

PREFACE

This is the eighth in a series of conferences co-sponsored by
the DoD Computer Security Center and the National Bureau of
Standards. The theme of this year's conference is, "Computer
Security in the National Arena." The program is directed
toward the users as well as the developers of computer
security products, and includes presentations on the efforts
of the Department of. Defense and National Bureau of Standards,
of trusted product researchers and developers, and of the
private sector. The specific topics this year include secure
networks, verification, assurance, formal models, security
architecture, sanitization, applications on secure bases,
labeling, a profile of .hackers, performance tuning of secure
products, and market analysis of secure products.

In January, 1981, the Computer Security Center was established
in the Department of Defense. The Center is encouraging the
development of trusted computing systems through technology
transfer with industry, and is defining ADP system evaluation
procedures to be applied to both Government-developed and
commercially developed trusted computing systems.

In September, 1984, the President signed National Security
Decision Directive 145, which enlarged the mission of the
Center to include the Federal civil establishment and some
segments of the private sector.

The National Bureau of Standards' Institute for Computer
Sciences and Technology, through its Computer Security and
Risk Management Standards Program, seeks new technology to
satisfy Federal ADP security requirements. The Institute then
promulgates cost-effective technology in Federal Information
Processing Standards and Guidelines. The Institute is
cooperating with the Department of Defense in transferring the
results of the Computer Security Center • s research throughout
the Government and to private industry.

i

TABLE OP CONTENTS

Title Page

Welcoming Remarks, Dr. R. Brotzman •••••••••••• 1

Keynote Address - Computer Security for the Nation, LTG w. Odom

National Bureau of Standards' Computer Security, Integrity and Risk

3

DoD Overview: Computer Security Program Direction, Col. J. Greene • 6

Management Program, Dr. D. Branstad & Dr. s. Katzke •••• 11

DOE Computer Security Center Activities, Dr. L. Baker 13

On the Integrity Problem, Mr. s. Porter & Mr. T. Arnold •• 15

A Practical Alternative to Hierarchical Integrity Policies,

Mr. w. Boebert & Mr. R. Kain ••••••••••••••• 18

On the Logical Extension of the Criteria Principles to the Design

of Multilevel Database Management Systems, Mr. M. Schaefer ••• 28

Panel on the National Telecommunications and Information Systems

Security Committee, Ms. c. Martinez•••••••••••••••••• 31

Education and Awareness Programs in the National Arena, Ms. C. Thomas. • • • • 32

No Harm Intended: A Behavioral Analysis of Young Hackers, Ms. J. Smith. 36

Multilevel Security from a Practical Point of View, Mr. T. Arnold••• 43

Modeling of Computer Networks, Dr. R. Gove 47

A Two-Level Security Model for a Secure Network, Ms. J. Glasgow &

Mr • G. MacEwen • • • • • • • • • • • • • 56

Network Security Assurance, Mr. M. Schaefer & Mr. D. Bell 64

VERLANGEN: A Verification Language for Designs of Secure Systems,
Ms • D. B r itton • . • • • • • • • • • • • • . . • • 7 0

Issues on the Development of Security Related Functional Tests,

Mr. C. Haley & Mr. F. Mayer •••••••••••••• 82

Paper Output Labeling in a Dedicated System Running under MVS,

Mr • H. Kurth • 86

Panel Discussion: What Counts for Success in Computer Security R&D?,
Mr. L. Castro . 91

Achieving Optimal Compliance with the Department of Energy Sensitive

Unclassified Computer Security Program, Mr. L. Martin •••••• 93

Development of a Multilevel Secure Local Area Network,

Mr. D. Schnackenberg •••••••••••••••• 97

Bl Security for Sperry 1100 Operating System, Mr. R. Ashland •• 105

Designing the GEMSOS Security Kernal for Security and Performance,

Dr. R. Schell, Dr. T. Tao & Mr. M. Heckman ••••••••••• 108

Secure System Development at Digital Equipment: Targetting the Needs

of a Commercial and Government Customer Base, Mr. s. Lipner •• 120

Dial-Up Security Update, Mr. E. Troy • 124

An EMACS-Based Downgrader for the SAT, Mr. J. McHugh • 133

Multilevel Application Development, Ms. R. Henning •• 137

...· :~· . '

ii

'litle Page

A Partial Solution to the Discretionary Trojan Horse Problem,

Mr. w. Boebert ,. Mr. c. Ferguson •••••••••••••••••• 141

Determining Security Requirements for Complex Systems with the Orange

A Status Report on the Development of Network Criteria, Ms. s. Brand • 145

An Approach to Multi-Level Secure Networks Revision 1, Ms. L. O'Dell • 152

Book, Mr. c. Landwehr & Mr. H. Lubbes • • • • • • • • • • ••• 156

iii

WELCOMING REMARKS

Robert L. Brotzman

Director, DoD Computer Security Center

Fort George G. Meade, Maryland 20755-6000

I'd like to join Jim Burrows in
welcoming you to the 8th National Computer
Security Conference, my second such
conference here at the National Bureau of
Standards.

since I last spoke to you a year ago,
the Center has grown 68 percent from 160
personnel to our present staff of about
270. Much of the Center's rapid personnel
growth is due to the need to staff a very
young organization that acquired national
responsibilities for computer security when
President Reagan signed National security
Decision Directive 145 (NSDD-145) last
September. The Center has broadened its
mission from the defense level to the
national level. By expanding the scope of
our mission, we have changed the nature of
our clientele to include civil government
departments and agencies and have
redirected the emphasis of our activities.
Before I relate to you how we have
restructured our computer security program,
I would like to outline a few of the
assumptions we made about the nature of our
new mission and the conditions under which
it would be performed.

we believe that most of the civil
agencies are less aware of their computer
security needs than are the agencies and
departments within the Department of
Defense. To the extent that they do
recognize those needs, they apparently
perceive them as quite different from those
within Defense. To service this new
community, we have to raise their
awareness, gain an understanding of their
computer security concerns, and determine
which of their needs are truly unique and
which have common threads. We do not have
all the answers for the problems of the
civil sector of government; if we did,
those answers could be effectively applied
only if the people concerned recognized
them as valid. There will be no salvation
in a forced conversion.

The inherent ability of current
computer systems to protect themselves and
their data from abuse is appallingly low.
Treatment is available right now which can
improve their ability to function securely,
but nursing systems that were born weak is
only a stop-gap, not a solution. To reduce
these risks substantially, we need to
develop and apply methodology that will
enable us to create systems with solid
security features designed in from the
beginning. The strategy we are pursuing
consists of a three-pronged attack;
firstly, we are encouraging the use of
software packages which reduce the risk to
many current systems. Secondly, we are
encouraging industry to develop systems
defined in the Department of Defense
Trusted Computer System Evaluation

Criteria. Thirdly, we are embarking upon
an aggressive research program to
substantially improve the state of
knowledge about computer security. In
general, this strategy attempts to do
immediately, those things which we know how
to do, and to proceed in parallel to try to
improve the medium-term security posture
and start the research program needed to
learn far more about the subject.

To raise awareness to the computer
security problem, we have provided speakers
to numerous conferences and courses. Two
computer security awareness films produced
by the Center have been released
nationally. Within three days of
announcing the availability of the films in
"Government Computer News," we were
contacted by more than 100 agencies and
organizations seeking copies of the films.
Over the next few years, we expect to
produce several films and video tapes on
subjects such as password management and
the Trusted Computer Systems Evaluation
Criteria.

The initial steps have been taken
toward developing and implementing an
education and awareness program. Through
this program we expect to train or
influence a massive audience, primarily
(but not exclusively) within the
government, to be aware of the need for
computer security and of the techniques for
maintaining it. Security literatrue and
posters will be distributed, "awareness
exhibits" will be provided at symposiums,
and a variety of awareness training will be
given. A National Training Plan has been
drafted to address computer security on a
national level. Some existing computer
security courses are being modified to
remove classified material so that they may
be given to a wider audience. This annual
conference has been refocused to better
include the civil government and private
sector audiences.

To gain a better understanding of our
new clientele, we are initiating an
education needs assessment program for the
federal government. To extend our
knowledge of security problems beyond
government circles, an effort has begun to
study computer abuse in the private sector.
We have established informal contacts with
agencies such as the Department of Energy,
the Department of Commerce, the Federal
Bureau of Investigation, and the General
services Administration. A survey of
Defense Department contractors' use of
hardware and software, similar to that done
for the Department of Defense, is now
underway. We have responded positively to
requests for assistance from the Federal
Emergency Management Agency, the Forestry
Service, and the Treasury. In providing

1

these agencies with the assistance they
requested, we are gaining a greater
understanding of their needs.

Within the Center, we plan to build an
automated data processing operation that
can serve as a showcase for the departments
and agencies of government so that they can
see how security features can be applied in
today's operations.

A new division has been created to
interact with the commercial world and to
encourage vendors to consider security in
the design phase of all their products. In
March of this year, we sponsored a
conference for computer vendors which was
attended by about two hundred people from
industry. We intend to make this an annual
event. We have met several times with the
Computer Business Equipment Manufacturer's
Association and a promising relationship is
being developed with that body.

While to date it has only been
published as a Computer Security Center
document, the Trusted Computer System
Evaluation Criteria (commonly known as the
"Orange Book") is widely accepted as the
authoritative document in that area. About
22,000 copies have already been
distributed. Coordination is nearly
completed to make it a Department of
Defense standard. Now that our mission is
extended, efforts are underway to determine
the revisions needed to make the "Orange
Book" more applicable to the civil sector.

An "environmental guideline" document
that provides guidance on how to use the
"Orange Book" is about to be published as a
Computer Security Center document. It too
will be revised to meet the needs of those
outside the Defense Department. We have
also begun to develop Audit Guidelines,
Discretionary Access Control Guidelines,
Network Security Criteria, Data Base
Management Criteria, and Office Automation
Security Guidelines.

The threat imposed by insecure systems
is one that has to be addressed. It isn't
just a Department of Defense problem,
although the threat to our security is
paramount. It isn't just a governmental
problem. It looms over virtually every
aspect of our lives, collectively and
individually -- public and private. There
are no panaceas, but there are steps that
can be taken to reduce the danger. We need
to take these steps as quickly as our
capabilities allow. Whatever can be done
now, should be done now. Whatever is
postponed will be harder to do and probably
more expensive in the future, but what's
worse, postponement means a longer time of
having to depend upon systems that are all
too vulnerable.

The structure created by the NSDD 145
has raised the level and broadened the
scope of the attention given to computer
security. Within the Computer security
Center we have charted a course which we
believe to be responsive to the task set
before us. we are aggressively pursuing

initiatives that address both current and
future needs. The actions we are taking
come with no guarantees; failure to act
does carry a guarantee - that of a major
disaster.

Protecting the nation's information
base and the equipment which processes that
information is a monumental task. If we
can do it and do it well, we will survive
as an information-based open society. That
is well worth doing.

2

KEYNOTE ADDRESS--COMPUTER SECURITY FOR THE NATION

Lieutenant General William E. Odom, USA,
Director, National Security Agency

Chief, Central Security Service

I am pleased to have the opportunity
to address the 8th National Computer
Security Conference cosponsored by the
Department of Defense Computer Security
Center and the National Bureau of
Standards Institute for Computer Sciences
and Technology. I am equally pleased to
see the high level of interest in this
forum. I take it as indicative of a
heightened perception of the
vulnerabilities of our computer assets
and a commitment to do something about
it.

In today's world the prime force for
change is the computer. It is reshaping
our lives in the second half of the
century, just as the automobile and plane
did in the first half~ and
industrialization did in the second half
of the nineteenth century. But as the
old adage says, there is no rose without
a thorn. Our initial wonderment with the
beauty has blinded us to the thorns. As
with other innovations, we have had a
difficulty bringing ourselves to deal
with the problems until well after they
have become entrenched in our daily
lives.

For many decades we accepted the
convenience of the automobile as an
unmixed joy. Then one day we awoke to
find a polluted atmosphere, 50,000 auto
related deaths per year, a public
transportation system in shambles, and a
dependence on foreign oil that imperiled
our economy and our security. We are now
confronting these problems at great cost
and with limited success. None of these
problems arose overnight1 and each could
have been dealt with more easily, cheaply
and successfully had we the foresight to
recognize and the will to solve them
earlier.

We cannot retreat from this new
revolution, the computer revolution, nor
would we want to. It serves us well.
The computer is assuming our burdens on
tasks that are tedious, and giving us the
power to break through barriers that once
seemed insurmountable. Along with other
technology, it is expanding the forms,
speed, reliability, and extent of our
communications systems.

Over the past twenty years the
subject of computer security has emerged
from the world of the computer specialist
into the national arena. Computer
security efforts in the distant past -
the late 1960's to the mid 1970's --were
relatively small. Nevertheless,
achievement ensued. Researchers phrased
the right questions, isolated the facts,
and debated the relative merits of
various technical approaches. They then
proceeded to test many of the approaches,

and learned from both the successes and
the failures. Some of the successes led
to the current arsenal of trusted
computer products. Although the middle
years, from the mid 1970's to the early
1980's, showed a reduced emphasis and
effort, there is emerging a renewed
interest in and support for computer
security. Within the last year or two, a
general consciousness raising has spread
across the nation. Media coverage of
computer crime and youthful intruders has
helped to raise national computer
security awareness. Such crimes as
electronic funds transfer theft, welfare
fraud, and the misuse and alteration of
private credit records have been widely
publicized. Moreover, in the past six
months, articles on the DoD Computer
Security Center and its national
responsibilities for computer security
have appeared in magazines such as
NEWSWEEK and DATAMATION.

Recognition of the nation's need for
computer security has definitely made its
way to the top. Last fall at about this
time, President Reagan recognized the
severity of the vulnerabilities in the
nation's computer systems by signing the
National Policy on Telecommunications and
Automated Information Systems Security,
otherwise known as National Security
Decision Directive Number 145 (NSDD-145).
This directive is the result of years of
effort to give national attention to the
protection of information involving these
two advanced technologies. It is not my
intention to recite the full catalog of
provisions from this Directive. I do
want to point out, however, that the
creation of a national committee
structure to address the information
security concerns of the Federal
Government and of the country is a
powerful recognition of the broad and
important problem that we face.

NSDD-145 introduces several
significant changes to the way we have
been doing business. Foremost, this
directive recognizes the increased
merging of telecommunications and
automated information systems and their
interdependence. It also prescribes
reorganization and refocusing of the
national communications security and
computer security objectives, policies,
and organizational structure. In short,
it provides central leadership for
computer security which was previously
non-existent.

In addition to government classified
information, NSDD-145 broadens the
information protection policy to include
sensitive, but unclassified, government

3

or government-derived information and group replaces the NSC Subcommittee on
sensitive non-government information. Telecommunications Protection
"Sensitive" implies that the loss of such (established by Presidential Directive
information could adversely affect Number 24) and is expected to perform a
national security. With classified more active review and oversight role.
information, the systems are secured as
necessary to prevent compromise or The Steering Group will use the
exploitation. With regard to other National Telecommunications and
sensitive information, the protection Information Systems Security Committee
shall be in proportion to the threat and (NTISSC) to formulate operational policy,
potential damage to the national set objectives, and establish priorities.
security. This policy means that our The NTISSC replaces and subsumes the
responsibility for information protection National COMSEC Committee established in
extends across the entire Federal 1979. The 22 members of the NTISSC
Government and in some instances requires represent a broader participation by the
the cooperation of the private sector. military and the civil agencies. Because

the members will be decision makers for
However, recognizing a problem is their respective agencies and

far easier than developing ways to bridge departments, the NTISSC has the potential
organizational and philosophical to be a strong and unified force for
divisions of responsibility. I'm coping with the overall information
referring specifically to the Directive's security challenge. The Heads of the
requirement that "the government shall Federal departments and agencies still
encourage, advise, and, where have the responsibility for developing
appropriate, assist the private sector plans and programs for implementing the
to: identify systems which handle national policy within their
sensitive non-government information, the organizations.
loss of which could adversely affect the
national security." The government would The DoD Computer Security Center, as
also assist the private sector in Bob Brotzman has just told you, is also
determining the vulnerability of these being redirected to continue computer
systems and formulate strategies for security support on the national level.
providing protection in proportion to the The Center was established in 1981 to
threat of exploitation. support the Director NSA, as the DoD

technical focus for computer security.
We realize the private sector's Now the Center will be responsive to the

apprehension regarding NSDD-145, needs of the entire Federal Government
illustrated well by an editorial cartoon and its more than 1,000 departments,
in "COMPUTERWORLD". In the cartoon, agencies, boards and commissions.
entitled, "Snakes in the Woodpile," three
snakes labelled the National Security There are two subcommittees under
Agency, the Department of Defense, and the NTISSC --one for telecommunications
the National Security Council, are and the other for automated information
intertwined under logs representing NSDD- systems security. Under a requirement of
145. The caption underneath reads the NSDD-145, the Subcommittee on
"Private sector security control." The Automated Information Systems Security
Federal Government in no way wants to (SAISS) has already submitted its first
assume the "big brother" role with annual evaluation report to the NTISSC on
private industry. Instead, it will the status of automated information
actively seek information and advice from systems security in the Federal
the private sector with regard to this Government. They found the current
policy. approach by the Federal Government was

fragmented and sometimes inconsistent
The NSDD-145 also establishes an with regard to policy, procedures, tools,

infrastructure for carrying out this more and mechanisms for protecting automated
encompassing approach to automated information systems resources. They also
information systems security. found that the lack of a clear policy

'" .'.' Significantly, it expands the current mandating the use of technical protection
authority of the Secretary of Defense as measures and trusted computer systems
the Executive Agent of the Government for does little to convince industry to
Communications Security to include respond to the government's computer
Automated Information Systems Security. security needs. As a result, even those
As the operational arm of the Executive security enhancements that are possible
Agent, the Director of the National today are still not widely available.
Security Agency, has become the National This situation is likely to continue
Manager for Telecommunications and unless there is an increase in awareness
Automated Information Systems Security. especially on the part of management, of
The Executive Agent and the National the vulnerabilities and security risks
Manager respond to direction from the associated with the use of automated
Systems Security Steering Group--a group information systems and networks. The
with Cabinet-level membership under the SAISS is also developing standards on
National Security Council (NSC). The password usage and ~nvironment guidelines
Director, NSA, also serves as Executive for the DoD Trusted/Computer System
Secretary to this Steering Group. This Evaluation Criteria! (commonly known as

4

I

the Orange Book)~ developing security
criteria for personal and shared
computers~ and drafting a program to
encourage advise, and assist the private
sector in developing computer security
products.

There have been some positive
actions which can provide a foundation
for building a sounder security future.
This approach is being recommended by the
SAISS and is representative of the thrust
being pursued by the Federal Government.
Some of the major undertakings include:
{1) achieving at least the minimal level
of computer security by implementing the
technology and mechanisms that are
available today~ {2) fostering a greater
awareness of the security risks and needs
for effective computer security measures~
{3) establishing consistent and
meaningful computer security requirements
and mandating that these be met~ {4)
exploring the possible consolidation of
multiple policies into a responsive,
uniform and comprehensive national policy
framework with enforcement power~ and {5)
joining forces with industry not only to
achieve near term computer security
products, but to undertake a more
aggressive R&D program for meeting the
future technical needs.

To expand on the last point, the R&D
challenge we face is an incredibly
difficult one. We are really far down on
the power curve. Compared to
communications security where we well
understand the problem and our challenge
is to reproduce the solution efficiently
and economically, the R&D challenge is
still being defined. At this time we
know the bounds of the computer security
problem, but we have much work ahead in
filling in the fine line details. With
Bob Brotzman and Col Joe Greene leading
the charge, we have undertaken a vigorous
campaign to secure the necessary
resources to get the job done. We have
only been partially successful in the DoD
resource arena, but we will keep the
pressure on through all phases of the
budget cycle. We believe, however, that
we have secure enough funding to begin to
prime the pump, and as Joe Greene will
explain in the next presentation, we have
a plan to move out and impact the
industry and market place.

Since the issuance of NSDD-145 in
September 1984, the participants have
begun the process of making real and
effective the mandate to protect the
sensitive and classified information of
this nation. No one expected the job to
be easy, and it hasn't been. Few
expected quick unanimity on the pressing
problems and the solutions to those
problems. Again experience has shown
that diversity of opinion is likely to
remain a dominant feature of computer
security efforts for some time. But, it
is from the plurality of viewpoints and
needs -- tested and adjusted in an open

forum --that the sorely needed advances
in information security will come.

You, the practitioners, managers,
and consumers of security technologies
and products contribute to the national
needs by bringing your requirements, your
unique perspectives and ideas, and even
your criticisms to forums like this one.
I applaud your interest in being here. I
picture each of you as representing
scores of colleagues who will benefit by
your presence and by the work being
reported and reviewed here. I hope that
you will spread your experiences here to
bring benefits and continuing awareness
to the nation.

LTG WILLIAM E. ODOM

LTG William E. Odom, USA, became the
National Security Agency's 11th Director
on May 8, 1985. General Odom's previous
assignment, which he held since November
1981, was Assistant Chief of Staff for
Intelligence, u.s. Army. He is the first
army officer to head the Agency since LTG
Marshall s. Carter who was director from
1965 to 1969.

A specialist in Soviet affairs,
General Odom speaks Russian and reads
German. He is a member of the Council on
Foreign Relations, the American Political
Science Association, the International
Institute for Strategic Studies, and the
American Association for the Advancement
of Slavic Studies.

General Odom is the author of one
book, The Soviet Vo1unteers:
Modernization and Bureaucracy in a Pub1ic
Mass Organization, and has written
numerous articles about the Soviet Union
for scholarly journals.

Before coming to the National
Security Agency, General Odom served as
Assistant Army Attache, Moscow~
Associate Professor and Research Officer
Department of Social Sciences, West
Point~ Military Assistant to the
Assistant to the President for National
Security Affairs~ and Deputy Assistant
Chief of Staff for Intelligence, u.s.
Army.

General Odom graduated from West
Point with a B.S. in Engineering. He
also holds degrees from Columbia
University: an M.A. in Russian Area
Studies and a Ph.D. in Political Science.
In addition, General Odom has attended
The Infantry School {Basic Course), The
Armor School {Advanced Course), and the
u.s. Army Command and General Staff

College.

5

DoD OVERVIEW

COMPUTER SECURITY PROGRAM DIRECTION

Colonel JosephS. Greene, Jr., USAF

Deputy Director, DoD Computer Security Center

Fort George G. Meade, Maryland 20755-6000

BACKGROUND

At the 7th DoD/NBS Computer Security
Conference (1984), and at the IEEE Computer
Security Conference this spring, a number of
people expressed interest in a review of new
directions for the Department of Defense
(DoD) Computer Security Program (CSP). This
paper responds to those interests.

The DoD Computer Security Evaluation
Center (DoDCSEC) was established in 1981.
DoD Directive 5215.1 assigns responsibility
for computer security and provides direction
for the formulation of the Consolidated
Computer Security Program. The Services and
the Defense Communication Agency participate
through the Technical Review Group in the
formulation and execution of the CSP. The ·
Director, National Security Agency, provides
central oversight and single-point
accountabili~y for the CSP. The CSP funds
the operation of the DoDCSEC and the generic
Research, Development, Test, & Evaluation
(RDT&E) program for the Department. Generic
computer security research has potential
application over a very broad, generalized
basis,and includes experimental exploration
and development of feasible and potentially
useful technology that is responsive to a
broad class of computer security needs.
Generic computer security research is
distinct from application-dependent research
and development. for specific DoD component
systems.

TECHNOLOGY BASE

In the past, the Department has
responded to security needs by including
computer security requirements in selected
major •programs (e.g., Strategic Air Command
Digital Information Network (SACDIN),
Automated Digital Information Network
(AUTODIN), Defense Data Network (DON),
Inter-Service ~gency Automated Message
Processing Exchange (I-S/A AMPE), world Wide
Military Command & Information Control
System (WIS)). This approach tended to work
for system-high systems but became
increasingly expensive for multilevel secure
trusted computer systems. With the trend
toward ever more pervasive use and
interconnection of Automated Information
Systems (AIS), the case-by-case approach
becomes prohibitively expensive. Without
equivalent trust for all components,
interconnected systems are only as secure as
the weakest component, as can be
demonstrated using password grabber, garbage
collection, spoofing, and Trojan Horse
attacks against a multilevel secure computer
with an untrusted terminal. To encourage
industry to incorporate trusted computer .
base security features and market trusted
computers as their standard commercial
offerings, the Department developed a

6

strategy of publishing standards.
encouraging industry to build trusted
products, evaluating and certifying these
products against the standard, and
publishing the results as an Evaluated
Products List (EPL). Through this strategy,
the Department hopes to make trusted
products available to all users and to
spread the development cost over a larger
segment of the industry.

Discussion of the CSP should be based
on a common understanding of the several
~actors that define the current technology
maturity of the trusted computer systems.
The following treatment. assumes that the
reader is familiar with the basic features
and assurances defined in the DoD Trusted
Computer Security Evaluated Criterial and
the fundamental conclusion of penetration
studies in the 1970's that computer security
must be an inherent quality of the design
and implementation of the computer. The
aspects discussed next provide a partial
summary of the trusted computer system
technology base. Correcting and overcoming
deficiency in the several areas identified
will constitute part of the challenge of the
CSP.

a. A recent survey of 17,070 DoD
computers indicates that half should be
upgraded with Discretionay Access Control
(DAC) capabilities. Although about 30 major
vendors, each with numerous machine/
operating system combinations, were
identified in the survey, only three DAC
packages have been certified and placed on
.the 	DoDCSEC Evaluated Products List. These
are the International Business Machines,
Corp. (IBM), Resource Access Control
Facility (RACF)~ SKK Inc's, The Access
Control Facility 2 (ACF2)~ and CGA, Software
Products Group's, TOP SECRET, all for the
IBM MVS operating system that accounts for
less than 400 of the machines identified in
the DoD Survey. In addition to insufficient
coverage, the government is somewhat behind
the private sector in employment of those
security measures that are available. For
example, of the 10,000 MVS licenses in the
private sector, half use add-on security
packages, while only about 40 percent of the
500-plus government-owned MVS systems are
similarly protected. If all DoD IBM
mainframes used MVS and had add-on security
packages, only about 4 percent of the DoD
systems needing DAC capabilities would be
protected.

b. According to the May 1985
Five-Year Plan published by OMB, the Federal
Government plans to spend $31 billion on
general purpose computers and
telecommunications in the FY86 through FY90
period. Without a major initiative wit~
incentives for the development of DAC

mechanisms for a broad range of systems, the
existing and future inventory will remain
largely vulnerable to attack, at least
through the next decade.

c. The survey of DoD computers
also indicates that about one-third should
be replaced with machines that provide
mandatory access control (MAC). The only
general purpose computer commercially
available today with such capabilities is
the Honeywell MULTICS computer. Although we
expect to certify MULTICS at the B2 level,
the product is not yet on the EPL. Industry
has been reluctant to accept the risk of
developing computers with MAC capabilities.
About five years usually elapses between the
time a vendor decides to develop a major new
product to the times that the product is
commercially availabile. Changes in the
security requirements and criteria for
certification during the development period
can be very expensive. Industry
representatives often express concern about
their ability to interpret the Criteria in a
particular situation. For these practical
reasons, many vendors tend to let others
pioneer the way. The government should make
a major commitment to reduce these risks in
order to stimulate development of a
significant number of MAC machines during
the next 5 years.

d. The Secure Communication
Processor (SCOMP), developed by Honeywell
Inc., is the only Al-level entry on the EPL.
The SCOMP has only limited applications and
does not have the processing speed needed to
handle the general purpose problem. The
national technology base for Al-level
systems is essentially non-existent. There
do not appear to be even 20 people in the
world that have undertaken the essential
steps of building anAl system (e.g., a
security policy~ a security model~ a
descriptive top level specification~ a
formal top level specification (FTLS)~ a
detailed design~ a formal verification that
the design complies with the FTLS,
implementation, and test). The other
critical Al technology is configuration
management. Existing methods are
essentially human-intensive, paper-driven
approaches that are subject to many
classical failures. A great deal of
research needs to be done to develop and
distribute critical Al technologies to
industry before there will be significant
numbers of verified systems on the market.

e. The President's 17 September
1984 National security Decision Directive2,
places great emphasis on reducing the
vulnerabilities for Automated Information
Systems (AIS). These systems are defined as
any system that creates, processes,
ex.changes, and modifies information in
electronic form and includes mainframes,
minis, personal computers (PCs),
workstations, office automation, data base
management systems, local and long-haul
network components, distributed operating
systems, file server/receivers, and multi
media (text, graphics, voice, video)
processors. Although we have the Criteria
for secure general purpose computers and

believe them to be sufficiently general to
apply to the other areas, we are only
beginning to examine the extent of their
applicability to the other segments of
AIS's. Because these many components are
frequently connected and because security is
only as good as the ~eakest link, a great
deal of work needs to be done to understand
how to certify systems or to build systems
with certified components. Although we can
propose ideas, technical feasibility
demonstrations are needed. A great deal of
research will be required before standards
with clear interpretations will be available
to provide consistent AIS security across
the range of products that comprise a modern
information system.

f. To expand on the need for
significant research, consider two examples.
The DoDCSEC was able to write and publish
the DoD Trusted Computer Security Evaluation
Criteria between 1981 and 1983, because we
had a technical foundation consisting of a
decade of research sponsored by the
services. This foundation included numerous
worked examples to prove the feasibility of
concepts and experienced people. We do not
have that technology foundation in other AIS
security areas. For example:

1. The DoDCSEC is the System
Program Office (SPO) for the new multilevel
secure, host-to-host encryption device
called BLACKER. BLACKER will provide one
new technology basis for replacement of the
DDN and I-S/A AMPE AUTODIN with multilevel
secure systems. The BLACKER program to
build host front-ends, Key Distribution
Centers, and Access Control Centers, will
involve significant RDT&E dollars through
the preproduction model. The effort
provides extremely important pioneering
network security work. Many questions
remain to be answered, however, before we
can extend the capabilities to include end
to-end encryption and provide support for
data transfer rates of future networks as
well as provide secure digital, voice,
graphics, text, fax, and video multimedia
communications being requested today for the
command and control of military forces in
the future.

2. The ANSI and ISO
committees for the Graphical Kernel System
(GKS) standard and the Common Language for
the Interchange and Processing of Text
(CLIPT) standard have not yet considered
sensitivity labels that will be needed for
multilevel secure, device-independent
graphics and text processing. We do not
have an industry standard for the internal
representation of sensitivity labels used in
network devices such as BLACKER. We need
research to understand these issues before
we publish standards.

3. The Air Force Studies
Board sponsored a summer study on multilevel
data base security in 1982. Many issues
needing work were identified at that time. ·
Essential by no funding has yet been
approved to work on these security issues,
even though many major system acquisitions
need secure distributed data management

7

systems.

4. Without addressing
fundamental issues of trusted computer
systems, there are a number of ongoing
efforts in the name of security that will
give the uninformed a false sense of
security. For example, we see complete
instructions on hacker bulletin boards for
defeating many different dial-back access
control implementations.

5. There is a rush to add
encryption to workstations and terminals.
The fact, however, that information is
stored and communicated in encrypted form
does not eliminate the computer security
vulnerabilities. Often, the perceived
benefits of encryption can be circumvented
by experts exploiting computer security
flaws. Because a TEMPEST tested, encrypted
PC costs several thousand dollars more than
the comparable "unsecure" system, the
Department could invest huge amounts of
money for incomplete solutions that will
not provide the protection sought and will
have to be replaced when more of the
community understands Trusted Computer Base
(TCB) security issues.

6. Many of the workstations
and terminals being considered as
candidates for add-on encryption use
single-state processors. We know of no way
to secure a single-state processor machine.
The Motorola 68000 and INTEL 80286
microprocessors have two or more states;
however, multilevel secure operating
systems are not available for these
processors. several efforts should be
started immediately in this area.

The vulnerabilities suggested by these
examples also apply to almost every
component area of modern AIS. A great deal
of research is needed to be able to guide
the industry to development of trusted
systems.

g. The convergence of
telecommunication and computer technolgies
encourages rapid aggregation of components
to provide interconnected capabilities for
sharing information. The unpredicted and
explosive growth in the PC market between
1981 and 1984 resulted in sales of over 9
million PC's at a cost of $40 to $60 B.
Local area networks are predicted to grow
at an estimated rate of 46 percent
compounded annually for the next few years.
These market trends point to much greater
interconnectivity and information
accessibility that combine to make
information systems more vulnerable today
than they were four years ago when the
DoDCSEC was founded. Without a significant
surge effort, information systems will
continue to become increasingly vulnerable
to unauthorized access, integrity problems,
and denial of critical services.

h. For years, the Department has
advocated interoperable command and control
systems. Without information sharing,
decision making processes crumble and large

organizations have difficulty behaving as a
single unit; The existence of modern AIS's
has been a factor contributing to 147 u.s.
industry mergers in 1984 and the emergence
of 300 multibillion dollar U.S.
corporations in 1985. Today's mergers tend
to retain the character of individual profit
centers because the heterogeneous
characteristics of today's AIS's do not
permit horizontal integration outside a
single vendor's product line. But
horizontal information integration is just
the kind of interoperability the DoD needs
for the services, components, and u.s.
allies to operate synergistically as a
single unit. In this regard, the DoD is
leading the world in interoperability
issues, because, as a $300 billion-dollar
annually corporation, we need horizontal
information integration now. Once systems
are integrated and integratable, security
and integrity will become absolutely
essential to corporate survival. A
corporation must be able to control data
reading, control data writing, and prevent
denial of information service. However, the
technology base for this class of secure,
machine-independent interoperability does
not exist today. We have the basic
technology concepts, but we need critical
proof-of-concept research to demonstrate
fundamental protection mechanisms that will
prevent unauthorized use, prevent malicious
and accidental data change, and complete
denial of information services. Generic
research in these fundamental areas is
needed and the results should be widely
shared with industry.

THE CHALLENGE

Based on arguments presented above, we
conclude that: (1) the Department cannot
afford computer security on a case-by-case
basis; (2) computer security requires a
fundamental change in the way industry
designs and builds computers; and (3) the
Department must cause industry to include
security as an inherent quality of standard
commercial offerings.

The AIS industry is a major national
growth industry. AT&T estimates the 1984
gross sales at $141B. IBM estimated the
market to be $230-240B annually. Business
week estimated 1984 gross sale at $269,
growing at 20% annually.

To evaluate the sufficiency of an RDT&E
program, we need to understand how the
program will change such a huge national
growth industry, if at all. In arriving at
a decision as to what is sufficient, we
need, in addition to global strategy, some
metrics to judg~ the impact of our proposed
program. Although not precise metrics, the
following factors are important
considerations underpinnings for the CSP:

a) Standards are absolutely
essential to influence the directions of
industry. We have an urgent need for many
standards dealing with the various
components and aspects of AIS security.

8

b) Development of consistent
standards requires strong central .
oversight. The National Computer Secur1ty
Center, under the Director, National
Security Agency, has been char~ed to . .
provide that oversight. Our f1rst pr1or1ty
must be to build a strong cen~e~ ~a~able of
undertaking these new respons1b1l1t1es.

c) Standards must be
consistently applied across the Department
and government. If ever~ prog~am of~ic7
tailors the standard to 1ts un1que m1ss1on
needs, the Department will speak with a
confusing voice, there will be no standard,
and industry will adopt a "wait an~ se7"
attitude. The National Telecommun1cat1on
and Information System Security Committee
(NTISSC), in conjunction with the Natio~al
Manager and the National Computer Se~ur1ty
Center, must develop and enforce standards.

d) A clear capability to monitor
compliance with established standards must
exist. That monitoring should be fairly
and openly applied, especially when we
depend on private sector funding for
product development. The eva~uating ..
organization must be staffed 1n suff1c1ent
quality and numbers to provide responsive
and open interaction with industry.

e) The average industry time to
bring a new AIS product into the market is
5 years. Standards must remain stable
during development periods of this length
or industry will not respond by investing
private sector dollars.

f) There is little worse than a
well-enforced, bad standard. The standards
proposed by the National Computer Security
Center must be supported by worked examples
that prove feasibility, clarify
interpretations, and communicate the
knowledge and experience to industry. A
solid research program, including
exploratory and exemplory development is
essential.

g) The program must have
reasonable balance between near-term, mid
term and long-term objectives. Some issues
will take considerable time to resolve. We
must not sacrifice the future for near-term
fixes, and we need to do the best we can to
protect the current and planned inventory
through its remaining useful life.

h) The job facing the government
is that of building and distributing to
industry a fundamental new technology. The
job must be completed before the underlying
assumptions are obsoleted by changing
technology. The program must have
sufficient industry participation to have a
significant impact on future directions and
technology decisions by industry and the
private sector.

