic system is
directly related to the level of protection provided for the
cryptographic keys, it is essential for the vendor or customer to
develop a system for managing these keys effectively. Also, the
host computer system will probably evolve over time through the
addition of new software and hardware, and these changes may
require corresponding modifications or upgrades to the
authentication system to maintain compatibility.

9. CONCLUSION

As the nation's dependence on computer services grows, so will
the number and complexity of the computer networks which serve
this need. Modern information processing systems are
interconnected to a greater degree than ever before. This high
degree of interconnection poses some unique challenges to those
responsible for the security of these systems. It is difficult
to maintain the accessibility of open computing environments
while protecting these systems from malicious or accidental
misuse. Strong authentication is the first line of defense
against these threats, because a system must be able to
differentiate between authorized and unauthorized access
attempts. Modern authentication technology provides solutions
which are secure, convenient, and cost effective. The primary
methods available today include passwords, authentication tokens,
and biometrics. Password-only authentication may be adequate in
some limited situations, but is often not suitable when used
alone.

REFERENCES

1. Woo, T. Y. C., and S. S. Lam, Authentication for Distributed
Systems,
 IEEE CS Press, January 1992.

2. Guideline on User Authentication Techniques for Computer Network
Access
 Control, National Institute of Standards and Technology, Federal
 Information Processing Standards Publication 83, National
Technical
 Information Service, Springfield, VA, September 1980.

3. Password Usage, National Institute of Standards and Technology,
Federal

 Information Processing Standards Publication 112, National
Technical
 Information Service, Springfield, VA, May 1985.

4. Automated Password Generator (APG), National Institute of
Standards and
 Technology, Federal Information Processing Standards Publication
181,
 National Technical Information Service, Springfield, VA, March
29,
 1994.

5. Smart Card Technology: New Methods for Computer Access Control,
 National Institute of Standards and Technology, NIST Special
 Publication 500-157, National Technical Information Service,
 Springfield, VA, September 1988.

6. Dray, J. F., M. E. Smid and R. Warnar, A Token Based Access
Control
 System for Computer Networks, Proceedings - The 12th National
Computer
 Security Conference, October 1989.

7. NIST SACS Reader/Writer Specification, Datakey, Inc., Report
 #065-0098-000, July 11, 1991.

8. ASACS Portable Reader/Writer Specification, Datakey, Inc.,
Report
 #065-0131-000, April 24, 1992.

9. Identification Cards - Integrated Circuit(s) Cards with Contacts
- Part
 2: Dimensions and Location of the Contacts, International
Organization
 for Standardization, International Standard 7816-2, 1988.

10. Identification Cards - Contactless Integrated Circuit(s) Cards -
Part
 3: Electronic Signals and Transmission Protocols, International
 Organization for Standardization, International Standard 7816-3,
1989.

11. Dodson, D. F., J. F. Dray, and R. Warnar, "Security Features for
an FMS
 Smart Card", National Institute of Standards and Technology
Special
 Report, September 25, 1990.

12. Dray, J. F., and D. M. Balenson, An Overview of the Advanced
Smartcard
 Access Control System (ASACS), Proceedings of the PSRG Workshop
on
 Network and Distributed System Security, pp. 125-133, February
1993.

13. ASACS Smartcard Specification, Datakey, Inc., Report #065-0130-
000,

 April 24, 1992.

14. Smartcard Application Program Interface for the Advanced
Smartcard
 Access Control System (ASACS), TISR #465D, Trusted Information
Systems,
 Inc., Glenwood, MD, October 1992.

15. Advanced Smartcard Access Control System (ASACS): Smartcard
Command Set
 Interface, National Institute of Standards and Technology, U.S.
 Department of Commerce, Washington, D.C., 1992.

16. Advanced Smartcard Access Control System (ASACS): Reader/Writer
Command
 Set Interface, National Institute of Standards and Technology,
U.S.
 Department of Commerce, Washington, D.C., 1992.

17. Security Officer Maintenance (SOMAINT) Program User's Manual,
National
 Institute of Standards and Technology, U.S. Department of
Commerce,
 Washington, D.C., 1992.

18. Advanced Smartcard Access Control System (ASACS): The DSS
Signature
 Utility Program Manual, National Institute of Standards and
Technology,
 U.S. Department of Commerce, Washington, D.C., 1992.

19. Advanced Smartcard Access Control System (ASACS): UNIX Access
Control
 Software Manual, National Institute of Standards and Technology,
U.S.
 Department of Commerce, Washington, D.C., 1992.

20. NIST SACS Smartcard Specification, Datakey, Inc., Report #065-
0097-000,
 July 11, 1991.

21. Hitachi H8/310 Single-Chip Microcomputer, Hitachi, Ltd., Tokyo,
Japan,
 1989.

22. Haykin, M. E., and R. Warnar, Smart Card Technology: New Methods
for
 Computer Access Control, National Institute of Standards and
 Technology, NIST Special Publication 500-157, National Technical
 Information Service, Springfield, VA, , September 1988.

23. American National Standard X9.26-1990, Financial Institution
Sign-on
 Authentication for Wholesale Financial Systems, American Bankers
 Association, Washington, D.C., 1990.