PRIORITIES

Our first priority under the
President's Directive will be to build a
strong National Computer Security Center.
We will need a strong in-house capability

to provide the technology basis for
standards development, to support a
significant product evaluation capability,
and to foster much wider awareness of
computer security needs and issues. The in
house RDT&E capability will permit the best
possible progress with limited resources and
in the event additional monies become
available provide the technical oversight
for a greatly increased industry .
participation. Planned personnel 1ncreases
should enable the Center to support
approximately 45 new commercial product
evaluations by 1990. This would be a
significant increase over 1985 levels and
should send a strong signal to industry that
will encourage investment of private sector
dollars in trusted product development.

Our second priority will be to greatly
strengthen the.research eff?r~ by.
strengthening 1ndustry part1c1pat1on. Our
strategy includes three thrusts: 1) near
term efforts to improve security of the
current inventory of government computersi
2) mid-term efforts to greatly inc~ease the
availability of trusted products w1th much
better security features than are generally
used todayi and, 3) long-term efforts to
develop and distribute to industry the
technology base needed to build much more
trustworthy system than we currently know
how to build.

In carrying out this strategy, we are
concerned that near-term fixes do not
jeopardize long-term solutions. To achiev7
this objective, a panel that was convened 1n
response to a Secretary of Defense security
initiative recommended that the five-year
computer security research program be
allocated as follows: 20 percent of the
resources applied to development of C-level
DAC add-on security capabilities to protect
current and planned systems, 30 percent to
stimulate development of B- and Al-level MAC
systems and 50 percent to extend our
understanding of assurances beyond Al. The
Technical Review Group recommended a 30
percent, 30 percent, and 40 percent mi,
repectively for these objectives in the
transition year FY87. The emphasis on near
term dollars will be to develop working
products that will improve security for
immediate needs and encourage private sector
development and marketing of similar or
better products. The mid-term efort will
focus on exemplary products in the public
domain to greatly reduce the risk involved
in interpreting standards. These exemplary
multilevel secure implementations will be
made widely available to industry to
accelerate the availability of new products
and stimulate private sector development of
better products. The government expects to
carry the initial research burden to extend
our knowledge of beyond Al. Given the fact
that formal software and hardware
verification may not mature to affordable
technologies for many yearsi given also the
facts that configuration control may be our
only alternative to reduce vulnerability of
DAC mechanisms, will be required in any case
and to extend assurances beyond A-li and,

9

II

given the fact that configuration control
is emerging as a fundamental need of
network security not adequately supported
by current methods~ we hope to significally
increased our efforts in formal methods and
automated configuration control.

Beginning in Fiscal Year 1987, a major
RDT&E initiative is being planned to
develop a new technology base in computer
security and to distribute that base to
industry. The effort will be carried on
with broadened industry participation. Our
future program will comprehensively treat
all aspects of AIS security from the
component and the total systems view.

CONCLUSION

The Center's program provides a sound
basis for expectations that computer
security vulnerabilities could be greatly
reduced by the end of the 15-year period.
It also provides a balanced effort to
requce vulnerabi~ities in the intervening
years. The research is conducted on a
schedule that would significantly
contribute to the long-term
interoperability goals of the DoD.

REFERENCES

1. DoD Computer Security Center,
Department of Defense Trusted Computer
System Evaluation Criteria, CSC-STD-001-83,
dtd 15 August 1983.

2. The White House, National Policy on
Telecommunications and Automated
Information System Security, National
Security Decision Directive 145
(Unclassified Version), dtd
17 September 1984.

10

COMPUTER

NATIONAL BUREAU OF STANDARDS'

SECURITY, INTEGRITY, AND RISK MANAGEMENT

Dr. Dennis K. Branstad

NBS Fellow

and

Dr. Stuart W. Katzke

Computer Scientist

National Bureau of Standards

PROGRAM

Institute for Computer Sciences and Technology

Gaithersburg, Maryland 20899

·Computer security is a critical component of
the overall management of computers. The
National Bureau of Standards (NBS)
through its Institute for Computer Sciences
and Technology (ICST) initiated a Computer
Security and Risk Management program in 1972.
Since that time, numerous standards,·
guidelines, and technical reports have been
issued in the areas of physical security,
technical security, and computer security
management. The program encompasses research
and development of security standards,
transfer of technology to potential
implementors and vendors, and assistance to
users of security technology.

NBS/ICST interacts with Federal agencies,
voluntary standards making organizations, and
private industry in this program. Federal
organizations utilize the technical standards
and expertise established within the program.
Federal executives have requested assistance
in addressing computer security problems.
Congressional organizations, including GAO,
OTA, CRS and several congressional
committees, have requested publications,
briefings and testimony regarding computer
security. Finally, ADP vendors, security
product vendors and security consultants
interact with, and use the results of this
program.

security events, ranging from
"hackers" to international
, have raised the awareness of

computer vulnerabilities and risks.

Significant risks have been identified in

defense/intelligence systems, Electronic

.funds Transfer systems, automated decision
making systems, and real-time control (e.g.,
air traffic control) systems. ICST has
structured a comprehensive program in
computer integrity (detecting unauthorized
entry or change of information),
confidentiality (preventing unauthorized
disclosure of information) and reliability
(assuring availability of information
processing) to reduce existing
vulnerabilities and risks. Organizations now
rea 1 i ze that they have become tot a11 y re 1 i ant
on computers; in many cases, it is impossible
to return to manual methods when the
computers are unavailable, unreliable or
unsecure.

ICST draws upon its own research and that of
other organizations in accomplishing its
goals. Generically, technology transfer
interfaces have been established linking
vendors and users, government and industry,
managers and technologists. Specifically,
the following projects depict the depth and
breadth of this program:

INFORMATION SYSTEMS SECURITY LABORATORY. The
Information Systems Security Laboratory at
the NBS was established to provide a research
environment in which various computer
security technologies and techniques can be
studied and tested. The Laboratory is
intended to support activities in areas such
as communications network security,
cryptography, personal identification, access
controls, secure system architectures, and
related computer security disciplines.

The objective of the Laboratory is to enable
NBS to maintain currency in the rapidly
chang i n g techno 1 o g i e s that w i 1 1 i m.p act
security of computers and information in the
years ahead. Among the current activities of
the Laboratory are the following:

o 	 Personal Computer Guidance - NBS Special
Publication 500-120, "Security of
Personal Computer Systems: A Management
Guide," was the first in a series of
documents intended to provide an
understanding of the information
security threats involved in using
personal computers and of approaches to
reducing the associated risks. A user
guide, technical guide and FIPS
Guideline are planned for the near
future.

o 	 Security Products Data Base - A
comprehensive database or-security
enhancing technologies, products, and
services is being built. This is being
done in support of efforts to develop a
FIPS Guideline on the security of small
computer systems.

o 	 Personal Computer Security Product

Testing - With the co-operation of

industry, a wi·de range of commercially

available computer security devices

11

designed for personal computers, in a general public data network. The
communications security, and related standard has gained wide acceptance and
purposes is being examined. This has usage. More than ten additional Federal,
enabled NBS to develop better guidance Indust~ial and Commercial standards have been
for users of computer systems who do not issued that utilize the Data Encryption
have the resources to develop and build Standard (DES).
their own security mechanisms.

RISK MANAGEMENT. Research is underway to
develop an automated, expert system that will
all ow iterative safeguard selection based on
the cost of controls and their relative
reduction of risk. Current activities are
focusing on the development of a conceptual
model of the risk management process which
can be used to foster a common understanding
of the terminology and to describe the
functional relationships that exist between
key elements such as assets, vulnerabilities,
threats, safeguards, threat frequency and
severity, and impacts.

CONTINGENCY PLANNING. Previous NBS
contingency planning publications consist of
a Federal Information Processing Standard
(FIPS) Guideline and an Executive Guide.
Work in progress includes the development of
a guide for meeting the backup requirements
of computer applications and systems. The
guide identifies requirements criteria that
must be addressed when considering backup
alternatives for computer systems and uses
the criteria as a framework for describing
the advantages and disadvantages of
alternative backup choices.

CERTIFICATION AND ACCREDITATION. NBS is
participating rn-a joint project with the
President's Council on Integrity and
Efficiency aimed at developing criteria fQr
prioritizing system development life cycle
audits. This work has been strongly
supported by both Federal and private
organizations. Publications resulting from
this work will include a workshop report on
auditor work priority criteria, a report on
an auditor work priority scheme, and a guide
to auditing security and controls throughout
the automated information system life cycle.

LOCAL AREA NETWORK SECURITY. An experimental
secur:eLOcal Area Network (LAN) has been
established to investigate the methods of
protecting the security and integrity of
information processed in this type of
environment. The project is being conducted
in conjunction with the telecommunications
security organization of the Department of
Defense. A secure transport layer protocol
is being implemented to protect information
between computers in the network.

DATA ENCRYPTION STANDARD. NBS published the
first Federally approved public standard for
the cryptographic protection of computer data
in 1977. This standard was needed as a basis
of protecting communications of information

ELECTRONIC FUNDS TRANSFER SECURITY. A number
of security standards have been developed
within the Financial Community using the DES.
~BS has provided a technical leadership role
in developing, implementing, and validating
these standards. ANSI X9.8, X9.9, and X9.17
all utilize security technology that was
provided, in part, by NBS. These standards
are for protecting Personal Identification
Numbers, protecting Electronic Funds Transfer
Messages and providing automatic
cryptographic key distribution, respectively.

PASSWORD USAGE STANDARD. A standard on the
use of passwords for personal identification
and authentication was recently approved for
publication as FIPS 112. The standard
specified ten factors that must be considered
when designing and implementing a password
system. It also defines minimum security
criteria for each of the ten factors that
must be met in Federal applications.

SECURE "SMART CARD" TECHNOLOGIES. NBS
recently held a workshop on the security
aspects and requirements of Integrated
Circuits (ICs) on credit-cards. These cards
are assigned to an individual and carried by
the individual. Many applications of the
cards were discussed with respect to their
security requirements and benefits. Research
and standards activities were outlined for
secure chip cards.

NETWORK SECURITY ARCHITECTURES. NBS has
participated in identifying the requisite
areas of network architectures for
implementing a variety of security
provisions. A workshop was sponsored by the
DoD Computer Security Center last Spring in
computer network security. The Open Systems
Interconnection network architecture is the
model commonly used for this work. An
addendum to the International Standards
Organization document on the architecture is
being ~repared regarding security.

12

DOE COMPUTER SECURITY CENTER ACTIVITIES

Lara H. Baker

Los Alamos National Laboratory

Los Alamos NM 87545

ABSTRACT

This paper is a brief summary of a panel dis
cussion at the 8th National Computer Security Con
ference. Panel members included Dr. Lara H. Baker,
Project Manager for Information Security, Los Alamos
National Laboratory, Los Alamos, NM; Mr. Charles M.
Cole, Deputy Associate Director for Computer Secur
ity, Lawrence Livermore National Laboratory, Liver
more (LLNL), CA; and Mr. Duane G. Harder, Project
Leader for Center Activities, Los Alamos National
Laboratory, Los Alamos, NM (currently on detail to
Washington DC). Each panel member discussed a sep
arate subject: Dr. Baker mentioned the background,
mission, and composition of the DOE Center for Com
puter Security; Mr. Cole discussed computer security
activities at the Lawrence Livermore National Labo
ratory; and Mr. Harder discussed recent activities
in the DOE Center for Computer Security.

BACKGROUND

The U.S. Department of Energy (DOE) has a long-·
standing interest in computing and computer secur
ity. Indeed, DOE, and its predecessor agencies,
were interested in computer security long before
much of the community realized there was such an
animal. To a first approximation, the DOE has in
its inventory, and in the inventory of its contrac
tors, about 25 percent of the computing systems
owned or operated by the federal government.
Furthermore, because of the nature of its activi
ties, DOE has substantially more than 25 percent,
perhaps as much as 50 percent, of the computational
capability within the United States government. For
example, Mr. Cole discussed the LLNL' s computing
suite, which includes 6 CRAYs, 4 CDC 1600's, several
score of DEC VAXs, and several hundred DEC
PDP-ll's. The suite at the Los Alamos National
Laboratory is substantially identical. And these
Laboratories are not, by any means, the only
computing resources in the Department. Thus, be
cause of DOE's long-term interest in computing, and
the fact that some of the information in those com
puters is among the most sensitive in the nation's
inventory, DOE has had a long-standing interest in
protecting that information.

In 1980 the DOE Office of Safeguards and Secur
ity formalized its computer security R&D and field
assistance efforts by forming the Department of
Energy Center for Computer Security. For various
historical reasons, this Center was placed at the
Los Alamos National Laboratory. The mission of the
DOE Center for Computer Security is to maintain a
center of excellence in computing security for the
Department, to provide Research and Development
(R&D) activities as appropriate for upcoming
Department missions, and to provide assistance to
DOE and DOE contractors on an as-needed basis.
Since 1980, the Center has substantially increased
its assistance role to the Department and to DOE
contractors, while maintaining an R&D role.

Because the DOE has chosen to run very large
activities with a minimal headquarters staff, sev
eral organizations, including the Los Alamos Natio
nal Laboratory and Lawrence Livermore National
Laboratory are captive contractors of the Department
of Energy. As a result, each year DOE/OSS and Los
Alamos agree on the tasking of the Center for the
next year, DOE provides the funding, and Los Alamos
manages the Center's activities.

COMPOSITION

The DOE Center for Computer Security is a
rather close-knit cadre of about 10 people, or more
precisely 10 full-time equivalents, located at Los
Alamos, and occasionally actually found in Los
Alamos and not on travel. However, the DOE's compu
ter security effort is substantially more than the
DOE Center for Computer Security. As in other
Departments, the people in the field, who are
actually running the systems, form an integral part
of the computer security effort. There are 10 Com
puter Security Operations Managers (CSOMs) who have
overall responsibity for computer security in the
DOE field offices, and for the contractors who re
port to those field offices. In addition, each
classified computing system, or set of systems at
one location, in the Department of Energy, or at DOE
contractors, has a Computer System Security Officer
(CSSO) assigned to be responsible for the security
of that system. The CSSO is the cornerstone of the
DOE computer security effort.

RECENT ACTIVITIES OF THE DOE CENTER FOR

COMPUTER SECURITY

Since its inception, the DOE Center for Compu
ter Security has had a considerable effort involved
with advice and assistance to DOE and DOE contrac
tors through a newslletter, and through R&D activi
ties. These effort:s continue, perhaps with some
emphases changing over time.
The Center's newsletter is published quarterly and
currently has a mailing list of about 1000 names.
It is unclassified apd provides a forum for discus
sions among the computer security practitioners, the
DOE and DOE contractors.

The Center also provides instructors for
classes designed to assist CSSOs in discharging
their obligations. These classes are held about
quarterly, and usualJly consist of 30 to 60 people.
The Center provides two instructors; DOE Head
quarters also provides one or two instructors. The
classes are three d~ys long and are held at various
sites around the co~ntry. Despite the fact that the
schedule calls for' these classes to be held only
quarterly, the demand is quite high, and we have
just completed the fifth such class this fiscal
year.

13

As part of the DOE's operations security prog
ram, teams from the DOE center for Operations secur
ity at Los Alamos do vulnerability assessments (VAs)
on various DOE sites. These VAs involve taking an
adversary view of the site and looking into what
information is available to a competent, trained,
but uncleared, outsider. Computer security is an
integral part of this assessment, and staff members
from the DOE Center for Computer Security often
participate as technical experts in VAs. These VA
visits provide an interesting insight into what is
going on in facilities and into the needs of the
various facilities. Many things observed on VAs,
and on other visits, have resulted in changes in
CSSO classes and in other training.

As part of its overall responsibilities, the
DOE is involved in activities involving about 10
billion dollars in facilities scattered over all the
United States. Interconnecting these facilities
with high-speed data transmission is an ongoing
effort in DOE. The initial stage of this inter
connection is called the wide-band communications
network (WBCN). It will consist of 56-kilobit lines
connecting major DOE sites and will ~e used prin
cipally for CAD/CAM work among DOE facilities. The
DOE Center for Computer Security is responsible for
the development of a security controller to allow
access and authentication among the DOE sites over
the WBCR. This is an interesting exercise in that,
while all the DOE sites are, in fact, under one set
of security guidelines, the WBCR is actually inter
connecting a large number of sites that have dif
ferent security policies. Assuring the security of
this collection, a network aggregate, is a very
interesting problem.

COMPUTER SECURITY AT THE LAWRENCE LIVERMORE
RATIONAL LABORATORY

The Lawrence Livermore Rational Laboratory
(LLRL) Computing Center (LCC) comprises one of the
worlds largest concentrations of computing power.
This computing power is used in various programs at
LLRL, including energy development, pure research,
SDI; and weapons development. The aim of the compu
ter security program at LLRL is to provide the
greatest possible access to approved users, and the
least possible access to anyone else. This presen
tation includes an overview of what is in that
center and how it is protected.

".· ..;

14

ON THE INTEGRITY PROBLEM

Sig Porter
Terry s. Arnold

Merdan Group

4617 Ruffner St.
San Diego, CA 92117

Abstract

The term 'integrity' has been used to express
different concepts without expl1citly noting
the differences. Explicitness about the
nature of integrity clarifies the design
process. Six types of integrity are discussed
here. Two types are of particular value for
system design and specif1cation.

Introduction

In the years following the appearance of Biba
[1] a great deal of discussion has occurred in
the area of what is meant by integrity. At
times it has appeared that each member of the
computer security .community has their own
(usually implicit) definition, and that these
definitions are different. The primary goals
of this paper are to present an explicit set
of definitions, and to introduce the .concept
that there are several kinds of integrity that
must be thought about. The secondary goal is
to present a base for reasoning about the
different kinds of integrity.

This paper is limited to security concerns in
the automated part of systems. We do not
address considerations of design validation,
or interpret1on of the intentions of message
senders. We also do not consider clearances
or integrity of people.

Deflnitions

One reason for the confusion about integrity
is that it is not a simple one-dimensional
variable. Some candidates for integrity
dimensions are given below. These will then
be reduced to a smaller number.

1. How correct (we believe) the informa
tion in an object is.

2. How confident we are that the informa
tion in the object is actually from the
alleged source, and that it has not been
altered from the original form.

3. How correct (we believe) the functioning
of a process is.

4. How .confident we are that the function
ing of a process is as it was designed to
be.

5. How concerned we are that the informa
tion in an object not be altered.

6. How correct we hope the information in
an object is.

The environment we used for this study
includes message transmission over an unreli

able/hostile medium, in addition to the usual
computer object .considerations. We believe
the extreme conditions of this environment
help to illuminate the situation.

Discussion of Definitions

Dictionaries list three definitions for
integrity:

1. Completeness; wholeness
2. Unimpaired condition, soundness
3. Honesty, sincerity

4.

Definition 3 applies to people, and is beyond
the scope of this paper. The other defin
itions appear to be the source of the binary
view of integrity ("An object either has
integrity or it doesn't"). Integrity-1 seems
to have resulted from an attempt to generalize
this binary view of integrity. While there
are several possible ways to make the notion
of correctness concrete, e.g., correct design,
the sender sent what he meant to send, N bits
of an M-bit message were correct, etc., we
find it most useful to consider the ways in
which the correctness of a message .can be
validated: one can check the syntactic form
or interfield consistency of certain rigidly
formatted messages.

Information theory limits the usefulness of
correctness as an integrity measure, since
conveyance of information and .complete verifi
cation of correctness are mutually exclusive.

Correctness is more meaningful for functions
(i~e., hardware and software) than for data.
The difference is that for functions our
.concern is for correctness of design, rather
than communication of information. By defini
tion, Trojan horses are not part of a design,
since the purpose of the design is to accom
plish the aims of the system's user or
customer. We regard Trojan horses as an
implementation failure, instead. Integrity-3,
then, comprises correctness of design, .cor
rectness of implementation, and unalteredness
of the implementation. Integrity-3 validation
includes structured walk-throughs and formal
verification. Further consideration of the
integrity of design, while necessary, is
beyond the scope of this paper.

Integrity-2 is based on standard Bayesian
probability calculations. Integrity-2 valida
tion mechanisms include error detecting and
correcting codes, cryptographic authenti
cators, and digital signatures.

Cryptographic authenicators have, themselves,
been a source of confusion, since some workers
have ignored the distinction between an object
and a second object created by encapsulating
the original object (say, by adding a valida
tion field). We will call this second object

15

a capsule. Integrity-6 resulted from our
examination of an attempt at a formal specifi
cation which appeared to apply a high
integrity level to a capsule immediately upon
receipt from an unreliable source. This high
level seemed to be based on expectations about
the (to be determined) integrity-2 of the
object in the capsule.

To put it more formally, the capsule is
received with high integrity-6 (because we are
prepared for an important and meaningful
message) and low integrity-2 (because the
capsule was received from an unreliable
source). If the validation process is satis
fied, then the content (of the capsule) has
high integrity-2, and integrity-6 is not
meaningful. If the validation process is not
satisfied, then the content has low integrity
2, and integrity-6 is not meaningful. Since
integrity-2 is meaningful both before and
after validation, it is greatly preferable to
integrity-G. If we do not distinguish between
integrity types, and assign high integrity
values to both capsule and content, then we
will have made a hidden semantic shift (from 6
to 2) which will interfere with relating
formal specification to the real world. If we
use integrity-2, then validation is an
integrity raising process, which is auto
matically flagable (as it well should be) as a
trusted process.

Since integrity-6 may look like a straw horse,
we note that we didn't invent it (except
possibly by misinterpretation of the work of
others).

Integrity-5 applies to electronic funds trans
fer, and to military command and control. The
use of integrity-5 can be illustrated by the
message example: The incoming capsule has
moderate integrity-5. It's not extremely high
because if the capsule has been altered we
will detect it at validation. It's not low
because we will be inconvenienced if the cap
sule has been altered. That is, we may be
unable to extract the capsule content and thus
require further countermeasures, such as
retransmission. The validated message content
has high integrity-5 since alteration after
validation may not be detected. We also
observe from this example that integrity and
denial of service are not orthogonal. Thus an
intended attack on integrity becomes an actual
denial attack.

Integrity-4 is concerned with delivered and
running software, but not with the design
process. If the data representing the code of
a function or process has not been tampered
with, then its behavior will be as designed
and implemented. Validation mechanisms for
integrity-4 include configuration management
and program data protection. This data
protection is identical with the concerns of
integrity-2. Thus, except for implementation
considerations, integrity-4, is identical with
integrity-2.

Since we would like to minimize the number of
types of integrity with which we must be con
cerned, we first eliminate integrity-3 and 4,
until we have a way to deal with design
issues. We regard 6 as dangerous, and there
for• eliminate it. Integrity-! is occasion
ally relevant, but its utility is severely

limited by information theoretic consider
ations. The intent behind integrity-! can
usually be better handled with integrity-2.
Integrity-5 is quite different, and quite
valuable.

We find ourselves using integrity-2 and
integrity-5 only, because integrity-2 (confi
dence) is more manipulatible than integrity-!
(correctness). Integrity-2 can, in fact, be
measured as probability, using all the custo
mary probability calculations. For both
integrity-2 and integrity-5 validation is an
integrity raising process.

Integrity-2 is appropriate to use for system
design goals. Integrity-5 may enter as part
of the design process, to help in determining
countermeasures. At system run time,
integrity-2 is an appropriate measure to apply
to actual objects.

Designing for Integrity

When designing the integrity aspects of a
system, we first consider how much we care if
a data item (or message) of a particular class
is altered. This is integrity-5. To say we
care a lot means the same as attributing a
high integrity-5 to the item.

Integrity-5 is a non-quantifiable value with
an impact (and relation with integrity-2)
which depends on the environment. For
example, consider an intermediate numeric
value of an internal (to cpu) calculation:
High integrity-5 may mean that we have an
integrity-2 goal of .99999999 probability that
the value has not been altered, but no special
measures are required. Conversely, for a
message which has been received from a noisy
and hostile transmission path, we may set an
integrity-2 goal of .99 probability that the
value has not been altered, and require both
error correction codes and authentication
fields to achieve this.

If our task is generation of specifications,
we will probably set integrity-2 goals, based
on integrity-5. If our task is design based
on integrity-5 specifications, then our first
analysis may be to compute integrity-2
assuming no (or nominal) countermeasures. We
would then (subjectively) compare this
integrity-2 value with the integrity-5
specification, and determine if further
countermeasures are appropriate.

There are several possible approaches to
making integrity-5 more formal:

1. Relate integrity-5 levels to counter
measure 	 requirements (as in orange book).
[Considering the above remarks about the
impact of integrity-5 depending on the
environment, this is probably not a good
ldea.]

2. Relate integrity-5 levels to specific
integrity-2 values. [Also not too good,
since these are different concepts.]

3. Establish classes of environments
(benign, hostile, open closed, noisy, etc.)
and set up a matrix with coordinates of
environment classes and integrity-5 levels.

16

Fill the intersections with countermeasures
or integrity-2 values (as in 1 ·or 2,
above.) The additional coordinate may make
this reasonable.

Reasoning About Integrity

Since we have established definitions of the
kinds of integrity, we can now discuss the
kinds of reasoning that are appropriate for
verification of implementations. Under the
assumption that levels of integrity-2 were
included as part of the specifications, we can
calculate the actual performance of each of
the countermeasures employed. I.e., for each
countermeasure we can calculate the
probability that it could be defeated in an
undetectable or nonrecoverable manner. These
calculations would be based on the same
assumed channel model used in the definition
of the integrity-2 for the specifications.
The achieved integrity-2 levels (expressed as
numeric probabilities) are compared arithme
tically to the specification levels. An
obvious decision rule is that for a given
countermeasure the achieved probability (of
undetected modification) must be less than the
specified level. It should be noted that we
are talking about the same things at both the
specification and implementation verification
levels of abstraction. Introduction of a
partial ordering of different integrity-2
levels does not appear to be of value and
obscures the issue. This appears to be due to
the fact that even though integrity-2 levels
can be ordered (since they are numbers) the
entities to which they relate may not be com
parable in any reasonable sense.

Conclusions

There are two useful and significantly
different types of integrity, and they are

2. How confident we are that the
information in the object is actually from
the alleged source, and that it has not
been altered from the original form.

5. How concerned we are that the
information in an object not be altered.

We have been using these concepts for a number
of months on some real applications and are
finding them very useful. We find that the
knowledge of these integrity types helps to
avoid inadvertent changes in definition in the
middle of a specification. As a result, we
find it much easier to keep our design
concepts clear and directly convertible to
formal expression.

Reference

[1] Biba, K. J., Integrity Considerations
for Secure Computer Systems (Technical rept.),
Mitre Corp, Bedford Mass, Report No.: MTR
3153-REV-1; ESD-TR-76-372, Apr 77, 66p

17

A PRACTICAl ALTERNATIVE TO HIERARCHICAL INTEGRITY POLICIES

W.E. Boebert

Honeywell Secure Computing Technology Center
Minneapolis MN

BACKGROUND

The Secure Ada Target

The Secure Ada Target (SAT) project is an
effort to develop a machine which meets and
exceeds the A1 level of the Department of
Defense Trusted Computer System Evaluation
Criteria (TCSEC). An overview of the machine
is given in Reference 1.

Enhanced Security Policies

The SAT system design meets the A1
requirements with respect to the mandatory
and discretionary policy requirements, and it
exceeds the A1 level by enforcing an enhanced
mandatory policy whose aim it is to prevent
corruption of sensitive information. Early
versions of the machine incorporated a
variant of the "traditional" hierarchical
integrity ~olicy; detailed analysis showed
the inadequacy of this approach, and an
alternative based on types and domains was
developed.

PROBLEM STATEMENT

TCSEC Requirements

The TCSEC requires that syst~ms at the B2
level of assurance and above demonstrate
conformance to a security policy. The TCSEC
further gives a set of minimum requirements
that an acceptable policy must meet. Briefly
stated, these requirements are that
information be labelled internally with a
security level, and accesses made by active

R.Y. Kain

University of Minnesota
(Consultant to Honeywell)

Minneapolis MN

subjects to information-holding objects be
restricted in a manner that prevents
information from flowing down in security
level. We shall refer to this policy as the
"compromise policy," and the security level
used in its policy decisions as the
"compromise level" of objects and subjects.

The TCSEC is silent on the equally important
topic of preventing the corruption of
sensitive information. A modular
implementation of the TCSEC requirements
dictates that it is necessary to impose
proven constraints on information flow other
than those imposed by the mandatory policy.
This implication arises because the TCSEC
requires that exported information be
properly labelled with its compromise level.
A modular implementation of this. exportation
process would have separate modules for label
insertion and device control.

Practical secure systems also require
constraints on information flow in order to
defend against so-called "virus" attacks, to
demonstrate assured data flow through
cryptographic devices, and to enforce
sophisticated security policies whose aim it
is to prevent aggregation and inference.

First Efforts

An early response to the problems of
information corruption was the development of
"Integrity Policies," several variations of
which are described in Reference 2. In
effect, these policies add a second attribute
to information (integrity level) and impose

18

access restrictions in order to protect
sensitive information from unauthorized
modification.

INTEGRITY POLICIES

Varying Integrity Levels

The policies described i~ Reference 2 fall
into two broad classes. In the first class,
the integrity levels associated with subjects
and objects may change. This class includes
the Low-Water Mark Policy for Subjects and
the Low-Water Mark Policy for Objects.

In the Low-Water Mark Policy for Subjects, a
subject may neither modify objects nor send
messages to a subject whose integrity level
is greater than the one the sender currently
has. The current integrity level of a subject
is equal to the lowest integrity level of any
object to which it has been granted observe
access; hence the name "Low-Water Mark."
"Execute" access is treated as a form of
observe.

The Low-Water Mark Policy for Objects does
not impose any restrictions on the ability of
subjects to modify objects. Instead, the
current integrity level of an object is set
to the lowest integrity level of any subject
which has been granted "modify" access to
that object.

Integrity policies in the above class have
seen little, if any, practical use, owing to
the difficulties of administrating them and
the pathological states which they allow
(such as a subject being denied access to
objects it has created.)

Fixed Integrity Levels

The second broad class of integrity policies
includes the Ring Policy and the Strict
Integrity Policy. In these policies, the
integrity levels of both subjects and objects
are fixed. Under the Ring Policy, a
subject may obtain "observe" access to any
object, but may not modify objects nor
communicate with subjects of higher

integrity. The Strict Integrity Policy is
the full formal dual of the compromise policy
defined in the TCSEC. It consists of a Simple
Integrity Condition, which states that a
subject cannot observe objects of lesser
integrity; an Integrity *-property, which
states that a subject cannot modify objects
of higher integrity; and an Invocation
Property, which states that a subject may
only send messages to subjects of higher
integrity.

This second class of integrity policies has
fewer intrinsic difficulties than the first,
and variants have been implemented in
reference monitors.

General Principles

Both classes of integrity policies represent
varying interpretations of the same general
principle: information should only flow "up"
in integrity. In order to avoid excessive
detail, we will offer our critique of, and
alternative to, the general class of policies
which adhere to this principle. We will call
such policies "hierarchical integrity
policies." This class includes all policies
which assign an attribute called "integrity
level" to information, and which then impose
rules to prevent (to one degree of assurance
or another) information at high integrity
levels from being corrupted by information of
low integrity.

Integrity and Compromise

It is tempting to view hierarchical integrity
policies as duals or complements of the
compromise policy mandated by the TCSEC.
While such a relationship can be shown to
exist formally (especially in the case of the
Strict Integrity Policy), the relationship
does not exist in the broader sense of intent
and application.

In purticular, the nature of a compromise
policy is that controls are imposed on
programs based upon the context in which they
execute, and not upon the degree of trust
placed in the programs themselves. In

19

particular, a compromise policy such as that
mandated by the TCSEC can be shown to prevent
the compromise of information even if the
programs being executed are hostile in their
intent.

Such immunity from hostile programs cannot be
obtained by using integrity policies. If
there were a hostile program in the system,
it could simply wait until it was executing
in the context of a high-integrity subject
and then work its damage on high-integrity
information. Under the Low-Water Mark
Policies and the Strict Integrity Policy,
this danger is prevented by assigning
integrity levels to programs and equating
"observe" and "execute" access. In these
policies a high-integrity subject is
therefore bound to executing high-integrity
programs. In the Ring Policy no such
restriction exists, and the policy is
trivially subvertible by Trojan Horse
techniques.

From the above it can be seen that there is
an essential difference between compromise
and integrity: compromise level is more
naturally bound to subjects and integrity
level is more naturally bound to programs.
Attempts to bind integrity level to subjects,
as is done in the above policies, should lead
to difficulties in application. We will show
that such difficulties do in fact exist; they
manifest themselves as an excessive need for
the concept called "trust."

A "trusted subject" is one which is
privileged to selectively violate the letter
of a particular policy. The programs
executed by the subject must be verified to
insure that the exception does not violate
the intent of the policy. This in turn
requires that the intent of the policy be
explicitly stated; this is often no easy
matter.

In the case of compromise policies, trusted
subjects are those which are permitted to
"write down," that is, to cause information
to flow downward in compromise level. In the

case of such subjects, the adherence to the
"higher" policy is demonstrated by showing
that the subject moves a trivial am0unt of
information, that the movement of information
is audited so that abuses can be detected,
and/or that the movement takes place at the
instigation of an authorized user (a
so-called "downgrader").

If we follow the pattern of viewing integrity
policies as the formal duals of compromise,
then "integrity trust" is the privilege of
"writing up" in integrity. As with
compromise, we associate trust with "modify"
access in order to simplify the discussion.

The attribute of trust, in the policies under
discussion, is bound to subjects and not to
programs. It is therefore necessary to prove
that trust can never be abused; that is, that
no hostile program can ever be executed
within the context of a trusted subject. This
in turn requires verification of usually
complex low-level mechanisms which bind
programs to subjects.

It is also necessary to state the intent of
the policy being enforced, and to formulate a
subject-local property which captures that
intent. It is then necessary to verify that
the property is exhibited by all programs
which could be executed in the context of the
trusted subject. The use of trust therefore
greatly complicates the proof process and
reduces the degree of assurance in the
system. It is accordingly a goal of the SAT
effort to reduce the use of trust as much as
possible, and it was this goal that led us to
question and finally discard the notion of a
hierarchical integrity policy.

CRITIQUE

Assured Pipelines

In this section we will present a critique of
hierarchical integrity policies. We will
consider the shortcomings of such policies in
the context of what we call an "assured
pipeline," a subsystem which is
security-relevant and which must be
encountered by data flowing from a particular

20

source to a particular destination. Examples
of assured pipelines are labellers and
cryptographi~ subsystems. In Reference 3 we
give an example of a similar subsystem which
does not transform data, but instead
selectively audits requests made to the
reference monitor.

A labeller is a verified subsystem which
converts the security level of an object from
internal form to external form prior to the
export of that object. The most common
instance of a labeller is one which prints
the classification level of a single-level
object at the top and bottom of the pages
when that object is output to a hard-copy
device. A cryptographic subsystem encodes
data in such a way that it may be safely
downgraded and transmitted over an insecure
communications path without effectively
declassifying the information contained
within that data.

From the above discussion, it can be seen
that assured pipelines represent the most
basic kind of structure which one would wish
to construct and prove secure in a Trusted
Computing Base.

Security of Assured Pipelines

To prove that an assured pipeline is secure
requires the demonstration of three
properties:

1. The transforming subsystem cannot be
bypassed. That is, no hard-copy can be
printed without labels, and no information
can go out on the insecure path in
unencrypted form.

2. The transforms cannot be undone or
modified once done. Data cannot be
intercepted between labelling and printing,
and have the labels removed; data cannot be
intercepted between encryption and
transmission, and have unencrypted
information inserted.

3. The transforms must be correct. The
labeller must insert external labels which
are the proper representation of the internal

label of the object; the cryptographic
subsystem must properly implement the desired
cryptographic algorithm.

The last property is the only property
amenable to program proof techniques; the
first two properties must be demonstrated by
recourse to some global attribute of the
underlying system. We will now show that
enforcement of a hierarchical integrity
policy is a poor candidate for such an
attribute.

Integrity and Assured Pipelines

For simplicity, we shall use the labeller for
hard-copy output in our discussion. Other
labellers and cryptographic subsystems pose
the same problems for hierarchical integrity
policies; only the terminology used in the
example will change.

There are two object types and two modules in
this example of an assured pipeline. The
object types are unlabelled and labelled
data; the modules are the labeller and the
output subsytem. Unlabelled data does not
include the printable classification levels
at the top and bottom of pages; labelled data
does. The labeller determines the security
level of the object from its internal label,
locates page boundaries, and inserts the
proper label text. The output module is a
device driver which causes the labelled data
to appear on some appropriate hard-copy
device.

The local security properties which must be
proven of each of the modules are that the
labeller selects the proper printable label
and puts it in the proper place, and that the
output module moves data to hard copy
without modification to the label text.

The global security properties which must be
proven of the pipeline are:

1. Only the labeller module produces
labelled data.

2. Labelled data cannot be modified.

21

3. The output module will accept labelled
data only.

We will now show that attempts to 'enforce
these properties using a hierarchical
integrity policy will inevitably involve the
use of "trust" somewhere in the pipeline.
Note that all information is at the same
compromise level, so that the mandatory
security policy imposed by the TCSEC is
trivially satisfied.

There are three alternatives to assigning
integrity levels in such a pipeline: the
integrity levels of all data may be equal,
the integrity levels may increase as data
moves toward the output device, and the
integrity levels may decrease as the data
moves down the pipeline.

If labelled and unlabelled data are at the
same integrity level, then no integrity
policy will be able to distinguish between
them. A hostile program will be able to
remove or modify labels at will between the
labelling and the output steps, and the
output module will not be constrained by
integrity level to outputting only labelled
data.

If labelled data is at a higher integrity
level than unlabelled data (the intuitive
case), then trust must be invoked at each
modul~ in the pipeline, as it is clear that
in such an arrangement information is flowing
"up" in integrity.

The case where labelled data is at a lower
integrity level than unlabelled has the same
shortcomings as the equal integrity level
case.

Thus the application of hierarchical
integrity policies to the most basic
structure of a secure system either fails to
enforce the desired restrictions or requires
an exception from the policy at each step.
We argue that this situation represents an
excellent definition of the word
"impractical," and offer an alternative that
avoids these shortcomings and confers other
benefits as well.

POLICY ENFORCEMENT IN THE SECURE ADA TARGET

The SAT machine directly implements the
reference monitor mandated by the TCSEC. The
SAT reference monitor system checks every
individual access attempt for consistency
with the security policy being enforced by
the system.

The SAT reference monitor is implemented in
hardware, and resides between the processor,
which generates memory access requests, and
the memory system, which satisfies these
requests. The reference monitor intercepts
illegal access attempts; an interrupt is
caused when an illegal access is detected.
For "normal" checking, the system aborts the
offending subject, thereby guaranteeing that
no illegal accesses can be completed and
further that the program cannot obtain much
information regarding the security state of
the system by repeated attempts to make
illegal accesses. (Otherwise, the system's
security state might be used to construct a
covert channel between two subjects.)

The SAT reference monitor is implemented by a
combination of a memory management unit
(MMU), which has conventional rights checking
facilities, and a tagged object processor
(TOP), a new module responsible for the
system's protection state and the enforcement
of that state. In particular, the TOP sets
up the tables that define the access rights
checked by the MMU. For system integrity, it
is also necessary that the TOP be responsible
for resource management and for the integrity
of the internal state of the reference
monitor. One important part of this state is
the global object table (GOT), which contains
a description of the security attributes of
all objects within the system. In general,
all elements of the system, including users,
security properties, code, and data, are
objects described within the GOT and managed
by the TOP.

Of major concern are the security attributes
of objects and their use in determining the
access rights to be placed within the MMU
during program execution. The ·basic SAT
design starts with a minimum set of security

22

attributes sufficient to satisfy both the
mandatory and discretionary security policy
reQuirements, which require comparisons
between attributes of the subject in whose
context a program is executing and attributes
of the object to be accessed by that program.
Thus security attributes are associated with
both subjects and objects, and the TOP must
make appropriate comparisons to establish
proper access rights in the MMU.

Three security attributes are associated with
subjects and three different attributes are
associated with objects. Both subjects and
objects have security (compromise) levels.
Each subject is performing its function for
some "user," whose identity is the second
subject security attribute. The
corresponding object attribute is its access
control list (acl), which lists those users
who are allowed access to the object's
contents, along with the maximum access
rights that each designated user is
permitted. The third subject security
attribute is the "domain" of its execution,
which is an encoding of the subsystem of
which the program is currently a part. The
corresponding object security attribute is
the "type" of the object, which is an
encoding of the format of the information
contained within the object.

The process of determining the access rights
to be accorded a particular subject for
access to a particular object uses all of
these three security attributes, as follows.

To enforce the mandatory access policy, the
TOP compares security levels of the subject
and of the object, and computes an initial set
of access rights according to the algorithm
defined in Section 4.1.1.4 of the TCSEC.

To enforce the discretionary access policy,
the TOP checks the acl for the object; the
acl entry that matches the user portion o~
the subject's context is compared against,the
initial set of access rights from the
mandatory policy computation. Any access
right in the initial set which does not appear
in the acl is deleted from the set. The

result is an intermediate set of access
rights.

The third SAT access rights determination
check compares the subject's domain against
the object's type. Each domain is itself an
object, and one of its attributes is a list
of the object types accessible from the
domain and the maximum access rights
permitted from the domain to each type.

Conceptually the aggregation of these domain
definition lists constitutes a table, which
we call the Domain Definition Table (DDT). To
make the domain-type check, the TOP consults
the DDT row for the executing domain, finds
the column for the object's type, and
compares the resultant entry against the
intermediate set of access rights. Any right
in the intermediate set which does not appear
in the DDT entry is dropped, and the result
is the final set of access rights which is
transmitted to the MMU.

(Certain domains have additional, privileged,
roles and may therefore obtain access rights
in excess of those determined from the
mandatory and discretionary checks. A
discussion of this mechanism is beyond the
scope of this paper.)

The above complex process cannot be performed
on every access attempt. On the other hand,
the checks cannot be made far in advance and
saved (in a "capability," for instance), as
such early binding cannot provide the access
right revocation implicit in certain acl
changes.

In SAT, the TOP operation load name space
table (LNST) evokes the access rights check;
it inserts access to a designated object at a
designated segment number in a subjects's
address space, and establishes the correct
maximum access rights for that subject to
that object. The mandatory, discretionary,
and domain rights checks are performed during
the execution of LNST, and then the
subjects's MMU table is modified to reflect
tie new entry. If the LNST operation is
proved to conform to the security policy and

23

if the MMU is proved to enforce the access
rights set in the NST, the system is thereby
proved to conform to the security policy for
each and every instruction execution.

Domain changing may occur as a side effect of
procedure call. If the called procedure is
not executable within the caller•s domain,
either the call is illegal or a domain change
is necessary to complete the call.
Information concerning domain changes is
stored in a Domain Transition Table (DTT),
which is stored as a set of lists associated
with the calling domain. The SAT system
creates new subjects to handle domain
changes, as required. When a call requires a
domain change, SAT suspends the calling
subject and activates the called subject.
The called subject has a different execution
context, name space, and access rights, which
will prevail for the duration of the
procedure•s execution.

In the SAT prototype, the DDT and DTT are set
at the time that a particular version of the
reference monitor is installed. The number

·of types and domains, and the relationship
between them, accordingly remains static
until a newer version of the reference
monitor is installed. Later versions of SAT
will include facilities for the dynamic
creation of types and domains.

Note that the access right computation
involves the successive denial, or "crossing
off" of those access rights initially allowed
by the mandatory policy. This approach
guarantees that omission of an access right
in a DDT entry for a type, domain pair will
effectively block access to that type by any
program encapsulated in that domain. This
guarantee is verifiable by inspection of the
DDT, and provides assurance that certain
types remain "private" to certain domains.
Note also that it is possible to assign types
to procedure objects, and place restrictions
on "execute" access in the DDT. This last
feature permits assurance that critical code
is indeed encapsulated in protected domains.
In effect, the DDT reflects, and gives
assurance in, the structure of the reference

monitor. This in turn permits a strong
correspondence to exist between the
organization of the design and the
organization of the proof.

USES OF TYPE ENFORCEMENT

Implementing Integrity Policies

We would like to begin by observing that our
type enforcement policy subsumes the second
class of hierarchical integrity policies,
that is, those in which an unchanged
integrity level is bound to subjects and
objects.

In order to implement a hierarchical
integrity policy in SAT, it is necessary to
first assign types to procedures based on
their integrity level. The set of procedures
possessing a given type is isolated into a
distinct domain, which is the only domain
from which these procedures may be executed.

Data objects are then assigned a distinct set
of types, also based on integrity level. It
is then trivial to devise a DDT configuration
which implements the restictions of the Ring
Policy or the Strict Integrity Policy.

For example, let us assume that we have three
integrity levels 1,2 and 3. We would then
have three types of procedures, P1, P2, and
P3, (with the corresponding domains) and
three types of objects 01, 02, 03. It is
also necessary to have a "gatekeeeper" domain
P4 for use when changes in integrity level
are required.

In order to implement the Strict Integrity
Policy, we need only construct a DDT
configuration as follows:
Object Type: 01 02 03

Domain P1: o/m 0 0

Domain P2: m o/m 0

Domain P3: m m o/m

Domain P4: null null null
(o = observe; m = modify)

24

And the following DDT configuration:

Called Domain: P1 P2 P3 P4

Domain P1: e e e cP4

Domain P2: null e e cP4

Domain P3: null null e cP4

Domain P4: cP1 cP2 cP2 e

(e =execute and stay in current domain;
cDestination = change to domain Destination.)

Tables for the Ring Policy may be similarly
constructed. Note that a binding which is
stated in the policy as existing between
integrity levels and subjects is here mapped
onto a binding between, in effect, integrity
levels and procedures. This mapping is
possible because the policy treats execute
and observe access the same, thereby
establishing a relationship between the
integrity level of the subject and the
integrity level of the procedure executing in
the context of that subject.

The above argument shows that any set of
restrictions enforceable by the second class
of integrity policies is enforceable by the
type enforcement policy. The first class of
integrity policies, in which integrity levels
of subjects or objects change, may be
dismissed as impractical from the point of
view of performance and proof.

Having argued that type enforcement can deal
with any case that a hierarchical integrity
policy can deal with, we proceed to the more
interesting cases in which hierarchical
integrity polices must appeal to "trust" in
order to accomodate practical processing
requirements.

Assured Pipelines

We will now show that the assured pipleline
structure can be readily accomodated by the
type enforcement policy. We will show DDT
and OTT configurations based on the following

types and domains:

Types: Unlabelled and Labelled data.

Domains: User, Labeller, and Output.

Unlabelled data is data which has only
internal labels associated with it. Labelled
data is data which is properly marked on the
top and bottom of each page for output.

Unverified and possibly hostile programs are
encapsulated in the User domain. The
labeller module described in the previous
section on assured pipelines is encapsulated
in the Labeller domain and is verified to
properly translate internal labels to
readable form and place them in the correct
positions in the data. The output module of
the previous assured pipeline description is
encapsulated in the Output domain and is
verified to not tamper with labels. None of
the domains in the example invoke any form of
privilege.

The DDT which enforces the pipeline is as
follows:

Object Type: Unlabelled Labelled

User Domain: o/m null

Labeller Domain: o o/m

Output Domain: null 0

(o =observe; m =modify.)

And the corresponding DTT is:

Called Domain: User Labeller Output

User Domain: e cLabeller null

Labeller Domain: null e cOUtput

Output Domain null null e

(e = execute and stay in sam~ domain;
cDestination = change to domain Destination.)

25

Note that not only does the DDT restrict the
data flow, but the OTT restricts the control
flow in such a manner that the pipeline must
be initiated by (possibly hostile) user code
in a proper manner; the Output domain is not
callable from the User domain.

TYPE ENFORCEMENT AND PROOF

Factored Proofs

Assurance, in the final analysis, is based on
human confidence; and confidence comes from
insight and understanding. It has
accordingly been a goal of the SAT project
that its proofs of security be accesible to
huma~ analysis, understanding, and criticism.

This goal has led us to avoid the
machine-generated proofs of previous efforts
in favor of proofs which have an informally
understandable underlying structure;
formalism is used to permit maehine-checking
of our results and not as an end in itself.

We use the traditional structure of a
"factored" proof, that is, an argument based
on an orderly presentation of lemmas. The
proof has two purposes. The secondary
purpose is to convince a skeptical observer
that our system is secure; the primary
purpose is to give that observer insight into
the precise meaning we give to the word
"secure."

In order to achieve this goal we must present
a proof whose organization corresponds in a
fairly obvious way with the organization of
the system, so that for every conclusion we
draw along the way there is a clearly
identified system feature which supports that
conclusion. In the next section we shall
outline such a proof of our example labeller
pipeline.

A Factored Proof of a Labeller

The fact that a labeller is "secure" can be
captured in three theorems:

26

Theorem 1: Only labelled information is
output to hard copy.

Theorem 2: Labels are properly inserted prior
to output of labelled information.

Theorem 3: Labels are not modified prior to
output of labelled information.

We now present the l~mmas used in our proof,
and the manner in which each lemma would
itself be proven.

Lemma 1: The SAT hardware properly enforces
a given DDT and·DTT configuration. This
lemma is proven as part of the overall proof
of the security of the SAT reference monitor,
and is accordingly "built ln" to the SAT
hardware.

Lemma 2: Only the Labeller module can write
to Labelled data. This lemma is proven by
inspection of the DDT configuration given in
the example in the previous section.

Lemma 3: The Output module will read nothing
but Labelled data. Again, this is proven by
inspection of the same DDT configuration.

Lemma 4: The Labeller module properly
translates internal labels to external form,
and inserts them at the top and bottom of
each page. This lemma is proven by applying
standard program proof techniques to the
labeller program. The proof involves
demonstrating the truth of two relatively
weak assertions: that the Labeller performs a
table look-up properly and that it can find
the top and bottom of a page of hardcopy.

lemma 5: The Output module does not tamper
with labels. As a practical matter, this
lemma will be proven using informal methods.
This is because Output modules are typically
complex and machine-dependent. It is
accordingly difficult to capture their
operation in the semantics of formal
program-proof systems. Modules of this type
are amenable to inspection and comprehensive
testing, especially when it is known (as in
this case) that their inputs come only from

formally verified code and therefore form a
tractable set of test cases.

We now note the correspondence between this
set of lemmas and the organization of the SAT
reference monitor. Lemma 1 is a "hardware
level" lemma, a global property which applies
to all programs which exe~ute on the SAT
hardware, irrespective of their context or
construction. Lemmas 2 and 3 are
"structural" or "programming in the large"
lemmas, properties which reflect the modular
decomposition of the SAT reference monitor
but which are not concerned with the
internals of the modules themselves. Lemmas 4
and 5 are "programming in the small" lemmas,
conclusions drawn about the operation of the
modules which are independent of their
context in the system. Thus we argue that
there is a clear intuitive correspondence
between elements of the system and elements
of the proof.

Previous efforts to prove the security of
labellers have generally been restricted to
Lemma 4 and occasionally Lemma 5; that is,
the proof has demonstrated that if the
Labeller is invoked, then it properly labels;
the proof does not demonstrate that the
Labeller must always be invoked. In logical
terms, the proof fails because a necessary
but not a sufficient condition has been
demonstrated; in design terms, the proof
fails because the correctness of a module•s
internals has been shown but the correctness
of the structure of the system has not. This
situation is analogous to proclaiming a
system correct when its modules have all
passed unit test but integration testing has
not yet been performed.

Given the above lemmas, the proof of each
theorem is as follows:

Theorem 1 (Only labelled data goes out):.
Lemma 1 (DDT enforced) and Lemma 2 (Only
Labeller writes Labelled) and Lemma 3 (Output
only outputs Labelled).

Theorem 2 (Labelled data is correct): Lemma 1
(DDT enforced) and Lemma 2 (Only Labeller
writes Labelled) and Lemma 4 (Labeller labels
properly).

Theorem 3 (Labelled data is tamperproof):
Lemma 1 (DDT enforced) and Lemma 2 (Only
Labeller writes Labelled) and Lemma 5 (Output
module is benign.)

SUMMARY

Hierarchical integrity policies have been
shown to be inadequate to enforce the
restrictions on information flow required by
practical systems. An alternative policy
based on types and domains has been presented
which has been shown to subsume both the
practical variations of hierarchical
integrity polices and cases which such
polices cannot handle without recourse to
exceptions. The alternative is also shown to
support proofs whose structure corresponds in
obvious ways to the structure of the system
being reasoned about.

REFERENCES

1. 	 W.E. Boebert, R.Y. Kain, W.D. Young, and
S.A. Hansohn, "Secure Ada Target: Issues,
System Design, and Verification,"

Symposium on Security and Privacy, IEEE,
1985, 176-183.

2. 	 K.J. Biba, "Integrity Considerations for

Secure Computer Systems," The MITRE

Corporation, Bedford MA, MTR-3153, 30

June 1975.

3. 	 W.E. Boebert and C.T. Ferguson, "A
Partial Solution to the Discretionary
Trojan Horse Problem," these proceedings.

ACKNOWLEDGEMENTS

This effort has been supported by US
Government Contracts MDA904-82-C-0444 and
MDA904-84-C-6011.

27

ON THE LOGICAL EXTENSION OF THE CRITERIA PRINCIPLES

TO THE DESIGN OF

MULTILEVEL DATABASE MANAGEMENT SYSTEMS

Marvin Schaefer

DoD Computer Security Evaluation Center

Fort Meade, Maryland

Several researchers have opined that the
Trusted Coaputer Systeas Evaluation Criteria
<TCSEC> cannot be applied to the multilevel
database management problem. We do not sub
scribe to this view, and observe that many
special-purpose but multilevel database man
agement systems have been designed, imple
mented and evaluated in concert with the
TCSEC. In this paper we intend to examine the
nature of what has been done and, through
gedankenexperiaent, suggest the possibility
of generalising on the trusted operating
systems work that has been done to date.

A DATABASE INTERPRETATION

We begin by noting that every trusted
operating system must necessarily implement
and maintain a number of internal system
tables that consistently describe the real
state of the machine, its processes and its
physical resources. These system tables
describe and are used to control information
at or about all supported sensitivity levels
with respect to all of the system's subjects
and objects. Those system tables that are
within the TCB must be supported by functions
that act consistent with the system security
policy. While the TCSEC requires it be shown
that the system tables are correctly inter
preted by the TCB, it is also required that
information flow analysis be performed on the
functions that maintain or depend on the
contents of the tables in order to demonstrate
that the TCB does not leak classified informa
tion derived from the system tables.

In large systems, the system tables may
contain several aillions of entries. Many of
the tables are updated frequently, dynamical
ly, and asynchronously on behalf of processes
and requests from all supported security
levels. Such tables were characterised as a
multilevel relational database in 1976 during
DARPA's KVM/370 effort, and similar observa
tions were later made about the KSOS system
tables.

Although it may at first appear unreason
able to consider these tables as anything
other than a highly-contrived example of a
database, examination shows that they have all
the characteristics of a multilevel relational
database. Even if one were to argue that
since the TCB implements the security level
abstraction, and hence does not deal directly
with classified entities, but rather with the
descriptors of classified entities, the fact
remains that the system tables consti t.ute a
database that describes multilevel data and
that is used to place classified objects into
the domains of untrusted subjects.

RELATIONAL DBMS ANALOGUE

A table can be likened to a relation whose
tuples correspond to the table's rows, and
whose attributes or fields correspond to the
columns. The classification granularity of
data in system tables may apply to fields as
small as a byte or a bit, or it may be dis
tinctly applied to larger structures, e.g.,
each row of a table, or in some cases to an
entire table. Locating specified data in the
rows of a table corresponds to selection, and
extracting data from specific fields of these
rows corresponds to projection. In many
cases, (e.g., demand page management, I/0
scheduling, etc.,) data in one system table
must be correlated with data in another system
table, where the data associations are given
by pointer chains. This latter operation is
the equivalent of the join operation.

The system tables can also be considered
as a subschema from which "secure views" of
the physical machine and its resources are
derived for the user processes <untrusted
subjects) consistent with the operating sys
tem's formal security policy model. Under
interpretations of [B~L73l, e.g., each sub
ject's domain may be built from the space of
real pages such that the read~bit is set for
a domain page only if its security level is
dominated by the subject's security level;
and the write-bit is set only if the two
security levels are equal. Under this inter
pretation, the TCB can be viewed as a trusted
database management system: a multilevel DBMS
<MDBMS> no less general than a multilevel
document retrieval system or any other general
purpose database management system.

SECURITY REQUIREMENTS

The TCSEC requires that each secure view
of real- and virtual machine resources be
implemented such that each subject be granted
a set of permissible operations on its derived
data view, that this data view be consis
tently maintained, and that the exploitation
of certain information flow channels be pre
cluded. At and above the TCSEC's B2 level,
forbidden information flow channels include
covert storage and, ultimately, covert chan
nels.

It is clear that this MDBMS largely con
sists of trusted code, much of which should be
implemented with least-privilege <B3) as
trusted subjects in restricted small domains
of the TCB. It should be possible to derive a
constructive transformational approach to
establishing the formal security requirements
for each such trusted subject.

28

A GEDAHKEH£XP£RIH£HT

We propose to fallow a process of' "fold
ing": that is, we begin by assuming that
there eKists an uninterpreted but "suffi
ciently secure" TCB to satisfy the B2 re
quirements (i.e., we hypothesize that un
trusted subjects can be supported and be
granted access to relatively "large" single
level objects called seg•ents>. We recall
that a Secure Relational DBMS <SRDBMS> archi
tecture was derived by Hinke and Schaefer
[RADC75J in an investigation of the possibil
ity of designing a DBMS application system
that could be used to create and maintain
authorised views of multilevel databases.
The project was constrained by a requirement
that no modifications were to be made to any
the Multics kernel code or its trusted code,
and no new code was to be introduced into the
privileged domains of eKecutian (rings 0 or
1).

This leads to the idea that by using the
[RADC75J architecture it would be possible to
construct a completely untrusted DBMS that
implements multilevel secure views of a data
base partitioned into single level segments
and aver which all accesses are controlled by
the TCB while the SRDBMS implements the seman
tics of the database. It would then be pos
sible to
level [i.e.,

implement
least

fully
privile

untrusted
ge] views

single
of a

multilevel internal system database of the
type described above, each of whose relations
is implemented in single level segments.
This would of course be illegitimate in bath
theory and practise, since this database
would have to have already been implemented
within the TCB in order to support our hypo
thetical untrusted database implementation.

However, suppose far the moment that this
implementation were legitimate. Then once
having dane it, we could proceed to define the
precise semantics and the permissible opera
tions that could be performed an such a data
base an behalf of an untrusted subject opera
ting at an arbitrary formal security level.
Among the defined operations, we mast have
fully detailed the required procedures and the
conditions that must hold in order to update
the individual components of a multilevel
view, to add or delete a tuple, and to view a
tuple.

Operations that Must be Trusted

In same cases the [RADC75J architecture
requires that an operation be performed in
quanta that are initiated at several distinct
security levels. <Far eKample, in order to
update <or delete> a multilevel tuple with
purely untrusted code, direct application of
the Simple Security Condition and the *-Prop
erty require that the fields in a tuple be
sequentially updated (deleted), each field in
turn by a subject that acts at precisely the
security level of the field undergoing modifi
cation. Such a regimen is nat only awkward,
but it introduces a number of potential seman
tic integrity problems in the face of concur
rent readers and updaters an the system who
could be operating at different security
levels.> These cases arise precisely because
of the lack of a trusted process and/or a
trusted path in the [RADC75J paradigm's use of
an underlying security kernel. We conjecture

that such analysis leads directly to the
identification of the set of database-specific
operations that need to be supported by a
trusted implementation• it is the set of
operations that cannot be completed under the
[RADC75J syndrome at a unique security level.

This makes it possible to produce a pre
cise definition of the data-specific input and
output assertions and constraints that would
be required to define a trusted process that
would perform the same operation as an atomic
state transition. Biven such a precise char
acterisation, we would suggest that the un-'
trusted sequential operation could be replaced
by a trusted, but susp1c1aus, subject that
would be invoked by a kernel call. Assume
then, that the kernel call and the trusted
subject &Kist, replacing the untrusted code
sequence by the kernel call and its trusted
implementation. Continua to proceed along
these analytical lines until such time as no
remaining nan-atomic database operations need
be performed as atomic operations.

At this paint, we claim, the MDBMS has
been partitioned into its trusted and untrust
ed components, completely along the lines of
the TCSEC's architectural and assurance re
quirements. However, since the databases that
were first modeled as partitioned relations
were integrated into a heterogeneous classi
fied single database, and since the databases
were derived from the hypothesised underlying
components of the TCB, we have managed to
completely define the internal structure and
semantics of the TCB's hypothesised underlying
MDBMS schema. We would further observe that
by fallowing the method of our gedankenexperi
•ent to derive the trusted MDBMS primitives,
we obviated the need to stare the multilevel
database in single level segments. It appears
that in this way each of the TCB's required
system table implementations can be construc
ted with the required assurances.

REFLECTIONS

We are sensitive to the fact that the
thought process we fallowed led us to con
struct a ana-of-a-kind trusted database man
agement system. Although we were capable of
identifying the primitive trusted DBMS func
tions needed to support this application, we
were nat able to came up with a closed-farm
solution to the general problem. We worked
with a database wherein it was possible to
define the precise classification of every
data relationship at the time the database was
conceived. While the approach eKplicitly
allows far the dynamic classification of new
entries in predefined relations, we further
constrained the generality of our result by
limiting the set of permissible domains far
join operations, thereby nat having to address
the problem of deriving classifications far
dynamically-created relations. However, we
harbour no doubts that archetypes of the
trusted primitive functions we derived under
this process would be present in a wide vari
ety of trusted database management applica
tions.

In reflecting an the simplification we
used of the general trusted database manage
ment problem we employed in this gedankenex
peri•ent, we recall several observations an
security policy models that came from the Air
Farce Summer Study an Multilevel Data Manage

29

ment Security [NAS83l. Same observers have
said that the Bell and La Padula Madel does
nat. apply to the MDBMS problem. The reasons
given have ranged ~ram the misconception that
the [B8cL73l does nat apply to "small" objects
where the granularity a~ classi~icatian is
"~ina", to the identi~ic:atian a~ a lack a~
detail an the treatment a~ classi~ied entities
that contain subentities that are distinctly
and individually c:lassi~ied.

It is to be observed that classification
in a database is rarely deter•ined purely an
a syntactic basis, but rather an the basis of
an association between specific data entities.
Hence, there are contexts in which a specific:
data value, e.g. 17.3, may be viewed as a TOP
SECRET value while 42 would be CONFIDENTIAL,
and there are contexts like this paper where
bath numbers are unc:lassi~ied. Such se•antic
bases ~or classification must either be based
an a trusted implementation of an approved
dynamic algorithm or they must be determined
by a trusted path communication with an indi
vidual possessing original classi~icatian
authority.

We are aware of same classification deci
sions that are sa complex that no such algor
ithm has been produced, while we are aware a~
simpler cases in which algorithms can be
formulated. In either case, it appears evi
dent that a classified record cannot be enter
ed into a database until it and its constit
uent classified entity classification rela
tionships have been identi~ied and assigned.
The warding of the preceding sentence hints
at the potential complexity of a complete
classification determination and assignment.
It is nat only the case that the components
of a new tuple need to be classified, but
it is also necessary to consider the classifi
cation of all possible JDln operations in
which the tuple could be involved, including
those potential JDlns between the new tuple
and tuples in di~~erent relations.

If such algorithms can be expressed, we
see no reason to prevent their implementation
as trusted subjects under the constraints a~
[B8cL73l. If the algorithms cannot be expres
sed (e.g., in cases where classification is
determined intuitively>, then a trusted sub
ject would necessarily need to be invoked
through a trusted path in order to allow an
authorised individual to communicate all a~
the classi~icatian requirements to the MDBMS.

In bath cases it would be required that
assertions be formulated and proven to demon
strate that the MDBMS preserves the invariance
of secure state far the system. This clearly
calls far a precise definition of the seman
tics of each of the MDBMS operations with
respect to the domain of each security-rele
vant operation. Potentially, every modifica
tion to the value of any tuple would require
a determination of the classification of the
tuple and all of the identified classi~ied
semantic data interrelationships mentioned
above.

It may serve as a useful example to ob
serve that volume III of [B8cL73l treats the
classi~icatian of the relationship between twa
classified objects. The compatibility re
quirement ~or a directory and segment hier
archy requires that all paths from the root
node to a directory or segment be monoton
ically nan-decreasing in classi~icatian level.
Since the hierarchy is represented as a direc

level directories or segments>, it can be
observed that the individual arcs between
compatible hierarchy elements are classified.
This is the equivalent of assigning a classi
fication to a join operation between pairs of
elements in the relation that represents the
hierarchy. <A directed graph can be repre
sented by a relation in which a predecessor
and a successor field is defined far each
element.> Node xis the immediate predecessor
of node y just in case there exist domains
pred, succ such that

pred(yJ = x and y ~ succ(xJ.
This is precisely an example of a classified
join operation. Every modification to the
hierarchy must be shown to preserve compati
bility. In the Multics implementation of
[B8cL73l, the operations an upgraded direc
tories and the establishment of links are
equivalent to madi~ying the arcs in the graph
of the hierarchy and are necessarily i~ple
mented with trusted code.

We believe that the methods used in previ
ous trusted operating system development
provide useful insight into the MDBMB problem
and to its partial solution. Our investiga
tion suggests that it is possible to provide
adequate definitions and constraints ~or
the trusted subjects needed to implement an
MDBMS only if the complete semantic classifi
cation requirements are specified far each
database under consideration.

We recognise that much of the code needed
to support a multilevel database management
application may need to be trusted, and would
observe from the experience of [RADC75l that
the preponderance of trusted code would be
required far dynamic databases in which clas
sification is semantically derived than in
those that are only referenced and wherein the
data classification relationships can be
derived syntactically.

ACKNOWLEDGMENTS

We would like to thank our colleagues D.
Elliott Bell, Earl Baebert, Swan Walker,
Brian Hubbard and ather researchers in the
Center far their helpful and critical comments
an our gedankenexperi•ent.

REFERENCES

[B8cL73l D. E. Bell and L. J. La Padula, "Be
cure Computer Systems• Mathematical
Foundations;" "A Mathematical Madel;
and "A Refinement of the Mathematical
Madel," MTR-2547, val. I, II, and
III, The MITRE Corporation, Bedford,
MA, March, November and December
1973 (also ESD-TR-73-278, val. 1-3.>

[NAS83l Marvin Schaefer, chairman, "Multi
level Data Management Security,"
Committee an Multilevel Data Manage
ment Security, Air Farce Studies
Board, National Academy of Sciences,
Washington, DC, 1983.

[RADC75l T.H. Hinke and Marvin Schaefer.·
"Secure Data Management SystP' · :

~=~~;~~-7~;~66Fa~~=· s:!;.~::c:.~:f.{~f1\:}{:.~f:~~':lj~~~
Griffiss Air Farce Base,_,,::::::'~:\:(::'7:\}:'{::''<:;~(t:}\::}\

ted graph whose nodes are objects <single November 1975.30

PANEL

OR

THE RATIONAL 'l'ELECOMMORICATIORS

AND IRFORMATIOR SYS'l'EMS SECURITY COMM:IT'l'EE

The panel members represent the
NTISSC's Subcommittee on Automated
Information Systems Security (SAISS).

Panel Chair:

Catharine M. Martinez

SAISS Executive Secretary

Panel Members:

Dr. Robert L. Brotzman

SAISS Chairman

Mr. James Burrows
SAISS Department of Commerce

Representative
Chairman, SAISS working Group for

Information Systems Security
Criteria, Standards and Definitions

Mr. Lynn McNulty

SAISS Department of State

Representative

On September 17, 1984, the President
signed National Security Decision
Directive 145, "National Policy on Tele
communications and Automated Information
Systems Security." This directive
broadens the Center's responsibilities
from the DoD level to the National level,
and it also establishes a government-wide
committee to guide the conduct of national
activities directed toward safeguarding
telecommunications and computer systems.

This committee, the National Telecommuni
cations and Information Systems security
Committee (NTISSC), is composed of
representatives from over 20 government
departments and agencies. Its primary
responsibilities are to develop specific
operating policies and provide guidance on
telecommunications and automated information
systems security to the departments and
agencies of the federal government. Two
subcommittees -- one for telecommunications
security and one for automated information
systems security --report to the NTISSC.
The Subcommittee on Automated Information
Systems Security has already, within its
first ten months, submitted to the NTISSC
its first annual evaluation report on the
status of automated information systems
security in the federal government. This
subcommittee is currently developing
standards on password usage and environment
guidelines~ developing security criteria for
personal and shared computers~ and drafting
a program to encourage, advise, and assist
the private sector in developing computer
security products. The subcommittee is also
drafting National Telecommunications and
Information Systems Security policies and
directives on: definition for •sensitive,
but unclassified, national security related'
information and fo~ 'critical' systems~
Automated Informat1on Systems Security
Awareness Program~ and, Automated
Information Systems Security Education and
Training Programs.

31

EDUCATION AND AWARENESS PROGRAMS IN THE NATIONAL ARENA

Cathy Hanks Thomas

DoD Computer Security Center

9800 Savage Road

Fort George G. Meade, MD 20755-6000

As an understanding of the computer
security threat becomes more widespread in
Government circles, and as the
technologies to counter that threat become
more available, the need for comprehensive
national-level education and awareness
programs becomes ·more urgent. This paper
provides a general description of what
should be done to respond to this need by
answering three basic questions: Who is
the target population of these programs?
What kinds of activities are needed in
these programs? And, who is going to
conduct these activities? I will also
describe some activities being conducted
by the DoD Computer Security Center in the
education and awareness areas and will
then conclude by suggesting what is not
being done, but should be.

Before I begin, however, a word about
definitions. Different organizations use
the terms "education," "training," and
0 awareness" in different ways. In our
program at the Center, and in this paper,
the term "education" refers to courses,
briefings, workshops, and other scheduled
activities in which individuals learn
about computer security. These activities
traditionally are conducted by training
organizations. The term "awareness"
refers to an initial orientation for new
employees to good security practices and
periodic reminders. This type of program
is traditionally conducted by security
organizations.

Now to the first question: What is
the target population of Federal
Government-wide education and awareness
programs? The target population can be
categorized by the roles or functions of
individuals. We have identified four
types of workers: the general user, the
manager, the security or education
specialist, and the technical computer
security professional. Each of these
groups has different needs for education
and awareness. The general user category
includes anyone operating, accessing, or
otherwise coming in contact with a
computer. This may be a clerical employee
using a word processor, an operator on a
large mainframe, or a supervisor accessing
a network through a personal computer.
This very large population is the primary
focus of an awareness program. The second
group, managers, needs to be addressed not
only by an awareness program, but also may
need courses, seminars, or workshops to
get a more detailed understanding of the
principles of computer security. This more
detailed knowledge is needed to support
decisions that impact on the
implementation of computer security
principles. In the third group are the
security or educational specialists
involved with

computer security programs. This group
needs in-depth training on the tenets of
computer security, with some technical
detail, and can also benefit from
activities, such as workshops with other ,
educators, on how to establish and conduct
a good computer security program. At
these workshops, for example, there can be
an exchange of those all-important
"lessons learned" and the initiation of
procedures and contacts to share
resources. The fourth major group is
composed of the computer security or
computer science technical specialists.
These individuals need very specialized
courses on the techniques of improving
computer security by both hardware and
software.

A very obvious characteristic of the
target population is its size. Within the
Executive Branch alone there are some 85
unsubordinated organizations. This number
counts each Cabinet-level department as
one organization. These Cabinet-level
departments are made up of many
subordinated organizations. Within the
Department of Defense, for example, not
only are there the four military services
but also 12 defense agencies and the
world-wide field activities of the Office
of the Secretary of Defense. Some of
these organizations within the Executive
Branch are large - like the Department of
Defense - and some much smaller - like the
Nuclear Regulatory Commission. But most
organizations within the Executive Branch,
even if they are small, have a real need
for computer security education and
awareness programs. Whether their
information is covered in NSDD-145 (and
hence are of concern to the Center) or
not, organizations such as the Tennessee
Valley Authority, the Agriculture
Department, OSHA, and the Panama Canal
Commission have a requirement for computer
security and for activities to educate
their employees.

How many people are we talking about?
The total number of people in the Federal
Government that need some kind of exposure
to computer security education and
awareness is staggering. The accompanying
chart (Figure 1) reflects approximate
figures for the number of employees in
various categories and the number of these
that we estimate need either a formal
course in computer security (or at least
computer security c<;>v~red in .some ~ormal
training) , or a tra1n1ng sess1on ta1lored
to their individual work environment, or
should be the target of an awareness
campaign.

Let us move on to the second
question: What kind of activities are

32

.· ..:

::::::::~~=::

t~[l\\\?:)

needed in education and awareness programs
for these individuals? In the area of
awareness, two types of activities are
needed: initial indoctrination and then
reinforcement. The initial indoctrination
should include an explanation of what the
threat is and the security practices the
employee should follow. The
responsibility of every Federal employee
to protect and respect information
must be emphasized. In many agencies,
especially those that deal with classified
or sensitive information on a regular
basis, this indoctrination to computer
security can be a part of the
indoctrination into the broader subject of
information security. The related issues
of, for example, computer security,
physical security, communications
security, and procedural controls can be
discussed in what can be termed a
"holistic" approach to security. At my
agency, for example, this can be done when
the employee receives the badge that
allows entrance into the building
compound.