24. Proposed Digital Signature Standard (DSS), National Institute of

 Standards and Technology, U.S. Department of Commerce,
Washington,
 D.C., August 30, 1991.

25. Rivest, R. L., A. Shamir and L. M. Adleman, A Method for
Obtaining
 Digital Signatures and Public Key Cryptosystems, Communications
of the
 ACM, Volume 21, Number 2, February 1978, pp. 120-126.

26. Data Encryption Standard (DES), National Institute of Standards
and
 Technology, Federal Information Processing Standards Publication
46-2,
 National Technical Information Service, Springfield, VA,
Reaffirmed
 December 30, 1993 (Supersedes FIPS PUB 46, January 15, 1977).

27. International Standard 7816-1, Identification Cards - Integrated
 Circuit(s) Cards with Contacts -- Part 1: Physical
Characteristics,
 International Organization for Standardization, 1987.

28. Kernigan, B. and D. Ritchie, The C Programming Language, 2nd
Edition,
 Prentice Hall, 1988.

29. Secure Hash Standard (SHS), National Institute of Standards and
 Technology, Federal Information Processing Standards Publication
180,
 National Technical Information Service, Springfield, VA, May 11,
1993.

30. Linn, J., Privacy Enhancement for Internet Electronic Mail: Part
I --
 Message Encipherment and Authentication Procedures, Internet
Request
 For Comments (RFC) 1421, July 23, 1992.

31. Kent, S., Privacy Enhancement for Internet Electronic Mail: Part
II --
 Certificate-Based Key Management, Internet Request For Comments
(RFC)
 1422, BBN Communications, February 1993.

32. Balenson, D. M., Privacy Enhancement for Internet Electronic
Mail: Part
 III -- Algorithms, Modes, and Identifiers, Internet Request For
 Comments (RFC) 1423 , Trusted Information Systems, February
1993.

33. Kaliski, B., Privacy Enhancement for Internet Electronic Mail:
Part IV
 -- Key certification and Related Services, Internet Request For
 Comments (RFC) 1424, RSA Laboratories, February 1993.

34. Kaliski, B., The MD2 Message-Digest Algorithm, Internet Request
for
 Comments (RFC) 1319, RSA Laboratories, April 1992.

35. Rivest, R., The MD5 Message-Digest Algorithm, Internet Request
for
 Comments (RFC) 1321, MIT Laboratory for Computer Science and RSA
 Laboratories, April 1992.

36. CCITT Recommendation X.509, The Directory - Authentication
Framework,
 The International Telegraph and Telephone Consultative
Committee,
 November 1988.

37. Galvin, J., et al, Security Issues of a UNIX PEM Implementation,
TISR
 #468D, Trusted Information Systems, February 11, 1993.

38. Biometric Access Control Device Evaluation Criteria (Draft
Report), DCI
 Intelligence Information Handling Committee, February 1991.

39. DES Modes of Operation, National Institute of Standards and
Technology,
 Federal Information Processing Standards Publication 81,
National
 Technical Information Service, Springfield, VA, December 2,
1980.

40. Guidelines for Implementing and Using the NBS Data Encryption
Standard,
 National Institute of Standards and Technology, Federal
Information
 Processing Standards Publication 74, National Technical
Information
 Service, Springfield, VA, April 1, 1981.

41. X.500 Directory Services Recommendation

42. Public Key Cryptography, National Institute of Standards and
 Technology, NIST Special Publication 800-2, National Technical
 Information Service, Springfield, VA, April 1991.

43. Linn, J., Common Authentication Technology Overview, Internet
Request
 For Comments (RFC) 1511, Geer-Zolot Associates, September 1993.

44. Kaufman, C., DASS: Distributed Authentication Security Service,
 Internet Request For Comments (RFC) 1507, Digital Equipment
 Corporation, September 1993.

45. Linn, J., Generic Security Services Applications Program
Interface,
 Internet Request For Comments (RFC) 1508, Geer-Zolot Associates,
 September 1993.

46. Wray, J., Generic Security Service API: C-Bindings, Internet
Request
 For Comments (RFC) 1509, Digital Equipment Corporation,
September 1993.

47. Kohl, J. (Digital Equipment Corporation), and Neumann, C.
(University
 of Southern California/Information Sciences Institute), The
Kerberos
 Network Authentication Service (V5), Internet Request For
Comments
 (RFC) 1510, September 1993.

48. Steiner, J. G., C. Neuman, and J. I. Schiller, Kerberos: An
 Authentication Service for Open Network Systems, Proceedings of
the
 Winter USENIX Conference, Dallas, Texas, March 30, 1988.

49. American National Standard X9.17-1985, Financial Institution Key
 Management (Wholesale), American Bankers Association,
Washingtion,
 D.C., reaffirmed 1991.

50. Bellovin, S. M., and M. Merritt, Limitations of the Kerberos
 Authentication System, Computer Communications Review, October
1990.

51. Krajewski, M., Concept for a Smart Card Kerberos, Proceedings -
The
 15th National Computer Security Conference, Volume 1, October
1992.