This initial indoctrination must be
followed by periodic reinforcement
activites. These activities can.take many
forms; posters, videos, participation in
"security weeks," and articles in
newsletters are some suggestions. The
materials or events should repeat the
message heard in the initial indoc
trination and serve as daily reminders of
the employee's responsibility.

The components of an education
program are also varied. Formal courses
are used most frequently. To satisfy the
needs of the target population a number of

different kinds of courses are required.
Each organization should design a
curriculum appropriate to the needs of
their employees, the particular
environment in which they work, and the
degree of security needed. These are some
types of courses that should be
considered:

an introductory course for those
who only need a general overview of the
tenets of COMPUSEC;

a course geared to security
professionals who need to integrate
COMPUSEC information into programs on
physical, communications, and personnel
security;

a course for managers to address
acquisition requirements, establishment of
procedural controls, etc.; and

technical courses for computer
specialists who are implementing
safeguards on the systems.

If sufficient resources are available
and the need exists, an agency may want to
consider a course in the legal and ethical
aspects of computer security.

A comprehensive education program
should also include training sessions
tailored to a specific office or function.
At the Center, we call ours the
"Roadshow." It is a multi-media approach
to providing information on computer
security to an organization at their site.
Using instructional modules, the roadshow
can range from a 1-hour to a several-day
presentation, covering topics such as the
threat to information in computers, risk
assessment, standards for evaluating
security, and software and hardware
available to improve security.

EXECUTIVE
BRANCH
(civilian)

MILITARY
SERVICES

OFFICERS
ENLISTED

LEGISLATIVE,
JUDICIAL
BRANCHES

TOTAL:

FIGURE 1

APPROXIMATE SIZE OF TARGET POPULATION

TOTAL INCLUSION
NUMBER OF IN FORMAL TAILORED AWARENESS
EMPLOYEES COURSE SESSIONS ACTIVITIES

2,830,000 142,000 283,000 1,415,000

265,000 265,000 26,000 132,000
1,651,000 825,000 164,000 330,000

55,000 3,000 6,000 28,000

4,801,000 1,235,000 479,000 1,905,000

33

This brings us to the third question,
one that generates some controversy: Who
should conduct these activities? The
immense size and diversity in functions of
organizations in the Government suggest
that it is not very useful to talk about
national programs for education and
awareness. Rather, we must think in terms
of a national-level effort to insure that
each organization within the Federal
Government has adequate computer security
education and awareness programs. For
large agencies this may mean a full
fledged program with courses developed and
conducted in-house. Smaller agencies may
have only an awareness program and rely on
other sources for formal courses.

For example, some organizations
already have active, successful in-house
education and awareness programs
established, such as the Department of
Energy. They have courses, a newsletter,
and many other activities that are the
hallmark of a good program. However, for
formal courses, some organizations,
especially smaller ones, are looking to
Government training organizations to
provide the formal courses and more
tailored training sessions. The DoD
Computer Institute and the Office of
Personal Management both include computer
security courses in their curriculum, as
does the Center. Computer security
courses are also available at some
academic institutions. While these are
often geared more to the theoretical
approach than specifics on how to do
COMPUSEC in an operational environment,
they should not be overlooked as a
valuable source of education. And, of
course, there are the courses available
from the private sector, both the for-
profit firms and the non-profit
organizations, such as professional
societies. These are offered both on a
regular basis as scheduled classes and as
a part of conventions.

In support of the need for education
and awareness programs in the Federal
Government, the DoD Computer Security
Center sponsors a number of activities.
As previously mentioned, we conduct a
number of formal courses. These range
from a national-level course for managers
to very intensive technically-oriented
training for evaluators of products and
systems.

Also mentioned earlier was our
"roadshow." We are prepared to travel to
a requesting agency's location and present
an oriention to computer security tailored
to meet that agency's particular needs.

We are assisting some agencies in
establishing new education or awareness
programs. This assistance includes the
sharing of our own resources, such as
course outlines, briefings, graphics, and
videos, and assisting the organization in
identifying resources that may be
available from other organizations, such
as OPM.

We are currently working with the

Treasury Department in setting up what we

hope will be .a model awareness program.

From our exper1ence at Treasury we hope to

develop a "handbook" on how to establish

such a program.

Another major effort is to make a
wide selection of products available, at
little or no cost. We are producing, for
example, a quarterly security awareness
poster. Two video tapes on access control ,
have been among our most successful
products to date. They were produced to
explain to a non-technical audience why
access control is important. We have
distributed, in just 3 months, over 500
copies of these tapes. The next video
that we will produce is on the Center's
Criteria for trusted systems, the Orange
Book. This tape will be available in late
spring. If funds permit, we also plan to
produce, during this fiscal year, a video
on password management and one which will
serve as an orientation to computer
security for the executive.

In support of what we see as our role
as a clearing house on information, we are
in the process of setting up several data
bases on education-related information.
Listings from the data bases will be
widely distributed, and eventually we hope
the data bases will be part of a Center
electronic bulletin board available to the
public. The first data base is on
educational activities. We are including
courses, workshops, and seminars offered
by Government agencies, by academic
institutions, and by the private sector.
The data base is nation-wide in scope. If
you have activities that you would like
listed in the data base, please contact
us. Inclusion in the data base does not
imply endorsement or recommendation of the
course by the Center. We have wrestled
with this issue; it would be nice to be
able to evaluate each course. However,
questions about what a course should
include and how to evaluate training seem
very complex. We hope to address this
issue one day, but do not want to delay
establishment of the data base while we
develop an evaluation procedure.

By next spring, we hope to have a
data base on upcoming conventions and
conferences and one on computer security
education and awareness products. Again,
we will make every effort to see that any
organization or company that wants to have
data input into the data bases has that
opportunity.

One activity that we hope will have
strong impact on education and awareness
in the Federal Government is a symposium
that we are sponsoring on October 30th for
computer security educators in the Federal
Government._ We are meeting to learn about
each others •-- programs and to discuss how
we can help each other, especially in
sharing resources such as course
materials. We hope that this becomes an
annual event, increasing both in size and

34

length from this year's modest, first
effort.

One very basic difficulty that seems
widespread in the Government is that
employees are entering the work force
having had no previous exposure to
computer security. This is especially
true of the more technical aspects of
implementing security. It is great when a
manager finally understands the threat and
wants to do something about it, but we
find that when most managers go to their
ADP programmers or system designers and
say "give me some security," the ADP
specialists don't know how to do that.

One way we are addressing this
problem is by doing what we can to
encourage academic institutions to address
computer security. For example,
discussions have been held with the
University of Maryland on the possibility
of offering a Master's degree in computer
security. Some individuals in academia
share our concerns. For example,
Professor Janet Cook at Illinois State
University is working on exercises that
can be incorporated into existing courses.
A course on designing operating systems,
for example, would include incorporating
security into the design. Professor Cook
believes that this must be done at the
undergraduate level. She suggests, for
example, that programmers must be taught
to include security from the very
beginning. This goes along with the DoD
Computer Security Center's tenet that
security must be designed into a system,
not added on later.

We also will be encouraging the
inclusion of computer security awareness
in management courses. Educational
institutions, both government and private,
are recognizing that managers need to be
"computer literate." We believe that
being literate should include an
appreciation of security requirements.

In all our education and awareness
activities at the Center, we follow a
philosophy of openness and sharing. All
the education and training material that
we develop is available for distribution
to any organization. We are trying to
"package" our resources to facilitate this
sharing. Often this sharing can be done
at little or no cost to the receiving
agency. For example, to receive a copy of
our video tapes, we ask only that an
agency forward a blank tape.

Lastly, there is the problem of what
is not being done, but should be.
Mentioned above is the situation of
employees entering the work force with no
knowledge of computer security. Actually,
the problem is worse than that: many new
employees have learned the wrong practices
and attitudes. The average American today
does not understand that computer
resources and the information stored or
manipulted in them is property. Thus the
hackers are unconcerned about gaining

unauthorized access to data. But the
problem also emcompasses sharing passwords
or posting them on the side of a terminal,
using a computer at work for personal
business, copying licensed software, and
other unauthorized actions. We need to
start an education process long before the
employee joins the workforce. We need to
start this process before the employee
reaches college. Grade school is probably
a good starting point - although it now
seems de rigueur for pre-schools to have a
PC. Teachers and, just as importantly,
parents should be emphasizing the
responsiblity that every computer user has
to protect his or her own data and respect
the data of others. Teenagers who would
not dream of entering an unlocked house
and taking valuable items think that
gaining unauthorized access to a data base
and copying data is a game. Responsiblity
and respect should be taught right along
with instruction on how to use computer
resources.

So who should do something to correct
these attitudes? The answer to that is
almost all of us. Some suggestions: Do
you belong to a professional society that
should be addressing the issue of security
at a meeting or conference? If you know
something about computer security, why not
offer your expertise to your local school
system as a guest speaker? Why not
recommend to your local school board that
material on responsbili ty and respect of
computer resources be included in the
schools' cirricula? Are you a parent?
Remember that education begins at home ••

A national-level effort in the area
of computer security education and
awareness is a commitment of the DoD
Computer Security Center. The programs
outlined in this paper are a beginning.
But we must all work together or we all
deserve the consequences of a workforce
that remains unaware.

35

NO HARM INTENDED:

A BEHAVIORAL ANALYSIS OF YOUNG HACKERS

Julie A. Smith

DoD Computer Security Center

9800 Savage Road

Fort George G. Meade, MD 20755

NOTE: The ideas which are presented in this paper
are those of the author and cited references and do
not necessarily reflect the views of the DoD
Computer Security Center.

ABSTRACT

The actions of young hackers are potentially
dangerous even though such hackers often obtain
unauthorized access to computer systems with no
conscious intent to do harm. This paper provides a
behavioral analysis of young hackers' actions which
describes them as being the result of interaction
between certain personality characteristics and
strong social and environmental influences within
the hacker culture. This analysis is then applied
to suggest new approaches to decreasing hacking
among young people.

INTRODUCTION

Society 1 s attitude toward hackers is currently
an ambiguous one. On the one hand, people admire
their expertise and their sense of rebellion. They
see hackers as being able to conquer a powerful
force in everyone's lives by manipulating computers
and the people who run them. Yet, at the same time,
people are disturbed by their technical prowess.
The hackers' unauthorized entries into databases
challenges other people's right to privacy and may
even threaten the security of the nation at times.
In addition, the hackers' ability to manipulate
computers can become very frightening for most non
hackers when they realize that, because they do not
possess such skills or the aptitude for them, they
will never have as much control as hackers do.

The press generally uses the term "hackers" to
refer to people who break into computer systems.
Often the hackers' world is described using a
sinister tone. An illustration of this is given by
the Washington ~ in the following description
that it gave of hackers 1 antics as portrayed by a
writer in Newsweek:

It was a terrific story, and Richard
Sandza knew it. In four columns, which
his editors at Newsweek headlined "Night
of the Hackers", Sandza led the reader
through the disembodied and mostly illegal
world of bright young men who play a kind
of cross-country electronic chicken with
their home computers. Using long-distance
telephones that they break into by
duplicating telephone company tones, • • •
the hackers log onto each other's

underground "bulletin boards" to trade
surreptitiously obtained corporate
telephone numbers and passwords, or post
valid credit card numbers, or carry on
silent computer-screen conversations at
hours when good high school students are
supposed to be in bed.1

The picture that is presented by the above passage
may not necessarily be a totally accurate
representation of the entire hacker world: some
authorities assert that the type of access which the
vast majority of hackers have to computer systems
has not resulted in major computer crime. Such
access usually consists of browsing through files
and sometimes changing or destroying information.
In fact, such authorities add that insiders who are
knowledgeable about their computer systems often
pose a much greater threat to computer security than
hackers do.2 These assertions are difficult to
prove statistically; society may not yet know the
extent of the damage which hackers cause. Until
reliable methods of assessing the value of
information resources and reporting losses are
instituted throughout business and industry, the
accurate measurement of damage will remain
difficult.

Thus, although it cannot be fully determined
how much damage is done through hacking, one aspect
of hacker behavior can be stated with reasonable
certainty: it appears as if hackers can be divided
into two groups, those who break into computer
systems with the idea of doing damage and those who
enter computer systems with no conscious intent to
do harm. The motives of the former group are often
easily discernible. For example, such hackers may
obtain unauthorized access to systems for personal
financial gain, or they may be disgruntled employees
who seek to get revenge on their former or current
employers by causing damage to their systems. In
contrast, the latter group 1 s motives are much more
difficult to determine. Hackers who do not intend

1cynthia Gorney, "Hack Attack: Computer Whiz
Kids Harass Magazine Reporter," The Washington Post
(Dec. 6, 1984), p. Bl. To read the article which is
described in this passage, see Richard Sandza, "The
Night of the Hackers," Newsweek, 104(Nov. 12,
1984), pp. 17-18. Sandza later received threatening
phone calls from a small group of irate hackers
after they read his article. That group also posted
his name, address, and credit card numbers on an
electronic bulletin board. For that story, see
Richard Sandza, "The Revenge of the Hackers,"
Newsweek, 104(Dec. 10, 1984), p. 81.

2Tekla s. Perry and Paul Wallich, "Can Computer
Crime Be Stopped," IEEE Spectrum, 2l(May 1984), p.
34. -

36

to harm computer systems are often computer
enthusiasts in their teens or early twenties3, and
they usually see nothing wrong with their actions.
In many cases, it is not until authorities start
knocking on their doors that they begin to question
what they are doing, and even the presence of the
law does not bother some young hackers. Yet,
whether they realize it or not, they sometimes cause
trouble by manipulating data and break laws by
misusing the telephone. Also, because they are so
willing to share information about their exploits
with other hackers, the potential exists for
unfriendly interests to take advantage of their
talents.

The conventional approach to dealing with young
hackers who enter systems with no wish to cause
damage is to try to teach them about computer
ethics•. So far, this technique has had only mixed
success.4 Perhaps what is needed are approaches
that include the moral implications of computer
usage, but that also extend beyond ethics. The
purpose of this paper is, first, to provide the
background for such approaches through a behavioral
analysis of young hackers that:

1. shows how the personality characteristics
of young hackers attract them to work with computers
and also play a role in their initiation into the
hacker culture, and

2. demonstrates how strong social and
environmental influences within the hacker culture
reinforce hacker behavior.

In addition, the above knowledge will be applied to
suggest effective ways to change hacker behavior
among young people.

WHO ARE YOUNG HACKERS AND WHAT DO THEY DO?

Not all young hackers who enter systems with no
intent to do harm are involved in exactly the same
type of hacking activities. Probably the best
illustration of this fact is provided by a hacker
who puts such hackers into several categories
according to what they do. First, there are the
"Novices." These are hackers in their early- teens
who do not_ see hacking as a serious activity. They
treat it as if it is a game, and, as a result, they
may sometimes threaten to do harm to a computer
system. However, such threats are usually idle
ones. Because they are just beginning to gain
knowledge about computers and hacking, they often
get their information about how to break into
systems from more experienced hackers.S The second

3Bill Landreth, Out of the Inner Circle: A
Hacker Is Guide to comp-;:rt'erSe~ity, (Bellevue, wA-;
Microsoft Press, 1985), p. 59.

4nennis A. Williams and Richard Sandza,
"Teaching Hackers Ethics," Newsweek, 104, Jan. 14,
1985, P• 76.

Sin an examination of several electronic
bulletin boards and "underground" hacker
newsletters, it was found that hackers who use other
hackers 1 information to gain access to systems are
often referred to as "cookbook" hackers since they
are merely following a recipe for entry.

group is the "Students." These young hackers are
especially interested in the educational aspects of
hacking. Once they gain access to a system, they
tend to work on it as often as possible in order to
learn as much as they can about that system. They
are definitely the most serious-minded group. The
third group, the "Tourists", are young hackers who
spend most of their time finding creative ways to
gain access to systems. However, once they get
inside a system, they do no further exploration of
it.6

Interestingly enough, the population of young
hackers who engage in the above activities is almost '
one hundred percent male.7 One possible explanation
as to why there are so few female hackers is that it
is difficult for young girls to become involved in
the computer culture. The primary way in which most
children are initiated into the computer world is
through video games, many of which involve the use
of highly-developed spatial abilities. This puts
young females at a distinct disadvantage, since
numerous studies have shown that males excel in such
skills.8 Also, the fact that young females tend to
avoid demanding situations while young males learn
to deal with them adds to this difference in ability
between the two sexes.9

Other explanations for the lack of female
hackers include the suggestion that the levels of
aggression within the hacker culture make it
unattractive to females in the first place. Also,
when females are having problems with interpersonal
relationships, they are less likely than males to
use a relationship with a machine as a substitute
for a relationship with a person. Thus, they would
be far less likely to become involved in the hacker
culture.lO These last two theories may be correct,
given that extensive psychological research over
several decades has found that males are
consistently more aggressive than females,11 and
that females, in comparison to males, tend to be
much more concerned with the interpersonal aspects
of situations.12

6Landreth, pp. 61-67.

7sherry Turkle, The Second Self: Computers and
the Human Spirit, (New York, Simon and Schuster,
1984), p. 210 •.

8sara Kiesler, Les Sproull, and Jacquelynne
Eccles, "Second-Class Citizens," Psychology Today,
17(March 1983), p. 46.

9patricia F. Campbell and George P. McCabe,
"Predicting the Success of Freshmen in a Computer
Science Major," Communications of the ACM, 27(Nov.
1984)' p. 1113.

10Turkle, p. 210.

11Kay Deaux, The Behavior of Men and Women,
(Monterey, CA, Brooks/Coles Publishing Company,
1976), p. 82.

12Ibid., p. 1os.

37

http:situations.12
http:culture.lO

PERSONALITY CHARACTERISTICS

Many of the skills that are used in hacking are
learned from computer programming. Thus, a look at
the type of people who enjoy using computer
programming skills provides a general picture of the
basic backer personality. One of the most popular
vocational interest tests given, the Strong-Campbell
Interest Inventory, groups occupations into six
major themes based on the types of activities which
people do within their jobs. Of course, many
occupations touch on more than one theme. According
to this test, computer programruers are described as
being mainly "investigative" in nature:

This theme centers around science and
scientific activities. Extremes of this
type are task oriented; they are not
particularly interested in working around
other people. They enjoy solving abstract
problems, and they have a great need to
understand the physical world. They
prefer to think through challenges rather
than act them out.l3

Further analysis by the Strong-Campbell
Interest Inventory reveals that computer programmers
also fall into the "conventional" theme. This theme
describes people who prefer highly-ordered
activities, and this relates directly to the fact
that the computer languages which programmers use
have definite structure to them.14 As a result of
the work being so structured, it is important for
computer programmers to be logical thinkers who are
patient and persistent and whose work is accurate
even under pressure.l5

Thus, computer programming work is the perfect
medium for a person who has both the "investigative"
and "conventional" traits: although computer
languages have rules, the process of computer
programming is a highly creative one in that a
programmer can choose to approach a problem from a
variety of directions. As a result, it is difficult
if not 'i.mpossible to find two programmers whose
solutions to the same problem are written in
identical software coci~.

The description of hacker~ as computer
programmers can only be taken so far, fvr. the fact
remains that not all computer programmer.'; are
hackers. The key to what differentiates the hacker
from the non-hacking programmer lies in the idea
that hackers are extremely bright, highly-driven,
and very competitive people who become addicted to
the creative element of the computer programming
process. As Turkle states: "What sets them apart
is that they work for the joy of the process, not
for the product."16 Even the very origins of
hacking show this: the start of this phenomenon
lied in the Signals and Power Subcommittee of the
Tech Model Railroad Club at MIT in the 1950's. This

13strong-Campbell Interest Inventory, Form
T325, distributed by National Computer Systems,
Inc., Minneapolis, MN, 1981, p. 2.

14Ibid., p. 2.

15u.s. Department of Labor, Bureau of Labor
Statistics, Occupational Outlook Handbook
(Washington, D.C., April 1984), p. 179.

16Turkle, p. 204.

group of male undergraduate students was intrigued
with the complex relationships that were formed by
the maze of wires, relays, and switches which
enabled their monstrous model railroad system to
run. In the end, the group applied their
fascination to similar complex relationships within
computer hardware and software. They were
definitely in the right place at the right time:
they were able to work on one of the first PDP-l's
ever built by the Digital Equipment Corporation, and
they also had the opportunity to learn computer
programming under John McCarthy, who is considered
one of the three founding fathers of artificial
intelligence.l7

At MIT, the term "hack" had long been used as a
name for any of the crazy college pranks that
students often pulled. However, the Signals and
Power people used the word with a slightly different
emphasis. To them, it described "a project
undertaken or a product built not solely to fulfill
some constructive goal, but with some wild pleasure
taken in mere involvement. "18 They gave the word a
sense of importance by emphasizing that "innovation,
style, and technical virtuosity" must be
characteristics of an act in order for it to qualify
as a "hack" and for the person who did it to be
called a "hacker."19

For young hackers, the creative process of
working with the computer presents a mental
challenge. They thrive on being able to continually
learn something new. This relates directly to one
of the personality traits of hackers which was
described previously: they are curious about the
workings of the physical world. In fact, one
hacker suggests that, because most hackers are very
bright, they are bored with school, and, as a
result, they look to hacking for the intellectual
stimulation which their everyday educational
environment is not providing.20

In addition, hacking provides them with a way
to deal with their need for power, control, and
certainty through the use of structure, and,. as a
result, they become totally immersed in the machine.
In order to explain this concept, Joseph Weizenbaum
refers to hackers as "compulsive programmers" and
likens them to compulsive gamblers, because he views
both compulsions as being rooted in dreams of
power.21 With every successful entry that they make
on the computer, hackers see themselves as asserting
authority over the machine and/or whoever is
connected to it. This causes them to co~stantly
strive for interaction with the computer in order to
experience the feeling of power which comes with
that sense of control. Thus, they are more
concerned with gaining this sensation of power than
they are with the effects of their actions on

17steven Levy, Hackers: Heroes of the Computer
Revolution (Garden City, New York, Anchor
Press/Doubleday, 1984), pp. 7-8.

18Ibid., p. 9.

19Ibid., p. 10.

20Landreth, p. 59.

21Joseph Weizenbaum, Computer Power and ~
Reason: From Judgment to Calculation (San
Francisco, CA, W.H. Freeman and Company, 1976), p.
124.

38

http:power.21
http:providing.20
http:intelligence.l7
http:pressure.l5

others. This is quite unlike the behavior of non
hacking computer progrannners: non-hackers use the
computer in order to address a problem which is to
be solved rather than seeing a problem mainly as an
opportunity to interact with the computer.22 As a
result, non-hacking computer programmers are far
more likely to design programs in their entirety
before coding them, while hackers often work with no
real sense of a long-term goal. They tend to dabble
in one section of a program or system until they
become bored with it; then they move to another
section. They do not plan ahead.23

Evidence of a strong need for control is seen
in the power struggle which young hackers see
themselves as having with any type of authority who
has the capability to take the source of their
enjoyment, hacking, from them. Indeed, negative
references to authorities are found throughout
hacker-related literature. For example, in one
issue of an "underground" hacker newsletter, the
appearance of AT&T's logo (see Figure 1 below) which
hovers above an outline of the earth on their new
credit card is described as being similar to "The
Death Star" which the evil Darth Vader rules in the
popular movie Star Wars.24

ATs.T

Figure 1: AT&T's Logo

The fact that many parents, teachers, and law
enforcement officials are sadly lacking in their
basic knowledge of computers does not help this
situation. Indeed, even the Federal Bureau of
Investigation uses training and equipment that is at
least ten years too old to fight computer crime.25
Young hackers find it difficult to respect those who
know nothing about their favorite subject.

22weizenbaum, p. 116.

23Ibid., p. 118.

24"Death Star Cards Spell Woe," 2600, l(Feb.
1984), P• 3. 2600 is generally seen as an
"underground" newsletter, although, in one of its
issues, this is denied: "We are not an
'underground' magazine; we don't break laws or
publish items that are illegal to publish. We
simply discuss interesting things that can be done
with today's technology." (See 11 2600 Writer
Indicted," 2600, l(June 1984), p. ~) The
ne~slet~er's name is a shortened form of 2600 Hertz,
wh1ch 1s one of the frequencies that is used in
illegal devices that allow users to make free long
distance telephone calls.

25Tom Shea, "The FBI Goes After Hackers,"
Infoworld, 6(March 26, 1984), p. 38.

SOCIAL AND ENVIRONMENTAL REINFORCEMENTS

It has been suggested that hacking is a stage
through which young hackers pass.26 Once they leave
college, they usually settle into a mode where they
work eight or more hours a day in order to support
themselves just like everyone else, and they cease
their hacker activities. They tend to select
computer-related occupations and are often
dependable and knowledgeable employees.27 Some
young hackers even use the experience that they
acquired through their hacking activities to find
employment upon graduation from college, as one ,
hacker explains as he describes the type of hacker
which he calls a "Student":

A Student often roams undiscovered on your
system until he walks in looking for a
job. When you see his resume, you will
find that he's had three years' experience
on the same computer you have, doing the
same type of programming you need done.
Strange, but somehow Students seem to know
just the person you want to hire••• and
when.28

The absence of hacker behavior beyond college
which is described above is best explained by the
fact that, when they leave college, young hackers
abandon strong social and environmental influences
which interact with their personality
characteristics to reinforce hacker behavior. In
fact, recent clinical research and experience
demonstrates just how important these social and
environmental influences really are. In particular,
the research involves work with people who suffer
from "technostress", which is the development of
"aberrant and antisocial behavior" as a result of an
"inability to cope with the new computer
technologies in a healthy manner. "29 One
psychologist has found that an effective way to help
those who have the "technocentered" form of this
illness, that is, those whose maladaptation consists
of too close of an identification with computers, is
to change the social and environmental factors in
their lives.30

For young hackers, the process of socialization
into the hacker culture demonstrates well what the
social and environmental reinforcements of their
behavior are. The first step in this process is a
loss of interest in academic subjects outside the
realm of computer science. Because of this, a
drastic drop in grades is often seen. Secondly,
developing hackers begin to adjust certain
environmental factors, such as their schedules and

26"The Hacker Papers," Psychology Today 14(Aug.
1980), p. 67. Psychologist Philip Zimbardo is
credited with discovering "The Hacker Papers" on
Stanford's Low Overhead Time-Sharing System (LOTS).
Basically, the finding consists of a series of
exchanges between a group of undergraduate hackers
and ex-hackers at the university. Their main topic
of discussion is the pros and cons of hacking from a
psychological/sociological standpoint.

27Landreth, p. 60.

28Ibid., p. 64.

29craig Brod, Technostress: The Human Cost of
the Computer Revolution, (Readi~ ~Addiso;:
Wesley Publishing Company, 1984), pp. 16-17.

30Ibid., p. 98.

39

http:lives.30
http:employees.27
http:crime.25
http:ahead.23
http:computer.22

the places which they frequent, in order to maximize
interaction with the computer and minimize exposure
to all else. In particular, many hackers who are in
college begin to practically live in the computer
buildings on their respective campuses.31 This
results in a type of "environmental" isolation from
the world of non-hackers, which can be a strong
source of reinforcement of hacker behavior, since
there is often very little to do in a computer
building at a college besides work with computers.

In addition, because it is often easiest to
work on computer systems undetected during the wee
hours of the night and most young hackers attend
school by day anyway, they tend to spend many late
nights in front of the computer console.32 Some
hackers who are college students even develop a 36
hour cycle: they spend twenty-four hours awake
hacking and sleep for twelve hours.33 For many
college hackers, meals often consist of "junk food"
since that is the easiest way for them to eat and
not have to leave the computer.34 If they eat
elsewhere, they frequent restaurants that are open
twenty-four hours a day because of their unusual
schedule, or they opt for take-out food. In fact,
Chinese food tends to be a favorite among college
hackers.35

The process of being introduced into the hacker
culture continues with changes in their social
communication skills. One hacker at Stanford notes
that many young hackers are so intelligent that they
experienced problems dealing with people long before
they discovered hacking.36 However, the narrow
focus of their lives and the irregular hours that
they keep only serve to compound their social
problems. Every aspect of their lives soon becomes
linked to computers. Their speech becomes short and
precise in order to avoid any ambiguity in
communication, and they often use computer jargon
which non-hackers do not understand.37 Hackers also
tend to isolate their emotions from others so that
they can maintain control: in effect, they see a
relationship with a machine as more predictable,
less risky, and more productive than relationships
with people.38 As a result of the combination of
the above factors, many young hackers become distant
from their families and non-hacker friends.39 This
serves to make them even more reliant on the
computer and reinforces their hacker behavior.

However, young hackers are never totally alone:
they find refuge among their fellow hackers. In
fact, the bond that is created between hackers is
probably the biggest reinforcement of hacker
behavior. Considering the fact that teenagers tend

31"The Hacker Papers," p. 64.

32Ibid., p. 64.

-·--- ,., 33Turkle, p. 232.t;:::~

34"The Hacker Papers," p. 64.

35Turkle, pp. 214-215.

36 11The Hacker Papers," p. 63.

37Turkle, p. 202.

38Ibid., p. 217.

3911The Hacker Papers," p. 63.

to be strongly influenced by their peers, this is
not surprising. Within this culture, individual
achievement is highly recognized. Young hackers
love to share information with each other concerning
their hacker exploits.40 It is also described as an
extremely understanding culture:

It is a culture of people who have grown
up thinking of themselves as different,
apart, and who have a commitment to what
one hacker described as "an ethic of total
toleration for anything that in the real
world would be considered strange."
Dress, personal appearance, personal
hygiene, when you sleep and when you wake,
what you eat, where you live, whom you
frequent -- there are no rules. But there
is company.41

Although the hacker culture may appear tolerant
by the standards of the outside world, it does have
one very important rule: most young hackers do not
look favorably upon those hackers who turn to
intentionally doing damage to systems or begin to
use their hacking skills for personal or financial
gain. As a result, hackers who engage in such
activities often find themselves isolated from the
hacker culture as well as the world of non-hackers.
This occurs because most young hackers see hacking
as a serious activity which is not to be taken
lightly. Thus, they feel that, when some hackers
misuse their skills, they are showing disrespect
both for hacking itself and for the other hackers
whose work they may be disrupting. In addition, the
majority of young hackers do not like the fact that
publicity about the antics of abusive hackers ruins
the reputation of hackers in general.42

CHANGING HACKER BEHAVIOR

Most young hackers are quite defensive of their
activities and state that their behavior is neither
dangerous to society nor is it harmful to
themselves. They often argue that they are
providing a valuable service to society because,
through hacking, they expose many security problems
of which system operators and owners were previously
unaware.43 They justify the large amounts of time
that they spend in front of the computer by likening
hacking to other creative activities. For example,
they state that musicians must spend many hours
practicing in order to develop their musical talent
to its fullest extent; the same is true of hackers
and their talent for working with the computer.44

Yet, when young hackers defend their activities
with the above arguments, they are overlooking two
major points. First, as it was explained in the
introduction to this paper, there is a possibility
of inadvertent damage to systems and data through
hacking and also a potential for disruption by

40Turkle, p. 215.

41Ibid., p. 213.

42Landreth, p. 68.

43"The Constitution of a Hacker," 2600, l(March
1984)' p. 1.

44 11The Hacker Papers," p. 67.

40

http:computer.44
http:unaware.43
http:general.42
http:company.41
http:exploits.40
http:friends.39
http:people.38
http:understand.37
http:hacking.36
http:hackers.35
http:computer.34
http:hours.33
http:console.32
http:campuses.31

unfriendly parties who ·take advantage of unknowing
hackers. In addition, hackers really are causing
themselves harm: it is unfortunate to see bright
individuals become caught in a world that is so
narrow-minded in its views. Young hackers have
little interest in anything else, and, as a result,
they are limiting their opportunity to develop their
minds to their fullest capability. It is not enough
to lecture them about computer ethics with the hope
that it will lead to a change in hacker behavior.
Their basic personality characteristics cannot be
easily changed,45 so, in order to promote any
effective change in their behavior, the social and
environmental forces within the hacker culture which
this paper has shown to be quite strong need to be
actively addressed.

It appears as if the best way to combat the
narrow-mindedness that young hackers often develop
is to change educational patterns so that bright
students with an interest in computers are not bored
in school. If their learning process is made to be
more challenging, they will be encouraged to get
involved in it. This may lead to them developing
interest in other areas in addition to working with
computers. Indeed, many activities have "highly
ordered" aspects to them which could attract the
young hackers' attention in connection with the part
of their personalities which loves structure. For
example, one psychologist notes the "antisensual"
nature of the interests in the arts and literature
of a select group of young hackers which she
observed. In particular, they liked music which
emphasizes intricacy of structure instead of
emotion, such as Bach's many preludes and fugues.
Their taste in literature leaned toward science
fiction, mainly because such writings emphasize the
structure of worlds rather than the definition of
character. In art, they expressed a fondness for
Escher prints. These tend to contain recursive
elements, such as a picture of hands drawing each
other (see Figure 2 below).46

Figure 2: Escher's Drawing Hands

Reproduced from Escher's The Graphic Work of M. C.
Escher, (New York, Ballantine Books, 1971), p. 69.

45This tenet has long been accepted by the
world of psychology. It has been espoused by many
leaders in the field, including Sigmund Freud and
William James. However, the subject was recently
reopened for debate due to the impact of some new
research. For further information, see Zick Rubin,
"Does Personality Really Change After 20,"
Psychology Today, lS(May 1981), pp. 18-27.

46Turkle, pp. 219-222.

Research has shown that a preference for such
"antisensual" aspects of the arts and literature,
especially science fiction, exists among students
who are interested in "investigative" occupations
outside the computer science field, such as
medicine, engineering, and scientific research.47
This commonality of interests suggests that
increased interaction with peers who. are not
involved in hacking is a distinct possibility for
young hackers.

Thus, the purpose of developing young hackers'
interests in activities outside computers is ,
threefold: it would further develop their
intellectual abilities, give them exposure to
different environments, and enhance their social
skills. In the end, these three points could lead
to a decrease in hacker behavior. The development
of special programs for gifted students which
feature a balance of challenging academic work and
well-planned extracurricular act~v~t~es, such as
Duke University's Talent Identification Program
(TIP),48 is a step in the right direction.

The communications skills of young hackers
could also be helped by education in two other
forms. By providing their teachers, peers,
parents, and law enforcement officials with more and
better basic information about the workings of
computers, young hackers and these other groups
would be better able to understand one another.
Also, by allowing young hackers to work with
computers in an environment where the point of their
work is more focused and supervision is available,
they would be able to continue to enjoy working with
computers at the same time that they are
experiencing them as a tool with a purpose beyond
the realm of hacking. Cooperative education or work
study programs would be excellent strategies for
doing this.

CONCLUSION

The analysis of young hackers' behavior which
this paper has presented is a complex one: hackers
have basic personality characteristics which attract
them to work with computers and which later play a
role in their initiation into the hacker culture.
Strong social and environmental influences within
the hacker culture also interact with their
personality traits to reinforce hacker behavior. As
a result, helping young hackers to change their
behavior is not an easy proposal. The methods that
have been suggested in this paper involve extensive
planning, commitment, patience, and, of course,
financial backing. Yet, given the analysis of their
behavior which has been provided, there is an
excellent chance that the plans for working with
hackers that are listed would be successful if they
were properly implemented. In the end, the benefits
for both society and young hackers themselves could
be well worth the effort.

47Julie A. Smith, "An Observation of the Career
Decision-Making Process of Honors College Students,"
unpublished Thesis submitted to Michigan State
University, E. Lansing, MI, in partial fulfillment
of the requirements for the Honors degree of
Bachelor of Arts, Department of Psychology, 1982.

48For information on this and similar programs,
see John Boslough, "Challenging the Brightest,"
Psychology Today, 18(June 1984), pp. 28-33.

41

http:research.47
http:below).46

REFERENCES

Boslough, John, "Challenging the Brightest,"
Psychology Today, 18, June 1984, pp. 28-33.

Brod, Craig, Technostress: The Human Cost of the
Computer Revolution, Reading, MA, Addi~n~
Wesley Publishing Company, 1984.

Campbell, Patricia F., and McCabe, George P.,
"Predicting the Success of Freshmen in a
Computer Science Major," Communications of the
ACM, 27, Nov. 1984, PP• 1108-1113. -

"The 	Constitution of a Hacker," 2600, 1, March 1984.

"Death Star Cards Spell Woe," 2600, 1, Feb. 1984.

Deaux, Kay, The Behavior of Men and Women, Monterey,
CA, Brooks/Cole Publishing Company, 1976.

Escher, M, c., The Graphic Work of M. C. Escher, New
York, Ballantine Books, 1971.

Gorney, Cynthia, "Hack Attack: Computer Whiz Kids
Harass Magazine Reporter," The Washington Post,
Dec. 6, 1984, P• B1.

"The Hacker Papers," Psychology Today, 14, Aug.
1980, pp. 62-69.

Kiesler, Sara, Sproull, Les, and Eccles,
Jacquelynne, "Second-Class Citizens,"
Psychology Today, 17, March 1983, pp. 40-48.

u.s. 	Department of Labor, Bureau of Labor
Statistics, Occupational Outlook Handbook,
Washington, D.C., April 1984.

Weizenbaum, Joseph, Computer Power and Human Reason:
From Judgment to Calculation, San Francisco,
CA, W.H. Freeman and Company, 1976.

Williams, Dennis A., and Sandza, Richard, "Teaching
Hackers Ethics," Newsweek, 104, Jan. 14, 1985,
p. 76.

Landreth, Bill, Out of the Inner Circle: A Hacker's
Guide to Coiii'jmt~ ~u;;rty," Bellevue,-WA,
Microsoft Press, 1985.

Levy, Steven, Hackers: Heroes of the Computer
Revolution, Garden City, NY, Anchor
Press/Doubleday, 1984.

Perry, Tekla s., and Wallich, Paul, "Can Computer
Crime Be Stopped," IEEE Spectrum, 21, May 1984,
pp. 34-45.

Rubin, Zick, "Does Personality Really Change After
20," Psychology Today, 15, May 1981, pp. 18-27.

Sandza, Richard, "The Night of the Hackers,"
Newsweek, 104, Nov. 12, 1984, p. 17.

Sandza, Richard, "The Revenge of the Hackers,"
Newsweek, 104, Dec. 10, 1984, p. 17.

Shea, Tom, "The FBI Goes After Hackers," Infoworld,
6, March 26, 1984, p. 38.

Smith, Julie A., "An Observation of the Career
Decision-Making Process of Honors College
Students," unpublished Thesis submitted to
Michigan State University, East Lansing, MI, in
partial fulfillment of the requirements for the
Honors degree of Bachelor of Arts, Department
of Psychology, 1982.

Strong-Campbell Interest Inventory, Form T325,.
distributed by National Computer Systems, Inc.,
Minneapolis, MN, 1981.

Turkle, Sherry, The Second Self: Computers and the
~ Spirit, New York, Simon and Schuster,
1984.

"2600 Writer Indicted," 2600, 1, June 1984, p. 3.

42

MULTILEVEL SECURITY
FROM A PRACTICAL POINT OF VIEW

Terry s. Arnold

Merdan Group, Inc.
4617 Ruffner St.

San Diego, CA 92111
619/571-8565

ABSTRACT

The technology base for multilevel
secure computer systems has been evolv
ing over the past 15 years. With
appropriate development constraints
this technology is sufficiently mature
to be incorporated in the current
generation of new C3I systems. By
system we mean both a standalone system
and a network of •systems.• This paper
addresses these constraints from the
perspectives of concept formulation and
actual development. The process of
defining these constraints and the
pitfalls which must be avoided are
described. The management posture
needed for successful multilevel secure
development is presented.

INTRODUCTION

The multilevel security (MLS) issue has
been widely discussed over the past 15
years. The positions taken by various
people range from that it is impossible
to •nothing less than perfection is
acceptable.• This paper presents the
views of one practitioner who believes
that it is currently feasible to imple
ment MLS, as long as appropriate con
straints are applied by management. The
emphasis of this paper is to define the
impact of multilevel security on the C3I
development process and in particular
the management issues involved.

WHY MULTILEVEL

Why we need multilevel secure operation
is a question that many people ask. The
reasons are very basic and near and dear
to the C31 manager's heart. The basic
reason is that C3I is inherently multi
level due to the fact that compartmenta
tion is required for some of the I data.
When one thinks of applying a system
high policy where many compartments are
involved it becomes clear that this type
of policy does not make sense. In
addition to this aspect, successful
implementation of multilevel security
will allow cost effective sharing of
expensive computer resources. One of
the biggest benefits lies in that
multilevel secure operation will allow
controlled information sharing within
the C31 community.

WHAT DOES MULTILEVEL SECURE MEAN?

For a system to be multilevel secure
means several things. The first and

most significant is that we trust a
computer to enforce our security policy
with respect to all of our data. The
means by which this security policy is
enforced has several aspects. The
primary methods are to separate data
based on differing levels of classifica
tion/compartmentation and strictly
control user access. These concepts are
not new to the world of procedural
security. The only thing that is new is
that a computer is used as a surrogate
System Security Officer (SSO). One of
the functions of this automated sso is
to make a log of all attempted or
apparently attempted security
violations.

HEEDED TECHNOLOGY

The technology needed to support multi
level security covers most of the
computer science spectrum. First and
foremost is the concept of the reference
monitor. The reference monitor is the
automated embodiment of the sso. we
need a rigorous expression of our
security policy in the form of a
security model. we need methods for
verifying that our security policy is in
fact being enforced by the implementa
tion. Lastly we need computer architec
tures which will efficiently support the
reference monitor.

CURRENT TECHNOLOGY

The current state of the art in
multilevel security is evolving at a
fairly rapid rate. While there are
still some holes in the technology base,
research is well under way to fill in
the gaps. we have abstract mathematical
models which have been shown adequate to
describe most aspects of Department of
Defense (DoD) security policy. The
Bell-LaPadula model developed at MITRE
is the most widely accepted such model.
Practical application of this model
quickly revealed that real systems need
some exceptions to this model. While
some people prefer to wave hands in this
area, progress is being made in that
concrete models are being put together
for real systems. The fact that
concrete models of what it means for a
given system to be secure (i.e., a
rigorous statement of the security
policy) are being constructed bodes well
for application of multilevel security
technology in the C3I community. At the
present time such concrete modeling is
not wide spread even in the computer
security community but with time and

43

applied determination we will carry the
day. The situation in the area of
verification methods is somewhat less
rosy. we do have methods for formally
specifying and verifying multilevel
security at a fairly high level of
abstraction. Problems arise in two
areas. The first is in the area of
exceptions to the Bell-La Padula model,
where some of the methods do not have a
means for expressing the allowed exceP
tions within their notation. Several
research groups are actively working to
eliminate this difficulty. we expect
positive results in the near future.
The second area where problems arise is
verification of the actual implementa
tion. Automated verification of soft
ware has been a research topic for a
number of years. At the present time we
do not have viable automated tools to
support verification of software
implementations. Some research groups
are working in the area but solid
results may be several years off. At
the present time we must use manual
methods which are labor intensive.
Unfortunately the labor resource needed
(security trained software engineers) is
in short supply and tend to "burn out"
on this type of work. On the brighter
side, security kernel designs embodying
the reference monitor concept are
starting to appear. Several have
actually been implemented and certified
to operate in the multilevel secure
mode. Securable computer architectures
are becoming common, with securable
microprocessors starting to be produced
in production quantities.

EXPERIENCE TO DATE

The experience with implementing multi
level security has met with mixed
success, although even the failures have
added greatly to the experience base of
the computer security community. The
initial effort to use MOLTICS as a base
for a multilevel secure operating system
for the Air Force Data Services Center
produced what has to be considered a
classic penetration study. The problems
identified were remedied through what we
believe to be the first practical opera
tional application of modern multilevel
security technology. The SACDIN system
fostered the development of much of the
technology base that we have to draw
upon. At this point in time it is not
yet operational but the prospects are
excellent. The AN/GSC-40 was an effort
to implement multilevel security for a
special purpose network control applica
tion. It is operational today and
represents to our knowledge the first
successful application of modern multi
level security technology in an
operational environment. The AOTODIN II
project attempted to apply the then
state of the art of multilevel security
to building a replacement for AOTODIN.
The project demonstrated that formal
specl{ication and verification are
p~act1cal for a large scale system,

however it became clear that the soft
ware development process must be tightly
controlled. The KVM-370 project
attempted to apply the reference monitor
concept to an existing commercial
operating system. The project appears
to have been successful but there are
reports that performance is less than
optimum. The SCOMP project is a
successful commercial effort to produce a
multilevel secure operating system.
This effort is particularly notable,
since it was submitted to the DoD
Computer Security Center for certifica
tion at the Al (i.e., highest) level.
The certification effort was successful
and SCOMP was certified at the Al level
December 24, 1984. The success of this
effort, albeit at the cost 6f consider
able effort and performance penalties,
provides strong evidence that the
prospect for off the shelf multilevel
secure operating systems is improving.
The projects .described above are only
part of the experience base of the
computer security community but they are
all in their own way landmarks in the
evolution of this technology. A number
of new programs are underway to incorpo
rate multilevel security technology in
real world systems. In particular I-S/A
AMPE, Regency Net, and BLACKER are
rather serious about achieving multi
level security as part of their project
goals.

LESSONS LEARNED

As a result of the efforts described
above a great deal has been learned
about what it really takes to achieve
multilevel security. The first and
possibly most important lesson is
perhaps typified by the WW II expression
"Keep it simple stupid." The attempts
at generality have either resulted in
failure or poor performance. Security
models need to be tailored for the
application, since the general models do
not address the specifics of the real
world. Formal (in some sense) specifi
cations of what a given system is
supposed to do correctly are needed. In
the absence of such specifications we
have difficulty in determining that we
have a secure system. Securable
computers are becoming very common,
since the architectural features that
are needed for general applications are
similar to those required to support a
reference monitor. Painful experience
has taught us that standard software
engineering _practice is not good enough
to provide the quality of software
needed for multilevel security. This
not a failing of software engineering
technology but of management of the
software development process. verifica
tion of the product of the software
engineering process is needed and must
occur in parallel with it.

44

TRUSTED COMPUTER SYSTEM EVALUATION

CRITERIA

The DoD Computer Security Center
(DODCSC) was established in 1981. The
mission of the DODCSC is to serve as a
focal point for computer security
throughout the DoD. One of its major
accomplishments has been the publication
in 1983 of the Trusted Computer System
Evaluation Criteria (TCSEC). This
landmark document defines eight evalua
tion categories for trusted computer
systems. While the main thrust of the
TCSEC is directed toward mainframe
general purpose systems, they are being
successfully applied to systems which
employ embedded computers. The TCSEC
define fairly specific criteria which a
computer system must meet to be
evaluated at a given level. The one
criticism which has been made is that
the TCSEC do not define the category
that a given system must fall into for
it to be considered adequately secure.
While some may view this as a fatal
flaw, it has not hampered application of
the criteria in that the serious workers
in the field are in agreement about what
levels are appropriate for a given
application. Environment criteria which
eliminate the above criticism will very
likely have been issued by the time that
this paper is presented. very recently
a effort to develop criteria for net
works was started. The progress to date
is significant and the prospects for
having workable criteria in the near
future are excellent.

The following evaluation categories are
defined in the TCSEC:

Beyond Al

Al 	verified Design

B3 	 Security Domains

B2 	 Structured Protection

Bl Labeled Security Protection

C2 	 Controlled Access Protection

Cl 	Discretionary Security
Protection

D 	 Minimal Protection

These criteria call out increasing
levels of required security features and
development requirements as one proceeds
from category D upward on the scale.
Determination of what level a given
system actually meets is one of the
elements of the charter of the DODCSC.
Unfortunately only a small number of
commercially available systems have been
completely evaluated, with respect to
the Criteria, at this time. This state
of affairs is going to change in the
near future as more and more vendors are
submitting products for evaluation. The
impact that this will have on the C3I
community will increase with time, in

that some of the major computer vendors
are actively working the problem.
However, for new program starts in the
next year or so the C3I PM will have to
"roll his own" security design and start
from scratch in the evaluation area.
While this may seem to be a somewhat sad
state of affairs it should not come as
much of a surprise, since many of the C3I
systems in place or under development
use custom operating systems rather than
computer vendor supplied "off the shelf"
operating systems. The DoD efforts
toward standardization of hardware and
software should improve this situation
significantly over the next 5 years.
Even when these products finally are
available a C3I PM is still going to
have to apply good security engineering
practice to build his system on these
foundations.

HOW TO DO IT RIGHT

All of this technology would go to waste
unless there was a systematic approach
to 	implementing multilevel security for
a given application. Such approaches
have evolved over time and can be
summarized by the following four
seemingly simple steps.

DEFINE IT SECURE

BUILD IT SECURE

PROVE IT SECURE

KEEP IT SECURE

The first step is where security models
come into the picture. Defining up
front exactly what it means for a given
system to be secure is a very important
first step. It is a very good idea to
choose a TCSEC evaluation category at
this point in time. The second step is
really the toughest one in that the
temptations to cut corners during the
development process abound. Most soft
ware developers will strongly object to
the constraints which must be placed on
them, in order to successfully perform
this step. We will address these
constraints in detail below. The third
step will be successful only if the
second step was done properly. The term
"PROVE" has many interpretations in the
computer security community. These
interpretations range from the somewhat
naive concept of pure testing to the
extreme of mathematical proof of
correctness. The TCSEC play a major
role in that they define levels of
checking that are appropriate. The last
step is the simplest in that it
consists of little more than configura
tion management coupled with procedural
security.

DEVELOPMENT CONSTRAINTS

As we mentioned earlier constraints need
to be placed on the development process

45

if multilevel security is to be success
fully implemented. Host of these
constraints are derived from common
sense but the necessity of them has been
learned the hard way. The first
constraint is to perform all development
in a secure environment. The importance
of this has only very recently become
public with the recent rash of "hacker"
break-ins to what many people thought
were "secure" computer systems. The
usual means for providing a secure
environment is to use a dedicated/closed
computer for all development and to
treat all software as if it were
classified. The second constraint is to
recognize that security must drive the
design. This may cause some difficulty
in that most software developers will
want to reuse previously developed
programs which were not designed or
developed with security as a driving
requirement. A security model of the
application should be the first order of
business. This model should be a
concrete statement of what it means for
the application to be secure. A formal
specification of how the security model
will be enforced is the next item which
needs definition. There is a strong
tendency for the technical types to
start waving their hands at this stage,
since few of them understand the role of
a formal specification. TO most of them
MIL-STD-490 is a millstone around their
neck to which they pay only lip service.
The degree of formality for the speci
fication may vary but the emerging
techniques which have a strong theoretic
basis are far and away the best. When a
mathematically based formal specifica
tion method has been used it is feasible
to show that the specification satisfies
the security model and thus describes a
secure system. Once the specification
has been shown secure then it is
appropriate to start detail design.
There is a very strong tendency to start
the detail design before the specifica
tion is shown to be secure. This may
seem like a time saver but experience
has shown that this is not the case.
Verification of the detail design is a
necessary step in that most if not all
designs initially exhibit significant
security flaws. Verification of the
actual implementation should be
performed, since testing has the
unenviable record of showing only the
presence of errors and not their
absence. In one case testing lulled a
program manager into believing that a
security flaw exposed by verification in
fact did not exist. This PM was rather
shocked when the "test" suddenly
displayed the flaw some months later
after a few "minor" software changes.

MANAGEMENT ISSUES

In the material presented above it has
become clear that significant management
issues arise when multilevel security is
involved. The first issue is whether a
computer is really needed. Often there

are hardware solutions which can make
the job easier. Hardware solutions are
preferable, since they are better under
stood and more easily analyzed. The
second issue is what does it mean for
your system to be secure. This is
clearly important, since it will almost
always have a major impact on the
overall design. The third issue is what
are your accreditation/certification
requirements. Each of the services has
some form of accreditation/certification
regulation. A key step is to determine
what your specific requirements are in
this area. Getting the accreditation/
certification authority in at the start
is a critical step. Six months before
IOC is a bit late if success is a
desired objective. Require the
developing contractor/agency to provide
all of the data needed for security
evaluation. This seems like a minor
point but the standard data items don•t
provide sufficient technical data for
security evaluation. Lastly stick by
the rules come hell or high water.

CONCLUSIONS

Multilevel security is feasible today
when appropriate constraints and
technology are employed. The needed
technology exists in that we know what
has to done and how to do it right. we
have a gap in that we cannot just take
products off the shelf and use them to
solve our security problems. Management
by the book is required for success.
Unfortunately only part of the "book"
exists today. Efforts are underway to
flesh out the "book" particularly in the
area of data item descriptions. The
light at the end of the tunnel is
getting brighter and it is looking a lot
less like a train coming the other way.

MODELING OF COMPUTER NETWORKS

Dr. R. A. Gove

Booz, Allen and Hamilton, Inc.

4330 East West Highway

Bethesda, MD 20814

(301) 951-4624

INTRODUCTION
In this paper we will discuss two for

mal techniques for modeling computer net

works. The first approach is an access
control approach based on the Bell &

LaPadula (BLP) model scheme as given in [1].

The second approach models the network in
terms of moving messages between hosts.
Table 1 provides a summary of the features

of the BLP model.

In the BLP model, each state v E V has
three components. These components will be

denoted by access[v], current_level[v], and
matrix[v]. Recall that:

access [v] C S ~ 0 ~ A and repre
sents the access attributes a subject has
with respect to an object in state v.

current_level[v]: s- L gives the
current security level of each subject in

state v.

Matrix[v] (s, o) C A is the set of
attributes that s is allowed with respect

to o.

Recall that a state v E V is said to
satisfy the simple security property if and
only if the following condition holds:

For all s E s and for all 	o E 0,

(s, o, r) E access[v] implies

current_level[v] {s) ~ fobj(o).

In words, this says that if a subject
has read access to an object, then the
clearance of the subject dominates the

classification of the object. Also recall
that a state v E v satisfies the *-property
if and only if the following conditions

hold:

Table 1

A Bell & LaPadula computer security model
is an 11-tuple

B 	= (S, O, V, R, P, A, L,~, fsub'

fobj' v*)

Symbol Description

s Subjects: Set of active
entities

0 Objects: Set of passive

entities
v States: States of system

accessess
R Requests: Requests for

access modes
p Rho: State changing

function~ rules
A Attributes: !. 	= read only,

= read/write,~

a 	= append,

= control,£
e = execute

L Levels: Set of security
levels

Is dominated by: Order relation on
L

Subject level: Clearance level
of members of S

Object level: Classification of
members of 0

v * Initial state: The starting
state of the
system

For all s E s and for all o E 0

(s, o, ~) E access[v] implies

fobj(o) ~ current_level[v] (s)

(s, o, ~) E access[v] implies

fobj (o). = current_level [v] (s)

47

(s, o, £) e access[v] implies
f b.(o) S current level[v] (s)

0 J

A system state that satisfies both the
simple security property and the *-property
is called a secure state. It was shown in

[1] that if the initial state v* is secure
and if P preserves the simple security and
*-properties, then all states are secure
and, hence, the system is secure. In the
next section we will show how to apply the
BLP model schema to a network of computers.

BELL & LaPADULA NETWORKS
Let B1 , B2, ••• , Bn be BLP models

of a network of n host computers.
Let B.= (si, oi' vi, Ri'l.

pi' A, L,~, (fsub)i,

(fobj)i,v*i).

Note that we are assuming that all the B.
l.

have the same attribute set and the same
dominance relation and set of levels. Asso
ciated with each host are the maximum and
minimum security levels at which the host
operates. These levels are denoted by

max(Bi) and min(Bi)' respectively.

The first step in defining the network
model is to define the subjects. Consider

the subject sets si of the individual
hosts. Since many hosts will have subjects
in common, sin sj, may be non-empty.
We will distinguish these common elements
with a construct known as the disjoint
union. Technically, the disjoint union of

A and B is

AIl B = A ~ {0} U B ~ { 1} •

Generally, A is identified with A~ {0} and
B with B ~ {1} so that A nB = 0. The con

struction extends to any finite list of
sets in the obvious way.

Let SNet be the disjoint union of the
individual Si:

n

SNet = II
1=1

of the individual models but will also have
two additional attributes: ~ and 1· The
attribute 1 represents 0 logon." A subject
receiving log on access to a host computer
is given access to the host's resources.
(This implies, of course, that the host

must be considered as an object.) The at
tribute ~ represents connect access. A
subject in host i may request to be connec
ted through the network to host j. As we
will show below, an 1 request has to be

preceeded by a ~ request. We have ANet=

(£, ~· ~· ~· £• 1· ~ } .

The objects of the network are formed
from the individual objects of each host
with the addition of the hosts themselves.

Let Oi be the objects for Bi.
Then

n

0Net =II 0 i Il IBl' • • ·' Bn } •
i=l

The subject and object clearance functions
are easily described.

just as in the BLP host model. That is, a
network state v is a 3-tuple,

(accessNet[v], current_levelNet[v],

matri~et[v]).

where

accessNet[v] CSNet~ ONet ~ ~et

current_levelNet [v] : SNet L

matrixNet[v]: SNet ~ ONet C
subsets (~et>•

The initial state, v*, is formed from the
initial states

The network's attribute set will include

the standard attributes £• ~· ~· ~· and £

48

Let

vi* =

(accessi[vi*], current level.[v.*],

- 1 1

matrixi[vi*]).

Define

n

accessNet[v*] = 	 II accessi [vi*]
i=}

current_levelNet[v*] =
n

II current_leveli[vi*]

i=l

n

matri~et[v*] = IImatrixi[vi*]
i=l

Some special remarks about the initial

matri~et are needed here. As part of
defining the host's relationship to the net,
we will consider the initial BLP model of
each host to have included in its initial

matrix the appropriate ~ and 1 accesses.

That is, for each Bj' j f i, to which a
subject s e si is allowed to connect,
k E matrix. [v.*] (s, B.). Note that
- 1 1 J
the connect accesses are controlled by the

source host, and will be monitored by its
reference monitor. The 1 accesses are
treated somewhat differently. If s E si

and s has log on access to Bj'_ then 1 e
matrixj[vj*] (sj' Bj). Here, sj
is the copy of s that is in the subject set
for Bj. Thus, the target host maintains
the log on access list for all of a
subject's alter egos.

The simple security property and the
*-property are defined exactly as they are

in the host model. A state in VNet is
secure if and only if it satifies both sim
ple security and *-property and current

levelNet(v] is consistent. That is, if

s E Si C SNet and sj is the copy of s
ins., then current levelN t[v] (s) =

J - e
current levelN t[v] (s.). The net is - e J
secure if all the states are secure. We
first prove

Proposition 1

If v satisfies the *-property and

s e sNet' o e oi and
o' E oj and (s, o, ~) E accessNet[v]

and (sj' o, ~) E accessNet[v] then

fobj(o') ~ fobj(o).

Proof. The *-property implies that

current_levelNet[v] (s) ~ fobj(o) and

current_levelNet[v] (sj) = fobj(o').
Consistency implies that

fobj (o') ~ fobj (o). 0

we now prove

Proposition 2

If, for all i=l, ••• , n, vi* is a se
cure state in Bi' then v* is a secure
state.

Proof. We first prove the simple security
property. Suppose

s E SNet' o E ONet and
(s, o, r) E accessNet[v*]. From the
definition of accessNet[v*], there is an
i with (s, o, r) E access.[v.*] C

- 1 1

si .!. oi .!. A.
Thus, s E Si and o E Oi.
Since v.* is secure,

1

current_leveli [vi*] (s) ~ (fobj) i (o).
But for s E Si'
current_levelNet[vi*] (s)
current level. [v.*] (s), and so the

- 1 1

simple security condition holds in the net.

To prove that the *-property holds for

v*, consider (s, o, ~) E accessNet[v*].
From the definition of accessNet' we con
clude that (s, o, a)E access. [v.*] for

- 1 1

some i. Since vi 	is a secure state,

(fobj) i (o) ~ current_level1 [vi] (s).

But fobj(o) = (fobj)i(o) foro E Oi
and current_levelNet[v*] (s) =
current level.[v.*] (s) for s E s .•

- 1 1 	 1

The proofs of the remaining two conditions

for *-property are similar and are left to
the reader. 0

49

We next must define state transitions
and show that the state transitions pre

serve simple security and *-properties.
The transition function will be built up
from the individual Pi plus some addi
tional commands: Connect_to_host and logon

to_host. These two new commands are of the .
form:

s requests connect to host access to B.
-- - - -J

at_level_ A •

s requests logon to host access to B. at
- - - - - J

level_ A.

We will also allow the complement of

these comments, that is, delete log on ac
cess (log off) and delete connect access.

Let R* be the set of requests generated
by this schema. Define:

n

~et = liRi II R*
i=l

We have defined the states for the net
work and the set of requests. In order to
complete the definition of the BLP network
model, it is necessary to define the state
change function:

PNet: VNet x sNet x ~et _. VNet

Suppose v e VNet' s E SNet and
r E ~et• There exists some i,
i=l, ••• ,n, with s e si. Likewise, r E
Rj for some j or else r e R*. The state
v is characterized by

current_levelNet [v] :SNet- L

matri~et[v]:SNet ~ ONet
Subset(~et>•

There are several cases to consider:

whether the request r is in Ri' Rj' or
R*. Although the constructions below look
rather complicated, all we are really doing
is letting Pi change the state by acting

on the ith model.

Case 1

r E Ri. (In this case, s is request
ing an access in its own host).

Let bi =
accessN t[V] n (S. X 0. x A).e 1- 1

That is, bi is the subset of accesses

that relate to host i. Similarly, let fi
be current_levelNet[v] restricted to the
subdomain si,

f.= current levelN t[v]ls .•
1 - e 1

And similarly for the matrix,

mi = matrixNet[vJI si~oi.

It follows that (bi' fi' mi) defines
a state v. E V. of the host B.• We

1 1 1
then let 'l act on vi optaining

vi = Pi (vi' s, r). We then form v
by replacing bi' fi' and mi with the
corresponding components of vi:

accessNet [v] = (accessNet [v] - bi)
accessi [vi]

current_levelNet[v] {t) =

current_levelNet[v] {t), t ¢ Si
current level.[v.] (t), t E S .

- 1 1 1

matri~et[v] (t,o) =

matrixNet[v] (t,o), t ¢ si oro¢ Oi
matrixi[vi] (t,o), tESi and oEOi

Case 2

r E Ri. (In this case, sis request
ing an access in another host). The philo

sophy behind the action of PNet in this
case is to let the target host use its ref
erence monitor to control the request of

subject s. This is done by transferring
requests by s E Si to requests by a copy

sj of s in Sj. The subject s must
first obtain connect access and log on
access to the host Bj. That is, the fol
lowing condition is checked:

(sj' Bj' .!> E accessNet[v].
If this condition holds, the next state

is determined by ~j much as was done in
case 1. That is, let

so

b. = acces~- t(v] n (S. X 0. X A)J -Ne 1 - 1

Then (bj, fj' mj) is a state_
vj e vj of host Bj. we let vj

Pj(vj,sj,r) where sj is the copy
of s in 	Sj. Then v is defined by

acces~et[v] =
(accessNet [v]- bj) U accessj [vj]

current_leve~et(V](t) =
current_levelj[vj](t), t e sj
current_leve~et[vj](t), t ¢ sj

matri~et[v](t,o) =
matri~et [v] (t,o) , t ¢ sj or o ¢ oj
matrixj (VJ (t,o), t e sj and o e oj

Case 3
r e R*. (In this case, s is requesting

either a connect access or a log on access)

Subcase 3a. r = "request_connect_to_host

access to B . at level ~ • " - - J- -

In this case, the following conditions are

checked.

(i) r e 	matrix N t[v] (s, B.)- e J

(ii) current_levelNet[v] (s) = ~

If any of these conditions do not hold,

the new state is the old state v. If these
conditions are satisfied, then the new
state v is defined by adding connect

access, ~. to the network access set. This
is done, however, in the disjoint com
ponent corresponding to the target host

Bj. Note that the reference monitor of

Bi decides if s has discretionary connect
access. If it is allowed, then the target

host will add connect access to s.•s ac-
J

cess, where sj is the copy of s in Sj

as before. The host will also reset

sj • s current clearance level to ~ •
Specifically:

accessNet [V] =

accessNet[v] U { (sj,Bj 1~)}

{
current_levelNet[~ (t) =

current_leve~et(v] (t), t r sj
-~ t = s.

J
matriXuetrvJ = matri~et[v].

Sub-Case 3b. r = request logon_to_host

access to B. at level ~-- - J- -

In this case, the following conditions
are checked:

(i) (s.,B.,k) E accessN t[v]
J J - e

(iii) 	current_leve~et[v] (sj) = ~
= current_levelNet[v] (s)

If these conditions are satisfied, the
new state v is defined by adding two new

accesses to Bj. First 1 access is added
to the access set. We also have to make a
special adjustment to prevent *-property
violations between hosts. That is, if a
subject has read access to a Top Secret ob

ject, for example, in host Bi and then
logs on to Bj (at the Top Secret level)
and obtains write access to an object at
less that the TS level, we would have a co
vert channel and the potential for compro
mise. We avoid this by adding a read ac

cess mode for the host Bi as an object in

host Bj. This will enable the *-property
checks in Bj to catch the potential com
promise. Specifically, if there exists an

o e oi such that (si, o, ~) e
accessi[vi] for~ e {~, ~· £}
accessNet[v] =

accessNet [v] U { (sj, Bj,!>} U
{(s.,B.,x)}

J 1

Otherwise,

.51

Table 2

Bell & LaPadula Network Model

Symbol Description

accessNet[v] =

accessNet[v) U { (sj,Bj•!>} •

The current level and matrix components
remain unchanged.

We have now completed the definition of

pNet: VNet ~ SNet ~ ~et VNet •
The components of the network model are

summarized in Table 2. We have already
defined the network's intitial state and
have shown that it is secure if the host's
initial states are secure. It remains to
show that the state transition mapping

PNet preserves the simple security and
*-properties.

Theorem

If B1 , ••• ,Bn are secure Bell &

LaPadula systems and BNet is defined as

above, then BNet is a secure Bell &
LaPadula system.

pProof. It suffices to show that Net
preserves the simple security and

*-properties. Let v E VNet be a secure

state, s E SNet and r E ~et• Let v =

PNet(v, s, r). Without loss of
generality, we may assumes E s 1 •

Case 1

r E R1 • In this case,

accessNet[v] =

(accessNet [v] - b1) U accessNet [v1 1,

where bl, and vl are defined as above.

Now suppose t E SNet' o E ONet and

(t, o, £) E accessNet[v). suppose

(t, o, £) E accessNet[v) (t)- b1 • Then

t 1 s, and current_levelNet[v) (t) =

current_levelNet[v] (t).

BLP Model for network

Net Subjects: The disjoint union
of the component subjects

Net Objects: The disjoint union
of the component objects plus the
hosts

~et Net Requests: The disjoint union
of the component requests plus log
on and connect

The Net Transition function:
like pi on host i, plus adds
connect and log on access

acts

~et Net attributes:

plus !• .!5_

Host attribute

L Classification levels

Dominance relation for levels

The clearance function for the net
subjects. It is the disjoint

union of the host clearance

The object clearance function. It
is the disjoint union of the host
object clearances

v* The network initial state. The

disjoint union of the initial
states of the component hosts.

Since simple security holds in v, In this case current_levelNet[v] (t) =

current_levelNet[v] (t) ~ fobj(o). current_leve11 rv11 (t). Since P1
preserves simple security by assumption,

Next, consider current_level1 [v11 (t) ~ (fobj) 1 (o)

(t, o, £) E access1 £v11 C ~ o1 ~A. fobj(o).s 1

52

We next show that the *-property holds.

Consider (t, o, ~) E accessNet[v]. If
(t, o, ~) £! b1 , then

f b.(o) ~current levelN t[v] (t)o J - e
because v is a secure state.

If (t, o, ~) e access1 £v1J

~ x A, current_levelNet[v] (t) =s1 o1

current_level1 £v1J(t).

Since P1 preserves *-property,

fobj(o) =

(fobj) 1 (o) ~ current_level1 [v1 J (t).

The proofs of the other two conditions are

similar.

Case 2

r E Rj 1 = j. The proof of this case

is similar to Case 1 and is left to the
reader.

Case 3

Since requests in R* do not affect £•
~· or ~ access, simple security and
*-properties must be preserved.[]

We have defined a network model based
on individual BLP models and shown it is
secure. In the next section we consider an
alternative view of a network, one that in
volves moving messages between hosts. It

is similar to an information flow model.

NETWORK MESSAGE MODEL
This model is based on a GYPSY model of

a network and is provided as a contrast to
the Bell & LaPadula model of the previous
section. As before, we have n hosts which

we will represent by the integers 1, 2, ••• ,
n, and a classification level c(j) of each
host. We also have a set, M, of messages,

consisting of all finite sequences in some
alphabet A. The empty message will be de
noted by 0. Associated with each message
are three functions:

SOURCE:M-- {0, 1, 2, ••• , n}
DEST:M-- {0, 1, 2,••• , n}

LEVEL:M-- L,

denoting respectively the host that is the
source of the message, the host that is to
receive the message, and the classification

level of the message. (Note that
SOURCE(m) = 0 or DEST(m) = 0 if and only if

m = ~·)

It will be assumed that
LEVEL(~)$ LEVEL(m), for all mE M. The
states of the network will be sets of mes
sages that are waiting to be sent into or
out of the network. Specifically,

n k

v = X X

i=l j=l

That is to say, a state v is an 2n-tuple

with each vi and wi a k-tuple,

vi= (mi,l'"""'ml,k)

wi = (ri,l'"""'ri,k)

The initial state v* = ((v1*, ••• , vn*),
(w1*, ••• wn*)) is the state with vi
and wi consisting only of empty messages.
The vi's correspond to the set of mes
sages that host i will send into the net
and the wi's correspond to the sets of
messages received from the net.

To construct an automaton, we must de
fine an input set I and a mapping

P: V x I -- V. The inputs will be of
three types:

= { (i, m) \ 1 $ i $ n andI 1

SOURCE (m) = i }

= {1, 2, ••• , n}I 2

= {1, 2, ••• , n}I 3

We let I = I 1 II I 2 II I 3 • The inter

pretation of these inputs will be made
clear through the definition of p •

Consider v = ((v1 , ••• ,vn)'

(wl, ••• ,wn))

~~~~~:~~~~~~ 
53~t~~=~:~=~ 



and consider an input (i,m) of the first 

type. The first coordinate, i, means that 

the message m is to be added to host i. 


Suppose vi = (mi, 1 , •••mi,t' fl, ••• , fl) 

where m.

1,
t~ fl. If t = k, the message 


buffer is full and p will not change the 

statei thus p(v) = v. 


If t < k, let 

~. = (m, m. 1 , ••• ,m. t' fl, ••• , fl)


1 1, 1, 

Then 

p(v) = ((vl, ••• ,vi-1' ~i' 
vi+l'_••• ,vn)' (wi, ••• ,wn)). 

In words, the list of messages in the buf
fer waiting to be sent are right shifted by 
one place (if there is room) and the new 
message is added to the list. 

Next consider an input i e I 2 • This 
input will cause the first message placed 
in the message list for host i to be sent 
to its specified destination. Specifically, 

suppose as in the previous case, 

vi= (mi,l'"""' mi,t' fl, ••• , fl). 
The destination for m. t is

1, 
DEST(mi,t) = j. 

Suppose, wj = (rj, 1 , ••• rj,s' fl, ••• , 

fl) where I -· If s ~ k, the buffer
r 1 ,s 
is full and we must define p(v) = v. 
Otherwise, the following condition is 

checked: 

c(j) ~ LEVEL (m.
1,

t). 

That is, the host level must dominate the 
message level. If this condition fails, 

p(v:) v. Otherwise, let 

v. = (m. 1' • •. ,m. t-1' p, .. •, ,, •
1 1, 1, 

w. = (m. t r. 1 , ••• r. ,J 1, , Jr JrS p, ... ,p). 

Then 

p(v) = ((vl, ••• ,vi-1' ~i' 

vi+l'"""'vn)' 

<wl, •••wi-l'wi, 


wi:H' • • • ,wn)) 

54 

i The last case corresponds to the com
mand to remove a message from the buffer. 
Let j e I 3 and assume 
w. = (r. 

1 
, ••• ,r. , p, ... , p).

J 1 1 JrS 

Let wj = 

(ri,l'""" rs,s-1' 0, 0, ••• , 0), and 
p(v) = 

We have defined, p: V X I-V 
thus defining an automaton. The security 
theorem that we may prove is that no mes

sage will be misrouted and that no message 
will go to a host having an operating clas
sification lower than the message level. 
These security properties are formalized 
through the following properties. 

Nondisclosure Property 

A state v = ((v1 , ••• ,vn)' 

(wi, ••• , wn)) with wj = 
(r. 1 , ••• ,r. k) satisfies the nondis-

J, J, 
closure property if and only if for each 

wj' j = l, ••• ,n and each s = l, ••• ,k, 

c(j) ~ LEVEL(rj,s>· 

Nonmisrouting Property 
A state v = ((v1 , ••• , vn) 

(w1 , ••• ,wn)) with wj = 

rj, 1 , ••• rj,k) satisfies the Nonmis
routing Property if and only if for each i, 
k = l, ••• ,n and each t,s, t = l, ••• ,k, s = 
l, ••• k, 

if mi,t 1'1 
SOU""" (mi 't) ·l i ,0 if mi,t 

j if t.
JrS I 'I 

DEST(rj,s) = 
0 if r. = ,.

JrS 

Theorem. Let p:Vxi - v be defined as 
above. Let v* be an initial state of empty 
messages. Then for any sequence i = i 1 , 
i 2 , ••• , of inputs, p*(v*,i) satisfies 
Nondisclosure and Nonmisrouting. 

Proof. The proof is by induction on the 

length of the input sequence. We first 
show that it holds for sequences of length 



o. This is trivial as the initial state LaPadula model schema and the other based 
clearly satisfies Nonmisrouting·and on message flow between hosts of the net
Nondisclosure. work. Both models assume that connections 

between hosts are essentially pipelines and 
Suppose i = i 1 , ••• ,iq. Let v = that once established, information flows 

p*(v*,i1 , ••• ,iq_1). Then v satisfies directly between the hosts without error. 
Nondisclosure and Nonmisrouting by the in Except for "error-freeness," these models 
duction hypothesis. There are three cases: should apply to any real network. Since 

all the switches, gateways, and network 

iq E Il' or iq E I2' or iq E I3. controllers may be interpreted as hosts of 
one sort or another, albeit with limited 

Case 1 capabilities. Neither model by itself, 
.1q E Il however, captures all of the features one 

wants to model. It is necessary to unite 
In this case, SOURCE(m) = · i by defini- the two models in some fashion. In the 

tion of I 1 and next few paragraphs, we will discuss a 
method by which this unification can take 

p( p*(v*, i 1 , ••• ,iq) ,iq) = place. 

( (vl' ••• ,vi, ••• ,vn), 
(wi, ••• ,wn)). In order to capture both the access 

control and the message buffers in the sys
Nondisclosure and Nonmisrouting hold in tem state, we let the new network state be 

v., i I j, and all w. by induction. the cartesian product v1 ~ v2 where 
J 	 1 

Now v. = (m, m. 1 , .•• , m. t' ;, ••• , ;) v1 and v2 are the system states for the 
1 1, 1, 

or is unchanged. Since SOURCE(m) = i, 	 Bell and LaPadula and the message models 
Nonmisrouting holds. 	 defined previously. Thus, a state will 

include the access controls and the pending 
messages. The input set I of the automata 
model of the network could be converted 
into requests and simply included in ~et 

Going back to the definition of , the in the obvious way. However, this will not 
only things that change are in vi = really couple the two models together. 
(m. 1 , ••• ,m. t' p, ... , ~)and w. = 	 What needs to be done is to redefine the

1, 1, 	 1 
(r. 1 , ••• , r. , ~, ••• , ~). The Non-	 interhost access requests to utilize the

J, J, s 
disclosure and Nonmisrouting conditions messages. That is, a connect or log on re
hold .in vi since a message is replaced by quest will require the sending of a special 

an empty message. On the other hand, wj "connect" or "logon" message between the 

is changed to wj only if c(j) ~ hosts. In the same way, each of the ac

LEVEL(mi,t) which maintains Nondisclosure. cesses will have an associated message that 

As DEST(mi,t) = j and must first be distributed to the other 
SOURCE(m. t) =.i by definition, hosts. A subsequent paper will explore

1, 
:-:-:::·::>.:·1 Nonmisrouting still holds. these issues in more detail as well as 

begin consideration of the error issues. 

Case 3 
This is trivial and is left as an REFERENCES 

exercise for the reader.[] [1] Bell, D. Elliott and LaPadula, Leonard 
J., "Secure Computer Systems: Unified 

In the previous sections we have de Exposition and Multics InterpretationJ" 

fined two network models, one an access MTR-2997J The MITRE Corporation, Bedford, 
control model based on the Bell and Massachusetts, 1 March 1973. 

~----- ¥.·,~, 

55 



A TWO-LEVEL SECURITY MODEL FOR A SECURE NETWORK 


Janice I. Glasgow 

Glenn H. MacEwen 


Department of Computing and Information Science 
. Queen's University 

K~ngston, Ontario, Canada, K7L 3N6 

ABSTRACT 

A formal· security model for the SNet 
multi-level secure distributed system is 
described. The model comprises two parts, 
an abstract model based on history 
sequences representing message flow in the 
system, and a concrete model that extends 
the abstract model with operations that 
c~ange user states and with explicit label
llng of messages. The proof of consistency 
between the abstract and the concrete 
models is outlined. Current work to 
specify the system using the Lucid 
language, to prove the consistency of these 
specifications with the model, and to 
transform these specifications into Con
current Euclid is not described. 

!· INTRODUCTION 

This paper describes part of current 
work toward the design and implementation 
of a multi-level secure distributed system 
called SNet, an early version of which was 
first described in [MacEwen84]. Some ini
tial work to define a security model for 
SNet, and to formally specify the system 
using the Lucid/dataflow approach, was 
presented in Gaithersburg in September 1984 
[Glasgow84]. The model presented at that 
time was a very concrete model, and one 
which was more complex than we would have 
liked. Subsequent consideration, as well 
as some discussion at the Gaithersburg 
conference, led us to attempt to refine the 
model into two levels of abstractness. 
This paper discusses security models in 
general, the various problems of informa
tion. flows in SNet, and describes the 
abstract and concrete security models for 
SNet. 

We are currently using Lucid to 
specify the system and are verifying the 
correctness of the specification with 
respect to the model. The implementation 
of SNet is in Concurrent Euclid. We are 
currently investigating the systematic 
transformation of Lucid specifications into 
Concurrent Euclid code. This specification 
and implementation work is the subject of 
papers under development. 

1· SECURITY MODELS 

A security model is a special com
ponent of a system~s requirements that 
describes a safety property. That is, it 
specifies that certain things related to 
security must not happen during the opera
tion of the system. In other words, it is 
a set of constraints on the function of the 
system. Another characteristic that 

distinguishes the security model from other 
functional requirements is the fact that it 

must be described in formal mathematical 
terms due to the requirement for formal 
verification of security properties. 

1·1:. Components of ~ Security Model 

A security model may comprise several 
levels, each describing the constraints in 
successively more detailed terms. The 
upper level abstract model describes the 
security constraints inavery simple way 
that can be accepted as the basic defini
tion of security for the system. Succes
sively less abstract levels add detail and 
representation concerns that are necessary 
to relate the model to the functional 
specifications. The constraints on each 
leve~ must be shown to imply the con
stralnts on the next more abstract level. 
The lowest least abstract level is called 
the concrete model. 

Figure 2.1 shows the relationship of 
these model levels with the functional 
specifications of a system. Functional 
spec~f~cat~on s~arts. with a requirements 
spec1f1cat1on wh1ch 1s usually an informal 
English description of the behavior of the 
sy~tem. Some formal modeling may also 
ex1st at this level of specification but 
this is only likely to be used to describe 
precis.ely some aspects of the behavior. 
The fust level of specification that is 
entirely expressed in formal terms is usu
ally called the design specification. This 
may also comprise sub-levels starting with 
the top-level specification as shown in the 
diagram. In a similar way as with the 
security model, successively less abstract 
levels add detail and representation con
cerns. 

The important difference to realize is 
that the model levels attempt only to con
strain the function of the system while the 
specification levels attempt to fully 
describe the function of the system. 
T~erefore they have quite different objec
tlves and may be expressed in quite dif
ferent languages. However, at some point 
they must be related. This is done at the 
lowest model level and the highest design 
specification level. The objects in the 
model must be associated with objects in 
the design and the model constraints 
applied to the design. The design specifi 
cations must then be shown to conform to 
the constraints. 

56 



It is therefore important that, 
although the abstract model may be 
expressed in a language not closely related 
to the design the concrete model must be 
easily related to the design. One may 
include some mechanisms in the concrete 
model that are not directly concerned with 
the constraints. This happens in the 
effort to produce a concrete model that can 
easily relate to the design specification. 

It is reasonable that the same model 
can be used for more than one set of 
specifications - for the same system, or 
for different systems. In this case, also 
illustrated in Figure 2.1, different con
crete models can be derived from a common 
upper level model. In this way, the same 
basic notions of security can be applied to 
both systems while a different concrete 
model is used for each. 

System A System B 
Functional Security Functional 

Specifications Constraints Specifications 

Informal Requirements Abstract Model Informal Requirements 

T~I~ISL-~~~ 1 

Concrete Model B -> Top-level Specification l 

~ 
Detailed Specification 	 Detailed Specification 

Figure 2.1 	Relationship of Security Model 
to Specifications 

The development of the security model 
as a series of less abstract models can 
assist in developing the specifications. 
Since one wants to be able to verify the 
correctness of the top-level specification 
with respect to the concrete model, it is 
essential that that two are stated within a 
common framework. Consequently, with each 
security model level one can develop an 
associated partial specification to reflect 
the structure and objects in the model. In 
this way, when the top-level specification, 
which should be complete, is produced it is 
easier to associate it with the concrete 
model, and the verification should be more 
tractable. 

Furthermore, as one develops each par
tial specification one can formally verify 
its consistency with the associated model 
level. In this way, the correctness of the 
top-level specification can be established 
in steps concurrently with the development 
of the concrete model. This is, in fact, 
what is done in this paper; a Lucid partial 
specification is shown to be consistent 
with the abstract model for SNet. 

57 

1·1 Security in SNet 

SNet is a multi-level secure system in 
which users at terminals and host computers 
exchange messages (Figure 2.2). The essen
tial idea is that an untrusted host can be 
used to store information of a common secu
rity level. Trusted multi•level hosts can 
also be accessed from the same user termi
nals. Such trusted hosts·may perform such 
special security functions as secure down
grading. "

A user can establish a set of active 
virtual circuits from her/his terminal to 
any number of h~s. At any time, however, 
only one of thes~circuits can be connected 
and when so connected there is transparent 
communication between the terminal and the 
associated host. The user specifies 
her/his security level for each circuit; 
for the network to allow bi-directional 
communication over a circuit to an 
untrusted host this level must be the same 
as that of the host since otherwise flows 
are possible only in one direction. 

A user can, for example, connect to 
host A to logon, switch to host B to logon, 
and then switch back to A to initiate a 
file transfer from A to B. Hosts can com
municate over the network at any time, and 
in any way permitted by the security 
enforcement in the network. Host-to-host 
protocols must be based on uni-directional 
communication only however, so that hosts 
of different levels can transfer data from 
a lower level to a higher level. This means 
that the user doing a transfer as just 
described must switch back to host B to 
check that the file was received correctly. 
All bi-directional protocols to perform 
flow control and error detection and 
recovery must exist within trusted com
ponents of the network. 

Trusted HostsUntrusted Hosts 

.-/"- ~ ~ rr ""' 

Host-only Trusted SNetHost-only Host-only 
terminals terminalsterminals terminals 

STS 

_ladels 

Figure ~.2 SNet Architecture 

As suggested by Figure 2.2, the vir
tual circuit mechanism exists in a trusted 
Secure Terminal Server (STS) which looks to 
the rest of the network just like another 



trusted host. All hosts are connected to 
an unt.rusted Communication SubNetwork (CSN) 
by a secure network interface unit called a 
Labeller/Delabeller (ladel). All communi
cation is in message units. Each .message, 
as it is sent, is labelled with the secu
rity level of the information in the mes
sage. This label is used at the destina
tion to determine if the message can be 
passed on to the recipient according to the 
common lattice model of secure information 
flow. Users and trusted hosts can deter
mine the level in messages that they send 
while untrusted hosts have a fixed level 
attached to all outgoing messages. The 
communication subnetwork that supports the 
message traffic is not trusted. This may 
result from having untrusted switching 
nodes or having untrusted hosts on the net
work capable of monitoring messages and 
transmitting messages without going through 
the secure labelling mechanism. 

There are two kinds of information 
flows that a security model for SNet must 
address: storage flows and covert flows. 
Enforcement of the first involves three 
security requirements. Enforcement of the 
second involves four requirements. These 
seven requirements are discussed in turn 
below. 

Storage flows, of course, occur in the 
message traffic between hosts and users. 
The labels on messages can serve as the 
basis for an enforcement mechanism to 
limit such flows. First, a transmitted 
message must be properly labelled depending 
on whether or not the sender is trusted. 
Second, the message flow must be checked at 

the recipient to conform with the security 
policy embodied in the lattice of levels. 
For this to work, of course, the messages, 
data and associated level, must pass 
through the network unaltered. This, then, 
constitutes the third requirement: the 
integrity of each transmitted message. 

Covert flows can occur because mes
sages, along with the data and the level 
must of necessity carry other control 
information such as a network address. 
Consider, a message sent from host A at 
level LA to host B at level L while host8
C at level Lc is sending a stream of mes
sages to host D at level LR where LC ~ LB ~ 
LA~ LB. An untrusted age t in the netw rk 
could observe control information in the 
message going from A to B and encode this 
information in the message stream going 
from C to D. This results in a flow from A 
to D contrary to the lattice model. 

How can such information be encoded? 
The agent could re-order messages is a way 
detectable by the recipient or it could 
save a copy of the message stream and re
send identical messages in a predetermtned 
pattern. The fourth and fifth require
ments, then, are for uniqueness of mes
sages, i.e. a non-duplication requirement, 
and for order preservation of messages. 

A third way in which such coded infor
mation could be sent is for the agent to 

redirect messages from some other stream 
and send them to D in some predetermined 
pattern. Of course, such message stealing 
may be detectable but this is dependent on 
the application. In SNet such message loss 
would likely appear as a file transmission 
error and require resending of the file 
involved. If this did not happen often then 
it would not appear unusual. The sixth 
requirement, then, is for routing correct
ness. 

Finally, if it were possible to create' 
legitimate messages then they could be used 
directly to transmit covert information. 
This leads to a requirement for authentica
tion of messages. This means that any mes
sage received is one that was sent by a 
legitimate user or host, and is equivalent 
to disallowing the creation of messages in 
the network. 

Of course, message deletion can also 
be used to encode information for the pur
pose of transmitting it out of the 
untrusted subnetwork. However, a require
ment that there be no lost messages s·eems 
impractical to consider for at least two 
reasons. First, it is a severe requirement 
to impose on any network. Second, it may 
conflict with some of the other require
ments. For example, reasonable implementa
tions of flow control and order preserva
tion may involve message deletion. Since 
our model is one that only states con
straints that can be enforced, we conclude 
that this covert channel cannot be handled 
at this level. It should, though, be 
addressed at the implementation level with 
some monitoring mechanism that detects 
unexpected message loss. 

To summarize then, the SNet secu~ity 
model must address these seven requlre
ments: labelling, message flows, integrity, 
uniqueness, order preservation, routing, 
and authentication. 

1· ABSTRACT MODEL 

To simplify the process of developing 
a concrete model for our secure system we 
introduce a level of abstraction. This 
intermediate model defines high-level con
traints for the system. 

1·1 Description of Abstract Model 

Here we attempt to express the funda
mental notions of security in SNet in as 
simple and precise a way as possible. The 
abstract model contains the following: 

A set S of subjects 
A set D of data 
A set M of messages 
A set E of events 
A partially ordered set H of histories 
A partially ordered set L of levels 
A mapping Trusted: S -> Boolean 
A mapping Subjectlevel: s x H -> L 
A mapping Maxlevel: S -> L 
A mapping Messagelevel: M -> L 
A mapping Destination: M -> S 

58 



A mapping Data: M -> D 

A mapping Sender: M -> S Destination(x) = Destination(y) 

A mapping Newhistory: H x E -> H Data(x) = Data(y) 


Sender(x) = Sender(y) 

We explain these objects in detail in 
the following definitions and in the rest 
of the paper. However, an informal expla
nation of their interpretation is helpful. 
in understanding the model. The set S . of 
subjects comprises both users and ·hosts. 

Both communicate via messages containing 
data. An event is the transmission of a 
new message or the receipt of a previously 
transmitted message. A history is a set of 
pairs where each element of a pair is an 
infinite sequence containing respectively 
all transmitted and all received messages 
by one subject. So a history describes at 
any· particular time all events that have 
occurred. 

The function Trusted is constant and 
essentially specifies, for any subject, 
whether or not it can determine the label 
on messages that it sends. All users and 
some hosts are trusted. For untrusted 
hosts, the label on transmitted messages is 
determined by the function Maxlevel. In 
the implementation, Maxlevel and Trusted 
are secure external inputs to the ladel 
devicesi If Trusted is false then all 
transmitted messages are labelled with Max
level. If Trusted is true, the message 
label is provided by the host but may not 
be greater than Maxlevel. For an STS, of 
course, Maxlevel will be the highest level. 

The function Subjectlevel describes 
the message label that is provided by 
trusted subjects. This is needed because 
users can change their current level as 
they switch from one virtual circuit to 
another since each virtual circuit has a 
distinct associated user level. For 
trusted hosts, there is no restriction on 
Subjectlevel however, since a trusted host 
is. assumed to correctly provide a label for 
every transmitted message. 

The functions Messagelevel, Destina
tion, Data, and Sender simply define the 
four fields of a message. 

Finally, Newhistory defines an event 
as the act of appending a message to one of 
the infinite sequences in a history. 

The following defines these objects more 
formally. 

Definition 3.1 Message Equality 

A message in the model consists of 
four values: the name of the subject who 
sent the message (sender), the level of the 
sender when the message is transmitted 
(messagelevel), the subject to whom the 
message is being sent (destination) and the 
data being sent. Since messages are not 
unique we define the notion of equality of 
messages in terms of these four charac
teristics: 

Definition 1·~ Message Sequence 
For every subject s. in S, we consider 

t. and r. as inf.ini te lequences of values 
r~present\ng transmitted and received mes
sages respectively. We denote a message 
sequence as an ordered seque~ce Xi 
<x. 1 ,x. 2 , ••• > where message x.J. 1s an ele1
meAl: o~ set M for all j ~ 1. 

Message sequences can be considered as 
history sequences where xij is the jth 
value for sequence xi. 

Definition 1·1 Network History 

We define a history for a network to 
be a set of ordered pairs containing the 
transmitted and received message sequences 
for all subjects s in s. H is the set of 
all possible histories for the network. 

For any history h, we say that xi is a 
message sequence in history h if x. is an1element of one of the ordered pairs in the 
history. Although x. is an . infinite 
sequence, for any h it 1contains only a fin
ite number of defined messages, i.e. xi = 
<x. ,x. 2 , ••• ,x. r1r1r•••>• In this ca~e.xi 
cofi!aifis n deffned messages, the rema1n1n9 
messages are 1 (undefined). We define the 
mappings Messagelevel<1> = Senderti) = Des
tination C1) = Data <1> = 1· Thus r is con
tained in the sets S, M and L. To preserve 
the partial ordering of L we say that 1 ~ 
1, for all 1 in L. 

Definition 1·! Event 
There exist two types of events that 

occur in the abstract model for the net
work. For any. defined message m in M and 
any subject s. in S, a send ~ 
'send(s.,m) denot~s the transmission of mes
sage m1by subjects .• This results in a new 
message being addea to the sequence t .• 
Similarly a receive event" receive (si ,ill) 
denotes that subject s. received message m 
from the network and re\ults in sequence ri 
being augmented. This change in sequences 
is described more fully by the following 
definition. 

Definition 1·~ Newhistory 

we define the mapping Newhistorv that 
maps a history and an event onto a new his
tory as follows: 

Newhistory(send(si,m),h) = h' 
where h' is the same as h except if 
sequence t. in h = 
<t. 1 , ••• ,t~ ,1,1•···> then 

1t. 11n h' = ~t. 1 , ••• ,t. ,m,1,1•···>· 
Newftistory(recelve(si,mJ~h) 	 = h' 

where h' is the same as h except if 
sequence r. in h = 
<r.l, ••• ,r~ ,1,1····> then 
r. 1 n h' = 1~r. 1 , ••• ,r. ,m,1,L···>·1 1 1m 
Thus, applying Newhistory to a given 

For all messages x and y in M, x = y iff history and event results in appending one 
Messagelevel(x) = Messagelevel(y) of the transmitted or received history 

59 



sequences with the message specified in the 
given event. 

Definition 1-~ Multisets 

A rnultiset [Knuth81] is like a set, 
but it may contain identical elements 
repeated a finite number of times. 

For any two rnultisets M and M~, we say 
that M M~ (rnultiset subset) iff for any 
element x that occurs a times in M, x 
occurs b times in M~ such that a ~ b. 

The concept of a rnultiset is used to 
collect defined messages from a set of mes
sage sequences. Since these messages are 
not unique it is necessary to record all 
occurrences of identical messages. 

Definition 1·1 Collections 

We define the function Collect as a 
mapping from a set of message sequences to 
a rnultiset of messages as follows: 

Collect(x1 ,x,, ••• ,x ) = M 
where M is the lilultisee that contains a 
occurrences of element x. . (for all i, 1 < 
i < n) if x .. is a non-dfl element occur= 
ring -a tirnes1 ln sequence x 

]. 
.• 

The notion of a collection of messages 
is used to prove the constraints of authen
ticity, integrity and uniqueness. By corn
paring the collection of messages that are 
transrni tted by all subjects to those mes
sages that are received we can specify that 
no messages were changed or created in the 
untrusted network. 

Definition 1·~ Partial Orderings 

a) Levels 
The partial ordering on levels is 
denoted ~· Alternatively we use 
Dorninates(l2,11) to denote 11 < 12. 

b) Sequences 
For any two history sequences x 
<x1 ,x2 , ••• > and y = <y1 ,y2 , ••• > we say 
that x ~~ y (where ~~ denotes partial 
ordering on sequences) iff for all i >1, 
xi = 1 or xi = y i. 

c) Histories 
We define the partial ordering <" on 
histories of the network as follows: 

If hl and h2 are two histories in H 
such that 

: { (rl1 ,t11 ), ••• , (rln,tln)} andh 1h 2 - {(r21 ,t21 ), ••• ,(r2n,t2n)} then 

hl <" h2 iff 
rl.-<~ r2. and 
tl~ <~ t2~ (for all i ~ 1).

]. - ]. 

l·l Security Constraints for Abstract _Model 

The followinq constraints must hold for all 
histories h = t<r1 ,t ), ••• , (r ,t )} in H of1a secure network: n n 

CO: Labelling 

If send(s.,rn) is an event that occurs in 
history h 1 (i.e. it produces a new history 
h~ from h) then it must be the case that: 

not Trusted(s.) implies 
Messagelevei(rn) = Subjectlevel(s.,h) 

= Maxlevel(s.) 1 

Trusted(s.) implies 1 

Messageievel(rn) = Subjectlevel(s.,h) 
< Maxlevel (s.) 1 

]. 

Cl: Message Flow 

If receive(s.,rn) is an event that occurs 
in history fi then it must be the case 
that: 

Dorninates(Maxlevel(si),Messagelevel(rn)) 

C2: Authenticity, Integrity and Uniqueness 

Collect(r1 , ••• ,rn) SCollect(t1 , ••• ,tn) 

C3: Routing 

If rn is a message in some sequence 

ri (1 ~ i ~ n) then 


Destination(rn) = si 


C4: Order Preservation 

If <r. 1 ,r. 2 , ••• ,r. > is any ordered 
subseqtknce"l of sorne"l~equence r. (i.e. the 
subsequence preserves the orcfer of the 
original sequence) such that Sender (r . 1 ) 
= Sender(r. 2 ) = ••• = Sender(r. ) = Js 
then therel~xists an ordered su~2equencg 
<tkl'tk2 , ••• ,tk > of ~equenc7 t such 
tha~ tk. = r .. ~or all 1., 1 < 1. < R.]. Jl. - - . 

This constraint is also dependent on the 
constraint of sender validity. That is, 
for all transmitted sequences t., if t .. 
is a defined message in 1ti th~rt 
Sender(t .. ) = s .•

l.J ]. 

4. CONCRETE MODEL 

On this level of the model we want to 
relate the concepts in the abstract model 
to the operations performed at the exter
nally visible interface of the system by 
the external agents: users and host comput
ers. In doing so, a general question 
arises: What is in the model and what is 
in the specification? In other words, 
there is a tendency to refine the model in 
ways that do not alter or add to the basic 
security constraints and that do not affect 
the definition of the operations. In both 
these cases, the refinements belong prop
erly in the specification and not in the 
model. 

The following refinements to the 
abstract model add some security rules 
related to user/host operations, define 
these operations, and relate the operations 
to the sequences defined in the abstract 
model. 

60 



!·1 Description of Concrete Model 

The abstract model is extended to con
tain the following: 

A set u of users 
A set c of computers 
A set F of user messages 
A set G of computer messages 
A set UC of valid user commands 
A set V of all possible sets of 

virtual circuits 
A set US of possible user states 
A mapping Newstate: us X E -> US 

The following definitions more fully 
describe these extensions to the model: 

Definition !·1 Subject Partitioning 

The set S of subjects is partitioned 
into two disjoint sets: computers (C) and 
~ (U), i.e.: 

S=UUC, U(IC ib 
where V u e U, Trusted (u) = true. 

Definition !·1 User Messages 

User input is modelled as an infinite 
history sequence of ~ messages where the 
set of all such messages is denoted F. The 
meaning of a user message is determined by 
the mappings: 

Command F -> uc 
CommandDest F -> c 
CommandLevel F -> L 
CommandData F -> D 

where UC = {usend, open, close, connect, 
disconnect}, the set of valid user com
mands. 

Definition !·1 Computer Messages 

Computer input is modelled as a 
sequence of computer messages where the set 
of all possible computer messages is 
denoted G. The meaning of a computer mes
sage is determined by the mappings. 

ComputerDest •. G -> S 
ComputerLevel G -> L 
ComputerData G -> D 

Definition !·! History 

We extend the notion of history for a 
network to include ~ message sequences 
and computer message sequence. For each 
subjects. we denote such a sequence as o., 
where o. ls a user message if s. is a us~r 
and o. 

1
is a computer message 1if s. is a 

comput~r. A history, thus, compriseJ a set 
of triples: 

{ ( ol' tl, r 1) , ••• , (on, tn, r n) } • 

Definition !·2 User State 

Each user has an associated local 
state, one component of which is the set of 
virtual circuits that have been established 
between that user and one or more hosts. A 
virtual circuit is a pair denoted (c,l), c 
e C, 1 e L and a set of circuits is denoted 
v = { (c, 1) I c e c, 1 e L} • The set of 

all possible sets of virtual circuits is 
denoted v. 

The complete user state is a pair con
sisting of a set of circuits v and a cir
cuit (c,l). The pair (c,l), which may be 
<1,1>, represents the connected virtual 
circuit between the user and one computer 
c, with 1 being the level to be associated 
with the user for that circuit. The set of 
valid user states are constrained by the 
function Newstate defined later in this 
section. The value of a user u~s state for 
a given history h is expressed as a mapping 
Userstate(u,h). 

Definition !·§ Subjectlevel 

The mapping. Subjectlevel from the 
abstract model 1s defined to include a 
dependence on the users~ message sequences. 
That is, a user can alter his/her current 
level (in a way described below) and the 
value of the current level is determined, 
for any history h, from the user history 
sequence. Since the current level is a 
component of the local state (which in turn 
is a function of the history) Subjectlevel 
is defined on this basis. 

For any u e u and h e H, 
if Userstate(u,h) = (v, (c,l)) then 

Subjectlevel(u,h) = 1 

For the case of computers we allow 
Subjectlevel, for any history, to be 
unspecified. 

For any c e C and h e H 
Subjectlevel(c,h) is determined by c. 

Definition !·1 Command Event 

The concrete model adds a third type 
of event, the command event, denoted 
comm(s.,o) for s. e s, o e ~he mapping 
Newhisfory is refined as follows: 

Newhistory(comm(si,o),h) = h~ 

where h~ is the same as h exce~t if 
sequence. o. ~in h = <oi1 , ... ,oilil'1'1' ... > 
then o. 1n b = <o. 1 , ••• ,o. ,o,1,.Lr•••>1 1 1n 

Thus, applying Newhistory to a given 
history and command event results in 
appending one of the user or computer mes
sages to the associated user or 
message sequences. 

computer 

Definition !·~ Newstate 

Certain user messages can cause a 
change in the associated user state. We 
represent this as a function: 

Newstate: US x E -> us. 
The initial value of a user state is the 
pair ({}, <1,1>). Given any user state st = 
(v,(c,l)) and a command event comm(u,o) we 
generate the next state st~ 
Newstate(st,comm(u,o)) = (v~, (c~,l~)) where 
v~,c~,l~ are defined as follows: 

61 



v~ v- (CommandDest(o) CommandLevel(0 )) command event w1th user command usend. For 
' 

If Command(o) = open then 
v~ v U (CommandDest(o),CommandLevel(o)) 
c~ = c 
1~ = 1 

If Command(o) =close then 

Constraint C6 relates command events 
to send events. Every send event must be 

.the result of a valid command event. In the 

·~ase of users a.send event corresponds to a 

c~ = c 

~ =
1 1 

If Command(o) = connect and (c,l) = <J,l> 
and (CommandDest(o),CommandLevel(o)) e v 
then 
v~ = v 

c~ CommandDest(o) 

1~ = CommandLevel(o) 


If Command(o) = 
v~ v 
c~ = ± 
1~ = 

For all other user 
remains unchanged, 
1~ = 1. 

!·~ Constraints for 

disconnect then 

messages o, the state 
i.e. v~ = v, c~ = c and 

the Concrete Model 

both user and computer commands the message 
resulting from the send event must have the 
same data and destination as the original 
command event. A send event for a user must 
also have a destination that corresponds to 
the connected virtual circuit at the time , 
it was sent. Constraint C6 also extends 
and replaces constraint CO of the abstract 
model by specifying that the level of any 
message transmitted by a user must be the 
current Subjectlevel for that user as given 
in the user state. In addition, trusted 
computers can determine their Subjectlevel 
and thereby specify the label on messages, 
while untrusted computers have their mes
sages labelled with their Maxlevel value. 

2· CONSISTENCY OF MODELS 

In previous sections two models for 
the secure system were presented: the 
abstract model and the concrete model. The 
concrete model was developed by extending 
the abstract model to consider operations 
externally visible to the user. 

To show that the two models are con
sistent we need only verify that the con
straints of the more refined model imply 
the constraints of the abstract version. 
Since the concrete model constraints are in 
fact a superset of the abstract model~s it 
is clear that this holds, i.e. 

CO & Cl & C2 & C3 & C4 & CS & C6 
-> CO & Cl & C2 & C3 & C4 

It is in fact possible to remove con
straint CO from the concrete model since we 
can prove that this constraint is implied 
by constraints CS and C6, that is CS & C6 
-> co. 

The construction of a concrete model 
for the secure system consisted of a two
stage process. This allowed us to consider 
and verify more abstract constraints before 
looking at the details of the model. 
Although this also implied two stages of 
proofs as well as the need to demonstrate 
the consistency of the models, it simpli
fied the individual proofs and, as dis
cussed above, the consistency proof is 
straightforward. 

§.. CONCLUSIONS 

It has proved to be surprisingly dif
ficult to express the notions of security 
for SNet in the security model. And the 
model still seems to be more complex than 
we would prefer. However, the result 
appears, at this point in the development, 
to facilitate the formal specification in 
Lucid. We do not anticipate that the 
proofs required will be difficult. Furth
ermore, we hope to be able to generate pro
cedural code from the Lucid specifications 

We add the following constraints to those 
already given in the abstract model: 

CS: User Subjectlevel 

For all users u such that Userstate(u,h} 
= (v, (c,l}) 

1 ~ Maxlevel(u} 

C6: Valid Messages 

For any history h in H and user u in U 
send (u,m} is a send event in history h 
iff there exists a previous history h~ in 
H ( h~ ~· h) such that: 

Userstate (u,h~} = (v, (c,l)} for 
in V and (c,l} in v 

comm(u,o) is a unique command 
event occurring in h~ where: 

Command(o} = usend 
Data(m} = CommandData(o) 
Destination(m} = c 
Messagelevel(m) = 1 

some v · 

For any history h in H and computer c in 
C send(c,m} is a send event in history h 
iff there exists a previous history h~ in 
H (h~ ~· h) such that: 

comm(c,o) is a uni9ue command event 
occurring in h where: 

CommandData(o} = Data(m} 
CommandDest(o} = Destination(m) 
If Truated(c} and Dominates(Maxlevel(c}, 

CommandLevel(o)} 
then Messagelevel(m} = CommandLevel(o) 
otherwise Messagelevel(m} = Maxtevel(c) 

Constraint CS specifies that the level 
for any connected virtual circuit must be 
dominated by the user~s maximum level. 

62 



which can be used to verify the implementa
tion. This work will be reported in a 
future paper. 

REFERENCES 

[Glasgow84] 
J. Glasgow, F. Ouabdesselarli, G.H 
MacEwen, T. Mercouris, "Specifying 
Multi-level Security in a Distributed 
System", NBS/DOD Computer Security 
Conference, Gaithersburg, MD, Sep
tember, 1984. 

[Knuth81] 
D.E. Knuth, "Seminumerical Algorithms" 
The Art of Computer Programming, Vol. 
2, Second Edition, Addison ·wesley, 
1981. 

[MacEwen84] 
G.H. MacEwen, z. Lu and B. Burwell, 
"Multi-Level Security Based on Physi
cal Distribution", IEEE Symposium on 
Security and Privacy, Oakland, April, 
1984. Also presented at NBS/DOD Com
puter Security Conference, Gaithers
burg, MD, September 1984. 

63 



NETWORK SECURITY ASSURANCE* 


Marvin Schaefer 

DoD Computer Security Evaluation Center 


Fort George G. Meade, Maryland 


D. Elliott Bell 

Trusted Information Systems, Incorporated 


Glenwood, Maryland 


Abstract. The issue of assuring network 
security is addressed. It is argued that the 
principles underlying assurance of classical 
computer security <conceptual, formal, and 
implementational) apply directly in the net
work context, providing either a full solution 
or directions for further research. 

INTRODUCTION 

It is the premise of this note that there is 
little intrinsic difference in the assurances 
required of a monolithic trusted operating 
system, a distributed trusted operating sys
tem, and a trusted network. In each case, the 
system is assumed to enforce a precise state
ment of a system security policy. A system 
security policy is interpreted to mean a 
statement that characterizes all permissible 
modes of access between each subject and each 
object on the system• it is an access control 
policy. And in each case, modeling, careful 
system design architecture, and formal verifi 
cation are used to provide assurance about 
fidelity to that policy. 

The DoD Trusted Computer Systems Evaluation 
Criteria [Bl (a. k. a. the TCSEC> has very 
little that ties it tightly to computers of 
the classical kind. True, the casual reader 
can get the impression that much is computer
specific, but there are few places where we 
are convinced that it is so. The identifica
tion of 'user· with a person is the most. 
glaring. The specificity of what must be 
contained in the various audit records i~ 
another example. But based on our personal 
experiences with Blacker and the I-S/A AMPE, 
we do not think that the TCSEC deals badlY 
with the network concept. 

Although the assurance issues in networ~ 
security cover a wide gamut of topics, we have 
concentrated on three of them. The two most 
obvious areas of concern are modeling and 
formal verification. Related are the several 
facets of system design and architecture that 
justify and support the application of higher 
level abstractions in constructing trusted 
systems. We will address these three areas - 

*Nothing in this paper is to be taken as 
having been endorsed by any government 
agency. References to BLACKER and I-S/A 
AMPE are to be understood as the authors· 
personal conclusions deriving from technical 
discussions of the projects. The points 
of view remain personal rather than official. 

modeling, design, and formal verification 
adding tangential asides as appropriate. 

MODELING 

What properties should network security 
modeling address? The traditional computer 
security foci are compromise, need-to-know, 
and the derivative problem of information 
flow, all within"the context of the Reference 
Monitor Concept (see [1]}. Two widely men
tioned network problems are information integ
rity and denial of service. We will address 
all of these properties, but <the second 
fundamental question) at what level of ab
straction? 

Level of Abstraction 

From a modeling standpoint, networks need to 
be addressed both in i the large and in the 
small. In the case of<! Blacker, that meant 
that the system and each of the three "network 
security" components had to be subjected to 
the Policy-to-Model-to-FTLS and DTLS-to-Code 
correspondence exercises. The hard problem 
was convincing ourselves that the system view 
and the components' views fit together in the 
"right" way. We are convinced that it can be 
done and with no less assurance than is the 
case for monolithic systems architectures. 
The formal details need to be worked out both 
for specification and verification since it 
needs to be shown that (a) the model has been 
properly interpreted in the system specifica
tion, (b) that the individual trusted compo
nents interpret the model appropriately and 
consistently, and (c) that the components to
gether correctly implement the model. 

Subjects and Objects 

Underlying discussions of any network secur
ity property at either level of abstraction is 
the first difficult question, that of defining 
the subjects and objects in question. A 
related question is that of determining how 
(and if at all> subjects are to interact. 

One popular operating system view has been 
that every subject is also an object. This 
leads to the possibility of deriving an access 
control matrix in which the potential modes of 
access between every pair of subjects is ex
plicitly exposed. The full rules of the 
formal security policy model have been applied 
in such cases to treat security levels of 
subjects and subjects considered as objects in 
order to determine whether communication would 
·be authorized or not. Operating sy~tem models 

64 



have permitted asymmetry in the access con
trol matrix to allow for the strict upward 
flow of data.• 

A different view in operating system secur
ity models has been that all subjects are 
formal <process, domain> pairs, and the domain 
of each subject contains the set of objects 
that can be named and addressed by the sub
ject. For notational convenience, let dom<A> 
be the domain of subject A. In this view 
~ubject A can communicate to subject B provid~ 
1ng there exists some object in both dom<A> 
and domCB) that can be written by A and read 
by B. The permissible communications between 
subjects can be derived fr~m the access con
trol matrix between subjects and objects. It 
is not necessary to build a special matrix in 
which subjects are paired with subjects.2 

In the context of classified processing, the 
primary concern is the security clearance of 
the end recipient of a transmitted communi
cation, and sometimes the clearance of the 
originating transmitter of a communication. A 
secondary consideration becomes the identity 
of the two participants in the communication.3 
In this sense, matters become much more com
plex unless the definition of subject is made 
quite precise. As can be seen, the need for 
precision on subjects is underscored by the 
need to be precise about whether subjects are 
to be interpreted as though sometimes objects 
or as (process, domain> pairs. 

Note that the distinction may not be a 
strict dichotomy. From the most abstract 
point of view, subjects can be structureless 
and rightly c2 Can be considered as having 
object-ness. When on.e refines towards an 
implementation, the abstractions need to be 
related to the higher level abstractions to 
benefit from the organizing principles and 
insight of the higher level. If processes are 
used, interpretation of <process, domain> 
pairs as subjects is perfectly reasonable and 
does. not even contradict the subject-as-object 
view. In particular, "process" as "program in 
execution" makes clear that "process" repre
sents the active nature of a program; the 
passive nature <particularly of a quiescent 
program) cannot reasonably be related to 
other than an object. What then is become of 
subject-as-object? The <process, domain> 
subjects represent the active part of sub
jects, while the passive part of subjects, the 
subject-as-object part, is represented by 
pt- ogram-arti fact objects. 

•It has been observed that this asymmetry 
is acceptable on a single mainframe because 
of the relative reliability of the interpro-
cess communication mechanism, while it would 
not be acceptable on an unreliable medium such 
as the ether of a network. This concern will 
be addressed below. 

2 The same concern about access asymmetry 
has been voiced for this interpretation. 

3This is of concern because an authorized 
and properly cleared recipient of classi
fied data cannot view the information except 
in an appropriatly protected (cleared) envi
ronment. 

In the network security cont~t, there 
appears to be room for explicit manifestations 
of both points of view. Those who place hosts 
on networks, particularly those who place 
their hosts on networks, tend to take the 
position that they need to have explicit 
control over the selection of those other 
hosts with which they will authorize communi
cations. These concerns appear to be distinct 
from security level considerations -- they 
relate to the identity of each individual 
host. In some cases, the individual access 
control concerns are extended to the process, 
on the individual host, or the kind of service 
bei'ng provided, or the individual user on 
whose behalf the service being performed by 
the process on the individual host is acting, 
and so on. 

However at the highest level of ab
straction, it seems most appropriate not to 
limit all subjects to be <process, domain> 
pairs. By so doing, one can consider the 
hosts as subjects, and the liaisons•4 as 
objects. A pair of hosts is permitted to 
intercommunicate providing there exists at 
least one liaison that can be both written 
and read by each of the hosts. Unidirectional 
communication between hosts can be treated by 
the case in which there exists at least one 
liaison that can be written by one of the 
hosts and read by the other. 4 The remaining 
finer-granularity access controls within 
network components <themselves traditional 
computing complexes) can be interpreted under 
more traditional views. 5 

By its nature, then, a network seems to 
require modeling attention both at the system 
level and at the component level for those 
components that evince a high degree of com
puting generality. While the interpretations 
of subjects and objects will be different at 
the two levels of abstraction, it is not 
really any change at all to allow the strict 
<process, domain> pair interpretation at the 
component while allowing an analogous but 

1 4In this discussion, we use the Fr·en:h 
word "liaison" to refer to the collec 
tion of network proximate connection~ 
used to effect communication between 
two hosts. In this sense, a liaison 
may be instantiated at any time 
by a specific combination of distin
guished computer ports, access lines, 
encryption devices, switching devices, 
and so on, forming a path between 
the two ends. 

4 In the case of the AUTODIN system, reli
able unidirectional communication 1s achieved 
by interpreting the liaisons as the AUTODIN 
network, which reliably receives the message 
from the transmitting host and reliably deliv
ers the message to the receiving host. The 
reliability of receipt and delivery is achiev
ed through a bidirectional communication 
between the liaison and the individual host. 
See TCB Communication below. 

8 The complexity of network-subjects due 
to the uncertain nature of "hosts" on a net
work is discussed in The Variety of Network 
Subjects below. 

65 



not identic~! interpretation at the system 
level. 

Scope of Security Properties· 

Return finally to the question of what 
netNDrk properties should be addressed. We 
use as our frallleNDrk the Reference l'loni tor 
Concept originally used to address compu
ter security. It is our opinion that the 
traditional concerns of coapra.ise, need-to
knoM and infor-tion flow clearly should be 
addressed. Infor-tion integrity, clearly an 
important issue in networks qua networks, is 
not an appropriate topic for modeling at the 
highest levels of abstraction. Consider the 
classic ccaputer analogue. The integrity of a 
aessage flowing through a network is, in model 
ter.s, the integrity of information put into 
and taken out of an object. In a ca.puter, 
that translates as the integrity of infor
.ation written into or read out of a seg~~~ent. 
That issue is not addressed inside the model; 
rather system architecture and design argu
ments are marshalled to establish that one 
should accept that reading and writing infor
.ation satisfies usual integrity require
ments. In the network case, at pres~Btt and 
with no body of precedents to argue for sa.e
thing stronger, we must accept analogous ex
trinsic arguments about the integrity of 
inforaation flowing through the networ~.· 

Lastly we consider denial of service. Our 
discussions of networks above do not require 
that there exists a liaison that connects a 
source subject s~ with its chosen destination 
subject S:z. This can result in it being 
forever i~OSSible for 5~ to transmit data tD 
S:z. This is not generally considered to be 
a denial of service, because when there is no 

·path 	between a pair of subjects it is legiti 
aate to assume that the subjects are not 
permitted to communicate because of either 
mandatory or discretionary security 
constraints. 

However, when it is only temporarily impos
sible for the two subjects to comeunicate 
because a critical path node between s~ and S2 
in the network has become unreachable, there 
is denial of service. other classes of denial 
of service include the deliberate or inadver
tent misrouting of messages (along paths 
authorized under the security policy, of 
course>. 

While denial of service problems are partic
ularly genant, we do not believe that they can 
be addressed constructively by formal means at 
this titDe, nor are they within the scope of 
network security standards for state of the 
art technology on the basis of lack of prece
dent. 

•Any attempt at .adeling integrity will 
have to provide .adeling structure to allow 
stating of information integrity conditions. 
This structure will have to contain two 
levels, one of the information containers 
(as in traditional models> and one of the 
information itself that moves between 
containers. Interestingly, the structure of 
the ~ model suggested a binding of 
segment objects with segment-status-objects 
that would allow information integrity 
conditions to be stated intrinsically within 
the current modeling framework. 

Based on our experience with BLACKER and 
I-S/A AHPE, we believe that the model of [21, 
£3~, £41, and [61 is perfectly usable for ad
dressing the network security properties that 
currently can be modeled effectively. 

DE:SIBN 

The interplay of the TCB and the model in 
the classic computer instance needs to be 
recapitulated for networks. Specifically, the 
extrinsic design arguments validating and 
supporting the applicability of modeling 
concepts is crucial. In discussing networks 
and, in general, distributed syste.s, the 
distributed nature of the TCB (what is the 
perieeter?>; the TCB-to-TCB communication; the 
multiplicity of network-subject interpreta
tions; and the concept of multilevel liai
sons must be addressed. 

TCBs 

It is certainly reasonable to question where 
security (a. k. a. trust> is in a network 
context. 

I. Suppose all of the access control secur
ity were provided by the hosts, rather than 
any of the security being provided by the net
work components. Then it would be asswaed that 
each host can be depended upon to guarantee 
that ( U it is proper!y cleared to receive 
data and <2> it will provide the finer degrees 
of access control that is ref1ected in the 
discretionary access control .atrix. The 
clear problem here ca.es about when a receiv
ing host fails to satisfy these criteria. 

I I. Suppose the network components are asSUR
ed to provide all of the access controls, so 
that there ari!ilo trust properties asSWIIIId of 
the individual hosts. Then while the network 
can potentially provide access control based 
on the clearance levels of the individual 
hosts, 7 it is unclear whether the network can 
control the finer-grained access controls 
between processes, service classes, individual 
users, or combinations of these independent of 
the hosts• characteristics. Again, it is 
unclear how well the network can enforce 
access controls if a host's security or trust 
attributes are changed and the changes are not 
reported to the network. 

III. It appears that a combination of access 
control must be provided by both the network 
and the individual hosts, and it further 
appears that mutual suspicion (see [71> must 
be i~lemented between all network coaapo
nents. That is, it appears that each network 
component must be expected to validate its 
legitiaacy to each other net~Crk c01aponent 
with which it interacts. 

"'By which we eean the range bracketed 
by the lowest classification of data that can 
legally be exported from the host and the 
highest classification of data that can legal
! y be i !!!f!orted by the host. 

66 



Agreeing that the TCB is spread out over 
various network components leaves a minor 
philosophical question: is the union of the 
components• TCB's identical to the network 
TCB? Put another way, is it possible for a 
component to support a network functionality 
that is inside the network-TCB perimeter 
but outside the component-TCB perimeter? The 
practical resolution is defining netwoy·k
security-critical as implying component-secur
ity-critical and getting on with it.• 

TCB Communication 

As mentioned above, the physical separation 
of network components reopens the issue of the 
reliability of communication between subfunc-· 
tionalities of the network TCB. The conser
vative course of asserting the need for mutual 
suspicion is advocated since there is no 
alternative. Mutual suspicion is clearly 
required, particularly in the extrinsic argu
ments brought to bear <arguments that will 
differ substantially for benign or hostile 
environments>. Consider the following 
thought-experiment. Suppose components Cs and 
C2 need to communicate, TCB to TCB. If the 
only means is through compatible dismountable 
disk packs, C1 will export information with 
labels to its disk drive (ala the TCSEC>; the 
disk pack will be physically transported to 
C2 's disk drive; and C2 will import the data 
with labels, also according to the TCSEC. The 
TCSEC handles that situation directly. What 
is wrong, we ask, with using the same pri nc i -· 
ples if the disk cables are attached to each 
other? Should not the import and export rules 
cover the problem of network components• TcB·s 
communicating over arbitrary communications 
liaisons? <Yes, the nature of the liaison 
will affect the details of the argument; it 
will not change the points and level of assur
ance needed.) 

The Variety of Network Subjects 

It is generally observed in the network 
security context that a host may not always be 
the endpoint of a communication between a pair 
of subjects. The voiced concerns have been 
that a host can be anything from a personal 
computer with a modem, to a terminal access 
controller, to a computer on a local area 
net not directly connected to the wide-area 
network, all the way up to one of the preced
ing on a separate network that is internetted 
with some other combination of independent 
networks. Moreover, it is observed that some 
message traffic is addressed to components of 
the network itself <e.g., statistical traffic 
flow data, routing table updates, etc.> and 
the question is posed as to whether and how 
such necessary traffic introduces self-refer
ential paradoxes or exceptions to the overall 
simplified security policy model. 

We believe that these topological concerns 
are not critical at the most abstract level of 
system specification. Inter-component commun
ication can be viewed as intra-TCB communi
cation using the same mechanism as non-trusted 
communications, just as is classic kernel 
communication via IPC. Further, it is not 
clear that mandatory security enforcement has 

8 BLACKER made just this practical decision. 

to be adversely affected by the topology 
providing the simplified rules are not violat
ed in any point-to-point case. That is, it 
must be the case that no subject can ever 
write data on a liaison that the liaison is 
not cleared to receive, and reciprocally, that 
no liaison can ever accept data from a subject 
that the liaison is not cleared to receive. 
Finally, it is required that no subject can 
ever be permitted to read a liaison for which 
it is not properly cleared. 9 Thus, our simple 
rules about subjects reading and writing 
liaisons appears to be completely extensible 
to the macroscopic details of however liaisons' 
may have been implemented in terms of 
switches, repeaters, and so forth. 

Multilevel Liaisons 

There is an opinion that a liaison may be 
either single level or multilevel. The assur
ance issues relating to multilevel liaisons 
are still under debate; however, it is clear 
that a multilevel liaison needs to provide 
assurances comparable to those required for 
multilevel devices in the Criteria. In parti
cular, it must be possible to provide the 
continuous and unambiguous association between 
a "trusted label" and the associated data. 
More importantly, on a mainframe system, a 
multilevel device may contain a directory (or 
the directory may be contained elsewhere in 
the TCB>. In either case, the existence and 
availability of the directory is fundamental 
to the system's ability to control discre
tionary accesses between subjects and objects 
stored on the multilevel device. In the 
case of single level or multilevel liaisons, 
it appears to be necessary that a similar form 
of assured control be provided to guarantee 
that discretionary access controls are assured 
for messages (which are viewed as data that 
are "read" from liaison-objects>. 

FORMAL VERIFICATION 

Given that network modeling should include 
both system-wide and component-specific as
pects, the question of how to provide design 
assurance is raised. Clearly providing a 
formal specification (an FTLS in TCSEC terms) 
of either a system-level model or a component
level one is straightforward. The harder 
problem is how to be assured that the collec
tion of component specifications support, are 
consistent with, and actualize the system
level specification. What is needed is a way 
to partition a specification for the system 
into a set of subspecifications whose require
ments devolve from the master. This process 
and its obverse are not easily handled in 
formal verification systems today. Thus it 
is inappropriate to include stiff requirements 
for such partitioning in official criteria. 
Nevertheless, given uniformity of expres
sion between levels of refinement in a specif
ication language, one can expect careful text
edited transformations and careful inspection 
to provide adequate assurance of system-to
component conformance until more automated and 
rigorous means are developed and proven. 

•Notice that this is just normal reading 
and writing ~estrictions, viewing liaisons as 
objects. 

67 



W[HliTHER ASSURANCES? 

How can this general discussion be related 
to the assurance requirements of the TCSEC? 
Tripping fleetingly through the TCSEC's A1 re
quirements, we conclude that the system archi
tecture requirements need to apply completely, 
albeit with the understanding that the TCB is 
.necessarily distributed. There is no question 
but that the preceding discussion leads to the 
conclusion that access control components of 
the TCB must lie within both the "network" and 
within certain hosts. <Single-level hosts 
need not be of concern if the network can 
guarantee that traffic for which they are not 
authorized cannot reach them, and can thus be 
Class D systems. Blacker tends to trust hosts 
only within their accredited range of security 
levels. There does not appear to be any 
particular problem with taking this point of 
view.) As explained above, the distributed 
portions of the TCB need to work together not 
only with least privilege~0 and with lea~t 
common mechanism, but also with mutual susp1
cion. All of the requirements for internal 
structuring are necessary assurance featureE 
for a distributed TCB. 

The System Integrity requirements are of 
particular interest because of the need t~ 
address mutual suspicion between distributed, 
communicating TCB compone~ts. Clearly, in 
addition to the information security conseq
uences of routing classified data to a network 
component that may be malfunctioning, there 
are also clear denial of service concerns that 
indicate that system integrity should be in 
the realm of "good networking practice". 

Apart from the characteristics of individual 
network/system components, we see no addi
tional requirement for covert channel analy
sis. One must remember to take into account 
the effect of the cleartext headers in such 
components as switches in cases where encryp
tion is involved <the dreaded but misnamed 
"bypass" problem). 

Trusted Facility Management and Trusted 
Recovery also appear to be logical require
ments for network security criteria. 

Security Testing, as part of the Life-Cycle 
Assurance requirements, is an omnibus section 
of the Criteria, since it includes specific 
reference to correspondence mappings between 
specification and code. We would observe that 
much is yet to be learnt about network secur
ity testing.~~ However, recognizing that 
networks are often designed to support fre
quent configuration changes <more frequent 
than is true of pure computer systems>, it is 
important to consider whether and how such 
changes may affect the security of a network. 
Since each reconfigured component may include 
a new portion of the distributed network TCB, 
it would appear that new testing techniques 
may need to be derived. The mappings from 
specification to code will also need to be 
better understood since they will necessarily 
relate to the replication of several one-or
more-of-a-kind entities. 

1osee also Dorothy Denning's comments 
on least privilege issues in [5]. 

1~But then, one could argue that much 
is yet to be learnt about testing in general. 

Design Specification and Verification assur
ances have been a major subject matter of this 
paper. We believe that the foundations of 
reasonable network security modeling have been 
established in earlier work and are being ex
tended in the derivation of worked formal 
specification and verification examples in the 
work on Blacker and the I-S/A AMPE. The work 
performed in other exploratory projects, 
including the Multinet Gateway project will 
provide additional insight in this area. 

Continuous Control, albeit nat a specific 
feature in the Assurance area, is both impor
tant and closely related to the Trusted Path 
requirement. As data is transferred through
out the network the distributed TCB must 
maintain the same continuous control over 
both its security descriptors~2 as would be 
required for data in transit in a physical 
security environment. All security-relevant 
communications between subjects and TCB compo
nents as well as all communications between 

' TCB components must be unamb"distributed 1
guously achievable, and the mutual suspicion 
principle discussed above needs also to be ap
plied. We again recommend the TCB communica
tion thought-experiment described above. 

CONCLUSIONS 

Assurance of network security, although it 
seems to be much different from classical 
computer security, has in fact proved to be 
essentially the same. The vital tool in est
ablishing the similarities and highlighting 
the distinctions is a rigourous application of 
analogy, comparing the network contex~ to the 
classical computer security context. This 
method both confirms the general value of 
traditional concepts <subjects, objects, 
security perimeters, formal design verifi
cation) and identifies needed research results 
<network-level data integrity, denial of 
service, the theory and practice of trusted 
paths between geographically disparate parts 
of the TCB>. Network security assurance can 
be done. The precedents lie in the worked ex
amples of classical computer security and in 

'the conservative extensions being constructed 
in BLACKER and I-S/A AMPE • .Yet again there-is 
n,1thing new under the sun. 

ACKNOWLEDGEMENTS 

The standardisation effort being undertaken 
by Sheila Brand was of course the immediate 
impetus for this description of our views on 
the network security assurance issues. While 
we take responsibility for any misstatement 

~ZThese are the internal data maintained 
by the TCB that fully characterize the secur
ity attributes of each subject and each object 
in the system. It is a requirement in conven
tional computer architectures that the TCB be 
capable of determining the formal security 
level and access control characteristics of 
every object and subject. The descriptors in 
question necessarily include a full character
ization of the extent <e.g., size, location, 
etc.> of the physical representation of each 
subject or object. The distributed TCB must 
be capable of deriving the an,;~logous informa
tion relative to every subject and object 
under its control in the nPt-wnrk environment. 

68 



and possibly blind prejudices herein, we ac
knDMledge the intellectual stimulus of Roger 
R. Schell, Daniel J. Edwards, Debbie Cooper, ' 
Leslee o·Dell, Thomas Parenty, David Solo and 
Terrance Losonsky. Lastly, although he may 
not recognize his ideas in this form, we were 
heavily influenced by James P. Anderson, 
Technical Conscience of a generation. 

REFERENCES 

[1] 	 J. Anderson, •Computer Security Tech
nology Planning Study,H ESD-TR-73-51, 
val. 1, AFSC/ESD, Hanscom AFB, I'IA, 
October, 1972. 

[2] 	 D. Bell , •Secure C0111puter Systetas: A 
~ineeent of the Mathematical Model,• 
ttTR-2547, val. 3, The "ITRE Corpor
ation, Bed-ford, M, 2B Deca.ber 1973 
(also ESD-TR-73-278, val. 3>. 

[3] 	 D. Bell and L. La Padula, •Secure 
eo.puter Systeas: Mathematical Founda
tions,• ttTR-2547, val. 1, The "ITRE 
Corporation, Bedford, I'IA, 1 ~ch 1973 
(also ESD-TR-73-278, val. 1>. 

[4] 	 D. Bell and L. La Padula, •Secure 
Co.puter Systems: Unified Exposition 
and l'lultics Interpretation,• ~R-2997, 
The "ITRE Corporation, Bed-ford, I'IA, 
July, 1975. 

[5] 	 D. E. Denning, •A Position Statement 
on Neb•ork Security'", Proc. DoD Colnpu
ter Security Center Invitational Work
shop on Net1110rk Security, DoD Colllputer 
Security Evaluation Center, Ft. tleade, 
~. 19-21 ~ch 1985. 

[6] 	 L. La Padula and D. Bell, •Secure 
Co.puter Systeas: A Mathematical Ho
del,• ttTR-2547, val. 2, The "ITRE 
Corporation, Bed-ford, M, November, 
1973 (also ESD-TR-73-278, val. 2). 

[7] 	 "· Schroeder, •Cooperation o-f l'lutually 
Suspicious Subsystems in a eo.puter 
Ut.ility," Ph. D. dissertation, ".I.T., 
Canlbridge, I'IA, 1972 (also ~-TR-104). 

[8] 	 Trusted ea.puter Syste. Evaluation 
Criteria, CSC-STD-oo1 83, DoD Colllputer 
Security Center, Ft. tleade, ~. 15 
August, 1983. 

69 



VERLANGEN: A VERIFICATION LANGUAGE FOR DESIGNS OF SECURE SYSTEMS 

Dianne E. Britton 
RCA Aerospace and Defense 

Advanced Technology Laboratories 
Moorestown, NJ 

Abstract 

Verlangen is a language being developed at RCA for 
formally specifying and verifying system designs. It 
supports object-oriented design, concurrency, and levels 
of refinement, and is appropriate for specifying designs 
of distributed systems, communication networks, and 
operating systems, and for verifying that the designs 
meet security and other kinds of requirements. A 
compiler translates a Verlangen text, which is a formal 
specification of a system design and its requirements, 
directly into a collection of first-order logic 
definitions and theorems. Proving the theorems verifies 
that the design satisfies the requirements. The 
compiler and theorem prover run under the VAX/VMS 
operating system. 

Introduction 

Verlangen is a language being developed at RCA for 
formally verifying that designs of computer systems meet 
their requirements. ("Verlangen" is a German transitive 
verb meaning "to require".) It is appropriate for many 
kinds of systems, including communication networks, 
distributed systems, and operating systems. To date, 
Verlangen has been used mostly with designs of secure 
systems to verify that security requirements are met, 
but Verlangen's versatility merits its use for systems 
with other sorts of requirements as well. 

The driving force behind the present interest in formal 
specification and verification of computer system 
designs is the DoD Trusted Computer Systems Evaluation 
Criteria [1], which requires verified design at the Al 
level. The arguments in favor of verified design rest 
largely on the desire to increase confidence that a 
system does or will meet its requirements, and to catch 
design flaws early in the product life-cycle while the 
cost of correcting flaws is relatively low. In the case 
of the Trusted Computer Systems Evaluation Criteria, 
security requirements are of interest, but the 
capability to verify designs with other kinds of 
requirements is equally valuable. Although there are 
several other languages and systems for specifying and 
verifying system designs [2,3,4,5,6], RCA is developing 
Verlangen in belief that it improves upon existing 
systems, especially with regard to communication 
networks and distributed systems. 

The primary features that make Verlangen a good language 
for formally specifying and verifying many kinds of 
systems and requirements are "classes", which support 
object-oriented design and "levels", which levels of 
refinement (hierarchical design). Classes and levels 
decompose both the system design and its verification 
into tractable units. Verlangen is perhaps unique in 
supporting the design and verification of truly 
concurrent systems, such as distributed systems and 
networks, without mandating a particular model for 
communications between subsystems. This contrasts 
Verlangen with, for example, Gypsy [2], which models 
communication between subsystems by finite buffers with 
blocking send and receive operations. 

A Verlangen text is a formal specification of a system 
desig'l and its requirements. Many of the features of 
programming languages that have proved valuable in 

· These include block structure, identifier scope and 
visibility rules, user-defined datatypes, and 
modularity. Like Ada, Modula, Simula and other similar 
programming languages, Verlangen supports 
object-oriented design. Nevertheless Verlangen is not a 
programming language and can be used for specifying 
designs of systems composed from a combination of 
hardware and software. An important feature of 
Verlangen is hierarchical design, which it shares with 
other design languages [3,4]. 

A compiler checks a Verlangen text for syntactic 
correctness and translates it not into executable code 
but into a collection of definitions, axioms, and 
theorems in first-order logic. The theorems relate the 
system requirements to the system design. System 
requirements are expressed in Verlangen as assertions, 
which are formulas in first-order logic. Proving the 
theorems from the definitions, axioms, and rules of 
inference of first-order logic formally verifies that 
the design satisfies its requirements. Theorem proving 
is carried out using a semi-automatic theorem prover. 

The desire to verify designs of secure communication 
networks and distributed systems has played an important 
role in the development of Verlangen. One such 
application is a communications network in which all 
messages in transit over the network are encrypted to 
prevent them from being tapped. Encryption is also used 
to ensure that only hosts that are authorized to 
communicate exchange unencrypted messages. This 
application, which a simplification of the example 
described in a previous paper [8], has been specified in 
Verlangen and verified. Another application is a 
multi-level secure local area network connecting a 
number of work stations that are not assumed to deal 
with or understand security levels. Each work station 
is assigned a fixed security level and operates at that 
level only. Interposed between the work stations and 
the local area network are guards, one for each 
workstation, which are responsible for enforcing 
multi-level security by restricting the flow of messages 
between work stations. The Verlangen specification for 
this application appears in the Appendix and is used for· 
illustration throughout this paper. A "low water mark" 
[7] secure system has also been specified and verified 
using Verlangen. 

Object-Oriented Design and Verification 

Verlangen supports object-oriented design and 
verification with a language construct referred to as a 
"class". The Verlangen concept of class combines the 
concept of abstract datatype from programming languages 
with the concept of state machine from specification 
languages. 

Design 

A class definition specifies a class of state machines 
by defining a datatype representing the possible states 
of the state machines in the class. Classes may be used 
to design a variety of kinds of system entities which 
can be modelled as state machines, including data 
structures, monitors, processes, and systems composed of 
these. 

expressing program specifications are equally valuable A specification containing a class definition may
for design specifications and are included in Verlangen. instantiate the class one or more times. A class 

70 



instantiation, which represents a state machine, is 
called an object. An object is associated with a 
sequence of values, called a "history": the first value 
in the sequence represents the state machine's initial 
state, and each subsequent value represents each 
subsequent state. A class definition defines the 
histories that are possible for objects in the class by 
specifying an initial value for objects (or a condition 
on initial values) and some operations or events that 
yield new values from old ones. 

To illustrate the use of the Verlangen class construct, 
we use the guard unit from the Secure LAN example 
(Figure 2) as an example. Each guard stands between a 
work station and the local area network, and runs at a 
fixed security level. A guard has two functions: 
labelling with the guard's security level all data going 
from the guard's work station to the network, and 
preventing data whose security level is higher than the 
guard's from reaching the guard's work station. 

The Verlangen specification begins by declaring three 
types: 

TYPE Lev 
[unclassified,confidential,secret,topsecret]; 

TYPE Subj; 
TYPE Obj; 

Values of type Lev represent security levels, values of 
type Subj identify the individual work stations and 
their guards, and values of type Obj identify the 
classified data objects which are generated at the work 
stations and which may be transmitted over the network. 
Lev is an enumerated type as in the programming language 
Pascal. 

We model each guard as a state machine and define a 
Verlangen class called Guard, which specifies a class of 
state machines that includes all the guard units. 
Omitting for now the body of the definition (represented 
by " ••• "), we write the class definition for Guard as 
follows: ----

CLASS Guard(CONST max:Lev) IS 

END Guard; 

This has the effect of declaring Guard to be a datatype, 
parameterized by a constant~ of type Lev. 

A guard, viewed as a state machine, performs four 
different kinds of operations which effect a change of 
state. These operations are to receive a data object 
from the network, pass a data object received from the 
network on to the guard's work station, receive a data 
object from the work station, and pass a data object 
received from the work station on to the network. A 
guard's state consists of components representing the 
data objects last received from the work station and the 
network, the destination of the data object last 
received from the work station, and whether or not the 
da:ta objects last received have already been passed on 
(or filtered out). In Verlangen, a state machine's 
operations (events) are represented by procedures. The 
definition of Guard defines four procedures, 
representing the four kinds of operations: 

CLASS Guard(CONST max:Lev) IS 
VAR netin,netout:Obj; 
VAR dest:Subj; 
VAR netinfull,netoutfull:BOOLEAN INITIALLY FALSE; 

PROCEDURE fromnet(o:Obj; l:Lev) IS ••• 
PROCEDURE touser(o:Obj) IS ••• 

PROCEDURE fromuser(d:Subj; o:Obj) IS ••• 
PROCEDURE tonet(d:Subj; o:Obj; l:Lev) IS 

END Guard; 

The components of the state are represented by the 
variables declared in the VAR declarations. The 
variables netin and ~ are buffers containing the 
data object last received from the network and work 
station, respectively. The variable dest contains the 
destination work station for the data last received from 
the work station. The variables netinfull and 
netoutfull indicate whether or not the netin and netout 
buffers are full. ----

The fromnet procedure, which represents the operation of 
rece1v1ng data from the network, illustrates how 
Verlangen procedures are composed of a procedure header, 
a precondition, and an effect. 

PROCEDURE fromnet(o:Obj; l:Lev) IS 
PRECONDITION NOT netinfull; 
EFFECT 

IF 1 <= max 
THEN (netinfull' &netin' = o) 
ELSE NOT netinfull'; 

SAME netoutfull, netout, dest; 
END fromnet; 

The fromnet procedure has two parameters: ~ is the 
received data and 1 is the security level of the work 
station sending the data. 

In a procedure, the formulas appearing between the 
keywords PRECONDITION and EFFECT are the preconditions 
for the operation, i.e., the operation occurs in a given 
state only if the conditions expressed by these formulas 
are met. In the case of fromnet, there is only one 
precondition -- that the buffer for holding data objects 
received from the network be empty. 

The formulas appearing after EFFECT specify the relation 
between the states before and after the operation. 
Primes refer to values after the operation. SAME 
specifies that a variable's value remains unchanged by 
an operation. The effect of the fromnet procedure is to 
store the data object received from the network in the 
netin buffer, provided the security level of the sending 
work station is not greater than the security level of 
the guard. The variables associated with receiving and 
sending data objects from the guard's work station 
remain unchanged by the operation. 

Verification 

A class definition may include assertions, for which the 
Verlangen compiler generates verification theorems. 
Proving the theorems verifies that the class satisfies 
its assertions. There are two kinds of assertions: 
"invariants" and "constraints". An invariant is a 
condition that is expected to be satisfied by every 
value of every object in the class. A constraint is a 
condition that is expected to hold between every two 
subsequent values (states) in every object history. 

For example, as a check on the consistency and 
correctness of the specification, a number of invariants 
are included in the definition of the Guard class. The 
filter invariant states that a guard passes an object on 
to the guard's work station only if the guard previously 
received the object over the network from a work station 
with a security level not greater than the guard's 
security level. The definition for the filter invariant. 
is: 

71 



INVARIANT filter IS 
FORALL o:Obj 
( touser(o) => 

EXISTS g:Guard EXISTS l:Lev 
( g « THIS & 

g.fromnet(o,l) & 
1 <= max ) 

); 

In Verlangen, the "current" value of a variable declared 
in a class is represented by the value of the variable 
in THIS state. The "precedes" operator, denoted "<<", 
relates two states in an object's history. A 
near-literal reading of the definition for the filter 
invariant is, "If in THIS state a guard passes a data 
object o to the guard's work station, then in a 
preceding state, the guard received object o with a 
security level 1, where 1 is less than or equal to the 
guard's security-level." 

Another invariant, called transport, states that a guard 
passes a data object onto the network with security 
level l only if l is the security level of the guard and 
the guard previously received the data from the guard's 
work station. 

The filter and transport invariants may be regarded as 
requirements placed on the class. These invariants 
express properties of the class that are expected to be 
maintained regardless of the implementation of the 
class: they refer only to the class's procedures and 
constant parameters of the class, and not to the class's 
"internal" variables. 

The verification of an invariant is by induction: prove 
the initial state satisfies the invariant, and prove 
that if an arbitrary state satisfies the invariant, then 
the next state does also. Often an invariant is not 
"inductive", i.e., it is not strong enough for the 
inductive proof to succeed. Then to obtain a 
verification, additional invariants, at least one of 
which is inductive, must be determined and included in 
the specification. These invariants can then be 
mentioned in a USING clause associated with a 
non-inductive invariant to allow the non-inductive 
invariant to be verified. ·For example, the filter 
invariant is not inductive, so a stronger invariant 
named netinok has been added to the Guard specification 
and the filter invariant definition has been augmented 
with a USING clause: 

INVARIANT netinok IS 
FORALL o:Obj 
( netinfull & o = netin => 

EXISTS g:Guard EXISTS l:Lev 
(g«THIS& 

g.fromnet(o,l) & 
1 <= max ) 

) ; 

INVARIANT filter USING netinok IS 

FORALL o:Obj 

( touser(o) => ..• ); 


The verification of the Guard class verifies that the 
netinok invariant is satisfied, and adds netinok to the 
hypotheses .of the verification theorems for the filter 
invariant: prove that if the netinok invariant holds for 
all states, then the initial state satisfies the filter 
invariant, and if the filter invariant holds in an 
arbitrary state and the n~ invariant holds for all 
states, then the filter invariant holds for the next 
state. ----- 

As a further check on the consistency and correctness of 
the specification, two constraints have been added. One 
of these, the OnlyToUser constraint, insures that only a 
~ operation empties the netin buffer: 

CONSTRAINT OnlyToUser IS 

netinfull & NOT netinftill' => 


touser(netin); 


As in the EFFECT of a procedure, primes in a constraint 
definition refer to values after an operation. 

Concurrency 

Verlangen allows a system to be decomposed into (or 
composed from, if you prefer) simpler subsystems, each 
system and subsystem being modelled by a state machine. 
This approach to system design is generally accepted as 
being effective for operating systems. For distributed 
systems and communications network the approach is a 
natural one: the system naturally decomposes into a set 
of concurrent, interacting subsystems, which are the 
host computers, front-ends, gateways, etc. What makes 
Verlangen especially suitable for distributed systems 
and communications networks is that true concurrency 
between subsystems can be specified. Moreover, the 
communication between subsystems need not be modelled by 
finite buffers with blocking send and receive 
operations, which is a point of distinction between 
Verlangen and Gypsy [2]. 

In a system composed of a number of concurrent, 
interacting subsystems, the overall system state is 
composed of the states of the subsystems, and the 
overall system changes state in step with the 
subsystems. This fact can be specified in Verlangen by 
declaring, in the class definition for the overall 
system, variables whose datatypes are the classes 
representing the subsystems. 

Returning to the Secure LAN example, the Secure LAN 
specification defines three classes: WorkStation, Guard, 
and System. .The System class represents the overall 
system, which is composed of a number of work stations 
and guards. The work stations and guards appear in the 
System class definition as variables of type WorkStation 
and Guard, respectively. 

CLASS WorkStation(CONST myself:Subj) IS ••• 

CLASS Guard(CONST max:Lev) IS ••• 

CLASS System IS 

CONST Clearance(s:Subj):Lev; 

VAR user(s:Subj):WorkStation(s); 

VAR guard(s:Subj):Guard(Clearance(s)); 


END System; 

Communication, or synchronization, among concurrent 
subsystems is specified in Verlangen by SYNC statements, 
which correllate events occurring in the subsystems. A 
SYNC statement says that two or more events, occurring 
in different subsystems, are manisfestations of a single 
event in the overall system. The System class 
definition of the Secure LAN specification includes SYNC 
statements which state how the work stations interact 
with the guards, and how the guards interact with each 
other. The following SYNC statement specifies that a 
work station's act of sending an object corresponds to 
the guard's act of receiving the object from the work 
station: 

FORALL s,d:Subj FORALL o:Obj 

SYNC user(s).send(d,o), 


guard(s).fromuser(d,o); 


Two other SYNC statements specify that receiving an 
object at a work station corresponds to sending the 
object at the work station's guard, and that a guard 
receives an object from the network if and onlv if some 

72 



other guard "simultaneously" sends the object over the 
network. 

To check the consistency of the specification of a 
system composed of interacting subsystems, assertions 
relating the subsystem states to the overall system 
state may be specified and verified. For the Secure LAN 
example, an invariant, called Origination, is included 
in the System class definition which asserts that any 
object known at a user work station was created by some 
user work station on the network. This rules out, for 
example, a design in which the guards spontaneously 
create objects of their own. 

INVARIANT Origination 
USING WorkStation.knowledge, 

Guard.filter, 
Guard. transport 

IS FORALL s:Subj FORALL o:Obj 
( user(s).knows(o) => 

EXISTS sys:LANSystem 
( sys « THIS & 

sys.user(Originator(o)).write(o) 
) 

); 

The invariants mentioned in the USING clause above are 
invariants for the WorkStation and Guard subsystems. 
This illustrates how Verlangen allows the verification 
of the overall system to be decomposed by treating the 
invariants and constraints of the subsystems as lemmas 
which are separately verified. 

Hierarchical Design 

Verlangen supports design by successive levels of 
refinement, sometimes called "hierarchical design". A 
Verlangen specification may be written as one or more 
levels, each level being a complete specification of the 
whole system. The levels are totally ordered, the first 
level presenting the most abstract view of the system 
and each successive level presenting a more concrete 
specification than the preceding one. Each successive 
level includes a mapping that specifies how it relates 
to its predecessor; Using terminology generally 
accepted for hierarchical design, we call the first and 
last levels "top" and "bottom", respectively, and all 
levels except the first we refer to as "lower". 

Typically, a Verlangen specification consists of only 
one or two levels, but occasionally the need for more· 
than two levels arises. Verifying a specification 
consisting of more than one level shows that the 
individual levels are self-consistent and that 
neighboring levels are consistent with each other. 

A two-level specification is usually organized so that 
the top level represents a set of requirements placed on 
the system, and the bottom level represents the system 
design. For example, to verify that a system design 
meets security requirements, a good approach is to 
specify the security requirements at the top level and 
the system design at the bottom level. This approach 
allows a set of requirements, e.g., a model of 
multilevel security, to be used over and over again with 
different system designs. 

The Secure LAN example is a two-level Verlangen 
specification, where the top level specifies a model of 
multilevel security and the bottom level specifies the 
design of the secure local area network. The Verlangen 
fragments given earlier in this paper are drawn from the 
bottom level of the Secure LAN specification. This 
section presents the top level of the Secure LAN 

specification, the mapping between the top and bottom 
levels, and the method used to show consistency between 
the levels. 

An Example Two-Level Specification 

The top level of the Secure LAN example is an abstract 
model for multilevel security; the specification names 
this level mls. The next lower level, which in this case 
is the bo~m level, is the design of a secure local 
area network distributed system; this level is named 
lan. The overall organization of the Secure LAN 
~cification is as follows: ' 

LEVEL mls IS 

END mls; 

LEVEL lan REFINES mls IS 

ENDlan; 

Like the Bell-LaPadula model of multilevel security [9], 
the~ level is based on subjects, objects, and a 
partially-ordered set of security levels. The following 
declarations appear in level mls: 

TYPE Subj; 
TYPE Obj; 
TYPE Lev; 
CONST Dom(ll,l2:Lev):BOOLEAN SATISFIES 

FORALL l:Lev Dom(l,l) & 
FORALL 11,12:Lev 
( Dom(ll,l2) &Dom(l2,11) => 11=12 ) & 
FORALL 11,12,13:Lev 
( Dom(ll,l2) &Dom(l2,13) => Dom(ll,l3) ); 

The SATISFIES clause in the declaration for ~ states 
that the relation is reflexive, antisymmetric, and 
transitive. Thus, Dom imposes a partial ordering on Lev 
values. 

Level mls defines a single class called System, which 
represents the overall system. The system state is 
represented by the constants and variables declared in 
the System class definition: a constant function called 
Clearance gives the security level associated with each 
subject, a variable function called Classification gives 
the security level (currently) associated with each 
object, and two boolean functions called ReadAcc and 
WriteAcc determine whether a subject can read or write 
an object. At this level of the specification, work 
stations and guards are not represented. 

CLASS System IS 

CONST Clearance(s:Subj):Lev; 

VAR Classification(o:Obj):Lev; 

VAR ReadAcc(s:Subj; o:Obj):BOOLEAN; 

VAR WriteAcc(s:Subj; o:Obj):BOOLEAN; 


END System; 

Level mls does not specify any events for the System 
class.~t does, however, specify two invariants, a 
constraint, and initial conditions. 

The SimpleSecurityCondition invariant specifies that a 
subject has read access to an object only if the 
security level of the subject dominates the security 
level of the object. 

INVARIANT SimpleSecurityCondition -IS 
FORALL s:Subj FORALL o:Obj 
( ReadAcc(s,o) => 

Dom(Clearance(s),Classification(o)) ); 

73 




Similarly, the StarProperty invariant states that a level. For example, level lan gives the following 
subject has write access to an object only if the mapping for the constant Dom: - 
security level of the subject is dominated by the 
security level of the object. MAP Dom(ll,l2) INTO (12 <= 11); 

INVARIANT StarProperty IS 
FORALL s:Subj FORALL o:Obj 
( WriteAcc(s,o) => 

Dom(Classification(o),Clearance(s)) ); 

The NoDowngrading constraint states that the 
classification of an object cannot be decreased by any 
event. 

CONSTRAINT NoDowngrading IS 

FORALL o:Obj 


Dom(Classification'(o),Classification(o)); 


These three assertions together are meant to express the 
requirement that information does not flow downward, 
i.e., from a higher security level to a lower one. 

The initial conditions simply restate the 
SimpleSecurityCondition and StarProperty invariants, 
requiring only that the invariants be satisfied in the 
initial state. 

Since there are no events specified, verification for 
the mls level consists of proving that the initial 
conditions (taken together) imply the invariants, which 
js trivial in this case. Verification that level lan is 
consistent with level mls consists of proving that the 
initial conditions, invariants, and constraint of level 
mls, and the SATISFIES clause of Dom, are satisfied by 
level lan and the mapping between the two levels. 

Mapping Between Levels 

To verify that two neighboring levels are consistent 
with each other, there must be a mapping that determines 
how the entities in the upper level are represented in 
the lower level. In Verlangen, there is an implicit 
mapping between identifiers with the same name· in 
neighboring levels. In the Secure LAN specification, 
for example, there is an implicit mapping for the 
identifiers Sub j, Ob j, and Lev, each of which is 
declared both in level mls and in level lan. Likewise, 
there is an implici~mapping for the identifier 
Clearance, declared both in level mls in class System 
and in level lan in class LANSystem, which refines 
System. 

The Verlangen compiler checks that declarations of the 
same identifier in neighboring levels are compatible. 
Compatible declarations need not be identical. For 
example, the declarations for Lev in levels mls and lan 
are compatible, though not identical; the declaration in 
level lan is merely more specific than the one in mls. 
Level mls declares Lev to be an arbitrary type, giving 
the type the name Lev to distinguish it from other 
types: 

TYPE Lev; 

Level lan declares Lev to be an enumerated type (as in 
the programming --:language Pascal) with values 
unclassified, confidential, secret, and topsecret: 

TYPE Lev = 

[unclassified,confidential,secret,topsecret]; 


The implicit mapping associated with identical 
identifiers is insufficient to describe the mapping 
between neighboring levels. A mapping statement, which 
can appear only in a lower level, provides an explicit 
mapping from a constant or variable declared declared in 
the next higher level to its representation in the lower 

This mapping statement says that the relation Dom, 
declared in level mls, is represented in level lan~y 
the relation "<=" ("less than or equal to"). Additional 
mapping statements appear in the System class 
definition: 

MAP Classification(o) INTO Clearance(Originator(o)); 
MAP ReadAcc(s,o) INTO user(s).knows(o); 
MAP WriteAcc(s,o) INTO Originator(o) = s; 

Verlangen provides two more constructs for specifying 
the mapping between levels. These are the REFINES 
clause of a class declaration and the REFINES clause of 
a procedure declaration. 

A class at one level may be represented by one or more 
classes at the next level. Mappings between classes are 
specified by including a REFINES clause in the 
lower-level class definitions. For example, a class 
intended to represent an arbitrary host computer in a 
distributed system might be represented at the next 
level by several~different classes, each representing a 
different kind of host. 

LEVEL upper IS 

CLASS Host 

END upper; 

LEVEL lower REFINES upper IS 

CLASS FileServer REFINES Host 
CLASS UserHost REFINES Host ••• 
CLASS GateWay REFINES Host ••• 

END lower; 

Similarly, an event defined in an upper-level class may 
be represented by more than one event in a 
representation of the class at the next lower level. 
For example, consider a class representing a file server 
with an event named Alter: 

CLASS FileServer IS 

PROCEDURE Alter 

END FileServer; 

At the next lower level, the Alter event may be 
represented by two different events: 

CLASS FileServer2 REFINES FileServer IS 

PROCEDURE Rewrite REFINES Alter ••• 
PROCEDURE Append REFINES Alter 

END FileServer2; 

Consistency Between Levels 

Verifying the consistency of successive refinements with 
each other entails verifying that the lower-level 
representation of each upper-level entity is consistent 
with its upper-level specification. The theorems 
generated to verify inter-level consistency are called 
"mapping theorems". 

A lower-level constant is shown to be consistent with an 
upper-level constant by proving that the lower-level 

74 




representation satisfies the upper-level constant's 
SATISFIES clause, if there is one. 

A lower-level class is shown to be consistent with an 
upper-level class by proving that it maintains the 
invariants and constraints of the upper-level class. 
So, for each upper-level invariant, a mapping theorem is 
produced which states that the lower-level initial 
conditions and the mapping between the levels together 
imply the upper-level initial conditions. The rest of 
the mapping theorems produced for a class refinement 
fall into three categories. 

The first category contains mapping theorems for each 
lower-level procedure that REFINES an upper-level 
procedure. These mapping theorems state that for every 
occurrence of the ~lower-level event, there is an 
occurrence of the corresponding upper-level event. 

The second category contains mapping theorems for 
procedures that do not REFINE upper-level procedures. 
These mapping theorems state that for every upper-level 
invariant, if a lower-level state satisfies the 
upper-level invariant and an event defined by the 
procedure occurs, then the next state also satisfies the 
upper-level invariant. 

The third category contains mapping theorems for 
lower-level classes which contain no procedures. In 
this case, the mapping theorems state that the 
upper-level invariants are provable directly from the 
lower-level class invariants class (and the mappings). 

For example, class LANSystem REFINEs class System. Since 
LANSystem contains no procedures, the System invariants 
must be provable directly from the LANSystem 
invariants. To make the System SimpleSecurityCondition 
invariant provable from the LANSystem invariants, 
another invariant also called SimpleSecurityCondition 
-- has been added to LANSystem: 

INVARIANT SimpleSecurityCondition 
USING WorkStation,knowledge, 

Guard.filter, 
Guard. transport 

IS FORALL s:Subj FORALL o:Obj 
( user(s).knows(o) => 

Clearance(Originator(o)) <= Clearance(s) ); 

Translation to First-Order Logic 

This section describes the translation from a Verlangen 
specification to typed first-order logic with equality. 
The translation is illustrated below using a notation 
for first-order logic which includes declarations for 
types, functions, axioms, and theorems. Formulas may be 
quantified existentially with "exists" or universally 
with "for". The operators "NOT", "&", "v", "->", "<=>" 
are used for negation, conjunction, disjunction, 
implication, and equivalence, respectively. The symbols
"=", "<>", ·"<", "<=", ">", ">=" are the relational 
operators having their common interpretation. 

General 

For each class, the Verlangen compiler generates two 
files of first-order logic "code". The "definitions" 
file contains the declarations and definitions of types, 
constants, functions, and axioms that comprise the 
definition of the class expressed in first-order logic. 
The "theorems" file contains the theorems for verifying 
that the class is self-consistent. 

For each class defined as a refinement of another class, 
the compiler also generates a "mappings" file, which 
contains the mapping definitions and the mapping 

theorems for verifying that the class is a consistent 
refinement of its parent class. The mapping file 
obtains additional definitions and declarations from the 
"definitions" files for the class and its parent. 

Structuring the first-order logic code in this manner 
allows the verification .to be carried out separately for 
each class and for the mappings between classes. 

Classes 

A class definition specifies a class of state machines. 
The first-order logic translation of a class definition' 
declares a type, which has the same name as the class 
and whose values represent the states of the state 
machines in the class. A relation precedes 
(corresponding to the "<<" relation) and a function next 
is defined for values of this type. The prec~ 
relation defines a partial ordering on values of the 
type, while next is a successor function satisfying
recedes x,next x • When given a state (in the history 

of a state machine , next yields the next state in the 
history. For example, the class definition of ~ 
generates the following first~order logic definitions: 

TYPE Guard 

FUNCTION precedes: Guard X Guard -> BOOLEAN 
DEFINE precedes(gl,g2) BY 

gl = g2 v 
exists g3:Guard 
( precedes(gl,g3) &precedes(g3,g2) ) 

AXIOM for gl,g2:Guard 
( precedes(gl,g2) & precedes(g2,gl) => gl g2 ) 

FUNCTION next: Guard -> Guard 

AXIOM for g:Guard 


precedes(g,next(g)) 


To distinguish functions, such as ~ and guard, 
defined for one class from those defined for another, 
the translation produced by the compiler includes the 
name of the defining class in the names of the 
functions. For example, the next function for the Guard 
class is really named Gua~ext. For readability, 
however, the class name is omitted from the examples 
presented here. 

Constants and Variables. Constants and variables 
declared within a class definition are translated into 
state functions. For constants, an axiom states that 
the value of a constant remains unchanged from one state 
to the next. For example, the declaration of the 
constant max in the Guard class translates into 
first-order logic as follows: 

FUNCTION max: Guard -> Lev 

AXIOM for g:Guard 


max(next(g)) = max(g) 


For class-type variables, an axiom states that the value 
of the variable either remains unchanged from one state 
to the next or is the next value in the history of the 
variable. For example, the declaration of the variable 
~ in the LANSystem class translates into: 

FUNCTION user: LANSystem X Subj -> WorkStation 
AXIOM for this:LANSYSTEM for s:Subj 

( user(next(this),s) = user(this,s) v 
user(next(this),s) = next(user(this,s)) ) 

AXIOM for this:LANSystem for s:Subj 
myid(user(this,s)) = s 

Initial Condition. An initial condition, which 
constrains the initial state or set of possible initial 
states for a class of state machines, is specified in 
Verlangen by INITIALLY clauses attached to VAR 

75 




declarations, by IS clauses attached to CONST 
declarations, and by INITIALLY statements. The 
first-order logic translation for a class represents the 
initial condition by a predicate, i.e., a boolean 
function, which determines whether or not a state is a 
possible initial state. The initial condition for the 
~class is defined as follows: 

FUNCTION initial: Guard -> BOOLEAN 
DEFINE initial(g) BY 

for g2:Guard NOT precedes(g2,g) & 
NOT netinfull(g) &NOT netoutfull(g) 

Procedures. A procedure represents an event (or 
operation), and translates into a predicate of one or 
more arguments, the first argument corresponding to a 
state (in which the event occurs) and the remaining 
arguments parameterizing the event. The predicate 
defines a relation between the state represented by the 
first argument and the next state. 

A procedure has two components, called the 
"precondition" and the "effect". The precondition states 
the condition(s) which must be satisfied by a state in 
order for the corresponding event to occur in that 
state. The effect states the relation between the state 
in which the event occurs and the next state, The 
predicate representing the event is defined by the 
conjunction of the precondition and the effect. The 
following is the first-order logic translation for the 
fromnet procedure in the Guard class: 

FUNCTION fromnet: Guard X Obj X Lev -> BOOLEAN 
DEFINE fromnet(g,o,l) BY 

NOT netinfull(g) & 
( 1 <= max(g) => 

netinfull(next(g)) & 
netin(next(g)) = o ) & 

( 1 > max(g) => 
NOT netinfull(next(g))) & 

netoutfull(next(g)) = netoutfull(g) & 
netout(next(g)) = netout(g) & 
dest(next(g)) = dest(g) 

Event Synchronization. The SYNC statement correlates 
events occurring in two or more different subsystems. 
The first-order logic translation is an AXIOM stating, 
for all states of the overall system of which the 
subsystems are a part, the equivalence of the predicates 
representing subsystem events. For example, the first 
SYNC statement in the LANSystem class, i.e., 

FORALL s,d:Subj FORALL o:Obj 

SYNC user(s).send(d,o), 


guard(s).fromuser(d,o); 


translates into 

AXIOM for x:LANSystem for s,d:Subj for o:Obj 

( send(user(x,s),d,o) <=> 


fromuser(guard(x,s),d,o) ) 


Invariants. An invariant is a condition that must be 
satisfied by every state of every state machine in the 
class. An invariant translates into a predicate, whose 
single argument is a state. The filter invariant in the 
~ class translates into: -- 

FUNCTION filter: Guard -> BOOLEAN 
DEFINE filter(s) BY 

for o:Obj 
( touser(s,o) => 

exists g:Guard exists l:Lev 
( precedes(g,s) & 

fromnet(s,o,l) & 
1 <= max(s) )) 

To verify that a class satisfies an invariant, it is 
necessary to prove two kinds of theorems: an initial 
condition theorem and one or more "induction" theorems 
stating that if an invariant holds in a given state then 
the invariant also holds in the next state. 

An initial condition theorem states that the invariant 
is satisfied in the initial state. That is, if a state 
satisfies the initial condition for the class, then the 
state also satisfies the invariant. The initial 
condition theorem for the knowledge invariant in the 
WorkStation class is: 

THEOREM for w:WorkStation 

( initial(w) => knowledge(w) ) 


Induction theorems insure that an invariant remains true 
for the rest of the states in a state machine's 
history. SYNC and PROCEDURE statements cannot both 
appear within a class definition and the induction 
theorems take on different forms depending on whether 
the class is defined using SYNC or PROCEDURE 
statements. 

When a class is defined using PROCEDURE statements, 
there is an induction theorem for every 
invariant-procedure pair. This theorem states that if 
the invariant is satisfied in some state, and if an 
event represented by the procedure occurs in that state, 
then the next state also satisfies the invariant. For 
example, the induction theorem stating that the receive 
procedure in the WorkStation class maintains the 
knowledge invariant is: 

THEOREM for w:WorkStation for o:Obj 

( knowledge(w) & 


receive(w,o) => knowledge(next(w)) ) 


When the definition of an invariant contains a USING 
clause, the hypothesis of the theorems produced for the 
invariant is augmented by the assertions mentioned in 
the USING clause. For For example, the theorem stating 
that the fromnet procedure in the Guard class maintains 
the ~ invariant is: -- 

THEOREM for g:Guard for o:Obj for l:Lev 
( filter(g) & 

for g2:Guard netinok(g2) & 
fromnet(g,o,l) => filter(next(g)) ) 

When a class is defined using SYNC statements, for each 
invariant there is an induction theorem stating that if 
the invariant is satisfied in some state, then the 
invariant is also satisfied in the next state~ For 
example, the following induction theorem is generated 
for the Origination invariant in class LANSystem. 

THEOREM for this:LANSystem 
( Origination(this) & 

for w:WorkStation knowledge(w) & 
for g:Guard filter(g) & 
for g:Guard transport(g) 

=> Origination(next(this)) ) 

For each class-type variable ~ declared in class £ to be 
of type r. the following axiom is provided: 

AXIOM for this:C for y:T 
( precedes(y,x(this)) => 

exists prior:C 
( precedes(prior,this) & 

y = x(prior) )) 

This axiom really is redundant, since the following 
invariant can always be verified without recourse to the 
axiom: 

76 



INVARIANT xinvariant IS 
for y:T 

( y « X =) 

exists prior:C 

( prior << THIS &y = prior.x )) 


The redundant axiom is provided because the 
corresponding invariant is so frequently needed in the 
proofs of other invariants. 

Constraints. A constraint places a condition on how any 
two successive states, i.e., the states before and after 
an event, may relate to each other. A constraint 
translates into a predicate, whose single argument is a 
state. The OnlyToUser constraint in the Guard class 
translates into: 

FUNCTION OnlyToUser: Guard -> BOOLEAN 
DEFINE OnlyToUser(g) BY 

netinfull(g) & 
NOT netinfull(next(g)) 

=> touser(g,netin(g)) 

To verify that a class satisfies a constraint, it is 
necessary to prove a constraint theorem for each kind of· 
event. A constraint theorem insures that the states 
before and after the event in question satisfy the 
constraint. The theorem stating that the fromnet 
procedure of the Guard class satisfies the OnlyToUser 
constraint is: 

THEOREM 	 for g:Guard for o:Obj for l:Lev 

( fromnet(g,o,l) => OnlyToUser(g) ) 


Levels and Mappings 

This section describes the first-order logic 
representations of mappings for classes, variables, 
constants, and the theorems for verifying the 
consistency between levels. 

Classes When one class refines another, the classes are 
represented by two different datatypes. Mapping one 
class to the other entails making the two types equal. 
This is accomplished by declaring, in the mappings file 
for the refining"class, that the refined class is a 
subtype of the refining_class (so that every value in 
the refined class is in the refining class) and 
including an axiom stating that every element that is in 
the refining class is in the refined class. For 
example, if class C2 refines class C1, the mappings file 
for C1 includes the following: 

INCLUDE 	 Cl. def "Cl.def is the definitions file for C1" 
INCLUDE 	C2.def "C2.def is the definitions file for C2" 
TYPE C1 	 OF C2 
AXIOM for c2:C2 

exists c1:C1 ( c1 = c2 ) 

This approach allows a level to define several different 
refinements of a class, while keeping the type names 
associated with the different refinements separate. 

Variables. Whenever a specification provides a 
lower-level representation of an upper-level variable, 
through redeclaration or a MAP statement, an axiom in 
the mappings file for the lower-level class makes the 
requisite mapping. For example, the mappings file for 
LANSystem includes the following axiom for ReadAcc: 

AXIOM for sys:System for s:Subj for o:Obj 
System___ReadAcc(sys,s,o) = 

WorkStation___knows(LANSystem___user(sys,s),o) 

Constants. Mappings for constants are treated similar to 
the way in which mappings for variables are treated, 
except that the translation for a mapping of a constant 

declared with a SATISFIES clause includes a theorem 
stating that the lower-level representation satisfies 
the condition expressed in the SATISFIES clause. 
Consider the constant function Dom, declared in level 
mls of the Secure LAN specification. The translation 
for the Dom declaration includes a predicate, named 
Dom-Axiom, which expresses Dom's SATISFIES clause. 

FUNCTION Dom Axiom: -> BOOLEAN 
DEFINE Dom Axiom BY 

for l:Lev Dom(l,l) & 
for 11,12:Lev 
( Dom(l1,12) &Dom(l2,11) => 11=12 ) & 
for 11,12,13:Lev 
( Dom(l1,12) &Dom(l2,13) => Dom(l1,13) ) 

A MAP statement in level lan maps Dom into the relation 
"<=" defined on values of type Lev-:--The mappings file 
for level lan defines Dom, which is declared but not 
defined i~the definitions file for level mls, and 
includes a theorem stating that Dom-Axiom is satisfied 
by the mapping. 

DEFINE Dom(l1,12) BY 12 <= 11 
THEOREM 	 Dom_Axiom 

Consistency Between Levels. Whenever a lower-level class 
refines an upper-level class, the lower-level class must 
be shown to satisfy the upper-level assertions. For 
each invariant, there is a mapping theorem stating that 
the lower-level initial conditions imply the upper-level 
initial conditions. The proof of the initial condition 
mapping theorem utilizes the mappings for the 
upper-level variables and constants. The initial 
condition mapping theorem for LANSystem, which refines 
System is: 

THEOREM for sys:System 
( initial LANSystem(sys) => 

initial___System(sys) ) 

For each event in a class refinement, there are mapping 
theorems for verifying that the event maintains the 
upper-level invariants and constraints. 

For every event that refines an upper-level event, an 
event mapping theorem is produced which verifies that 
the event is consistent with the event it is refining. 
Informally, the theorem states, "If the lower-level 
event occurs in a given state, then the upper-level 
event can be shown to occur in the same state." Proving 
the mapping theorem implies that the lower-level event 
satisfies the upper-level invariants and constraints 
satisfied by 
consider the 
specification 

the upper-level 
following fragment 

event. 
of 

For 
a 

example, 
Verlangen 

CLASS FileSystem IS 

INVARIANT StarProperty 
PROCEDURE Alter(f:File) 

END FileSystem; 

CLASS FileSystem2 REFINES FileSystem IS ... 

PROCEDURE Append(f:File;d:Data) REFINES Alter ••• 
PROCEDURE Read(f:File;d:Data) 

END FileSystem2; 

The following event mapping theorem is produced for 
Append, since it refines the upper-level procedure
Alter: 

THEOREM for s:FileSystem 
( exist f:File exist d:Data append(f,d) => 

exist f:File alter(f) ) 

77 



If an event in a class refinement is a new event 
introduced in the refinement, induction mapping theorems 
are produced for the upper-level invariants and 
constraint theorems are produced for the upper-level 
constraints. For example, the following induction 
mapping theorem is produced for the procedure ~. 
above. 

THEOREM for sys:FileSystem 
for £:File for d:Data 
( StarProperty(sys) & 

Read(sys,f,d) => StarProperty(next(sys)) ) 

If a class defines no events, i.e., contains no 
PROCEDURE definitions, it must still be shown that the 
class satisfies all upper-level invariants and 
constraints. The following theorem is the induction 
mapping theorem for the upper~level 
SimpleSecurityeondition invariant in the Secure LAN 
specification. 

THEOREM for sys:System 
( System __SimpleSecurityCondition(sys) & 

for lsys:LANSystem 
LANSystem__SimpleSecurityCondition(lsys) & 

for lsys:LANSystem 
LANSystem__Origination(lsys)

=> System__SimpleSecurityCondition(next(sys)) ) 

The following is the constraint mapping theorem for the 
NoDowngrading constraint. 

THEOREM for sys:System 

System__NoDowngrading(sys) 


Operational System 

Verlangen is supported by a compiler and a theorem 
prover, both of which run under the VAX/VMS operating 
system. The compiler is being developed at RCA. 
Currently the compiler has been implemented for a subset 
of the language, and is expected to be extended to the 
entire language before the end of 1985. The theorem 
prover is part of the Verus verification system [6], a 
product of Gould Corporation. 

To carry out a specification and verification using 
Verlangen, the user first writes a Verlangen 
specification and then passes it to the Verlangen
compiler. The compiler does extensive syntactic checks 
on the specification and reports any errors. When the 
specification is error-free, the compiler translates the 
specification into a collection of declarations, 
definitions, axioms, and theorems, all expressed in the 
Verus language. The statement of each theorem 
references a separate proof outline file. The user 
creates the proof outline files, leaving them empty or 
filling them in as necessary, and then submits the 
theorems to the Verus verification system for proof. 

The Verus language is a notation for first-order logic 
with types and equality. A Verus specification may 
include declarations of types, constants, and functions, 
as well as theorems and directives to the theorem 
prover. Types INTEGER and BOOLEAN are built in, and 
Presburger arithmetic is supported. A parser supplied 
with the Verus verification system translates 
specifications written in the Verus language to an 
intermediate form acceptable to the Verus theorem 
prover. 

The Verus theorem prover uses the Hintikka tableau 
method. The basic strategy of this method is to 
construct a tree of formulas, which begins as a single 
branch consisting of formulas known to be true and the 

negation of the theorem to be proved. Each formula, 
including the negation of the theorem, is reduced to one 
or more simpler formulas which are consequences of it, 
and these formulas are added to the branch containing 
the formula. Universally and existentially quantified 
formulas are simplified by instantiating them 
appropriately. A disjunction is reduced by splitting
the branch containing the disjunction into several new 
branches, each new branch headed by one of the 
disjuncts. A branch stops growing when its 
last-computed formula contradicts some formula appearing 
on the path from the end of the branch back to the root 
of the tree. The proof is complete when all branches 
have stopped growing. 

The Verus implementation of this basic method allows a 
proof outline to accompany any theorem. A proof outline 
may include formulas known or assumed to be true, 
directives to instantiate universally and existentially 
quantified formulas, theorems to be proved in the 
context of the theorem currently being proved, and 
directives to block and unblock function definitions. 
The proof outline provides a means for naturally 
structuring a proof, and is sometimes necessary to prove 
the theorem in a reasonable amount of time and space. 

Summary 

Verlangen is a language being developed at RCA for 
formally specifying and verifying system designs. A 
Verlangen text, which is a specification of a system 
design and its requirements, can be formally verified, 
through mathematical proof, to show that the design 
satisfies the requirements. Verlangen supports and 
encourages the design of a system and its verification 
to be decomposed into simple, tractable units. 

Verlangen supports object-oriented design and levels of 
refinements. It also supports true concurrency without 
mandating a particular model for communications between 
subsystems. In appearance, Verlangen resembles a 
high-level programming language having . types, block 
structure, identifier scope and visibility rules, 
modules, etc. System behavior and system requirements 
are specified through definitions and assertions 
expressed by formulas in first-order logic. The logic 
component of Verlangen is typed, with equality, and with 
universal and existential quantification. 

Verlangen is supported by a compiler and an automatic 
theorem prover. A compiler checks a Verlangen text for 
syntactic correctness and translates it into a 
collection of definitions, axioms, and theorems in 
first-order logic. Proving the theorems verifies that a 
specification is consistent, and in particular that the 
system requirements are satisfied by the system design. 
The theorems are proved by submitting them to a theorem 
prover, which may require a proof outline to guide the 
search for a proof. 

Verlangen can be used to specify and verify systems 
composed of hardware or software elements, or a 
combination of both. Verlangen is especially suitable 
for systems composed of several different elements 
operating concurrently, e.g., a distributed computer 
network, and for systems required to satisfy multilevel 
security requirements. Verlangen is intended to satisfy 
the "verified design" requirement imposed on multilevel 
secure computer systems at the Al level of the secure 
computer systems evaluation criteria set forth by the 
Department of Defense. 

Because Verlangen system specifications are verifiable, 
Verlangen satisfies the need to have confidence that a 

78 




system design meets its requirements before costly time 
and effort is invested in system implementation. In 
addition, the formality of the specification language 
serves to add rigor to the specification process, to 
achieve unambiguous and complete specifications. 

Acknowledgements 

Verlangen is being developed through the IR&D program at 
RCA Aerospace and Defense. The author wishes to 
acknowledge the past and continuing support of. RCA 
Government Communications Systems and RCA Advanced 
Technology Laboratories. Special thanks to Beth Reynolds 
and Myles Boddy for carrying out several verifications 
using Verlangen even while the language and compiler 
were still under development, and to Frederick Druseikis 
for his thoughtful criticism of earlier drafts of this 
paper. 

References 

[1] 	 Department of Defense Computer Security Center, 
DoD Trusted Computer System Evaluation Criteria, 
CSC-STD-001-83, Aug 1983. 

[2] 	 D.I. Good, R.M. Cohen, C.H. Hoch, L.W. Hunter, and 
D.F. Hare, Report on the Language Gypsy Version 
2.0, ICSCA-CMP-10, The University of Texas at 
Austin, Rev Sep 1978. 

[3] 	 K.N. Levitt, L. Robinson, and B.A. Silverberg, The 
HDM Handbook, Vols 1-3, Computer Science .Lab., 
SRI International, Menlo Park, CA, June 1979. 

[4] 	 R. Kemmerer, "FDM -- A Specification and Verifica
tion Methodology", Proceedings of the Third Seminar 
on the DoD Computer Security Initiative Program, 
National Bureau of Standards, Gaithersburg, MD, Nov 
1980. 

[5] 	 R.R. Musser, "Abstract Data Type Specification in 
the AFFIRM System", IEEE Trans. on Software 
Engineering, SE-6,1 Jan 1980. 

[6] 	 D. Craigen, "Ottawa Euclid and EVES: A Status 
Report", Proceedings of the 1984 Symposium on 
Security and Privacy, Oakland, CA, May 1984. 

[7] 	 M.H. Cheheyl, M. Gasser, G.A. Huff, J.K. Millen, 
"Verifying Security", Computing Surveys, Vol 13 
No 3, Sep 1981. 

[8] 	 D.E. Britton, "Formal Verification of a Secure 
Network with End-to-End Encryption", Proceedings of 
the 1984 Symposium on Security and Privacy, 
Oakland, CA, May 1984. 

[9] 	 D.E. Bell and L.J. LaPadula, ~S~e~c::;.u=.r:::.e~C:::o~m~p::!u!!t~e=._r 
S stem: Unified Ex osition and Multics Inter re
tation, ESD-TR-75-30 , Mitre Corporation, Bed ord, 
MA, Mar 1976. 

[10] Verus 	 User Documents, Compion Corporation, a . 
subsidiary of Gould Inc., 1984. 

Appendix: Complete Secure LAN Specification 

LEVEL mls IS 

TYPE 	Lev; 
CONST Dom(l1,12:Lev):BOOLEAN SATISFIES 


FORALL l:Lev Dom(l,l) & 

FORALL 11,12:Lev 

( Dom(l1,12) &Dom(l2,11) => 11=12 ) & 

FORALL 11,12,13:Lev 

( Dom(l1,12) &Dom(l2,13) => Dom(l1,13) ); 


TYPE Subj; 

TYPE Obj; 


CLASS System IS 

CONST Clearance(s:Subj):Lev; 

VAR Classification(o:Obj):Lev; 

VAR ReadAcc(s:Subj; o:Obj):BOOLEAN; 

VAR WriteAcc(s:Subj; o:Obj):BOOLEAN; 


INITIALLY 

FORALL s:Subj FORALL o:Obj 

( ReadAcc(s,o) => 


Dom(Clearance(s),Classification(o)) ); 

INITIALLY 

FORALL s:Subj FORALL o:Obj 

( WriteAcc(s,o) => 


Dom(Classification(o),Clearance(s)) ); 

INVARIANT SimpleSecurityCondition IS 

FORALL s:Subj FORALL o:Obj 

( ReadAcc(s,o) => 


Dom(Clearance(s),Classification(o)) ); 

INVARIANT StarProperty IS 

FORALL s:Subj FORALL o:Obj 

( WriteAcc(s,o) => 


Dom(Classification(o),Clearance(s)) ); 

CONSTRAINT NoDowngrading IS 
FORALL o:Obj 

Dom(Classification'(o),Classification(o)); 
END System; 

END mls; 

LEVEL lan REFINES mls IS 

TYPE Lev = 
[unclassified,confidential,secret,topsecret]; 

MAP Dom(l1,12) INTO (12 <= 11); 

TYPE Subj; 

TYPE Obj; 

CONST Originator(o:Obj):Subj; 


CLASS WorkStation(CONST myself:Subj) IS 

VAR knows(o:Obj):BOOLEAN 


INITIALLY FALSE; 


PROCEDURE read(o:Obj) IS 

PRECONDITION knows(o); 

EFFECT FORALL o2:0bj 


SAME knows(o2); 

END read; 


79 



PROCEDURE write(o:Obj) IS 
PRECONDITION Originator(o) = myself; 

NOT knows(o); 
EFFECT FORALL o2:0bj 

SAME knows(o2) 
EXCEPT o2 = o -> TRUE; 

END write; 

PROCEDURE send(r:Subj; o:Obj) IS 

PRECONDITION knows(o); 

EFFECT FORALL o2:0bj 


SAME knows(o2); 

END send; 


PROCEDURE receive(o:Obj) IS 
EFFECT FORALL o2:0bj 

SAME knows(o2) 
EXCEPT o2 = o -> TRUE; 

END receive; 

INVARIANT knowledge IS 

FORALL o:Obj 

( knows(o) => 


EXISTS w:WorkStation 
(w«THIS& 

( w.receive(o) v w.write(o) ) 
) 

) ; 
END WorkStation; 

CLASS Guard(CONST max:Lev) IS 
VAR netin,netout:Obj; 
VAR netinfull:BOOLEAN INITIALLY FALSE; 
VAR netoutfull:BOOLEAN INITIALLY FALSE; 
VAR dest:Subj; 

PROCEDURE fromnet(o:Obj; l:Lev) IS 

PRECONDITION NOT netinfull; 

EFFECT 


1 <=max=> netinfull 1 & netin 1 = o; 
1 > max => NOT netinfull 1 

; 

SAME netoutfull,netout,dest; 
END fromnet; 

PROCEDURE touser(o:Obj) IS 

PRECONDITION netinfull; 


o = netin; 

EFFECT NOT netinfull'; 


SAME netoutfull,netout,dest; 
END touser; 

PROCEDURE fromuser(d:Subj; 
o:Obj) IS 


PRECONDITION NOT netoutfull; 

EFFECT 


SAME netin,netinfull; 

netoutfull 1 

; 


dest 1 = d; 

netout 1 = o; 


END fromuser; 

PROCEDURE tonet(d:Subj; 

o:Obj; l:Lev) IS 


PRECONDITION netoutfull; 

d = dest; 

o = netout; 

1 = max; 


EFFECT SAME netin,netinfull; 

NOT netoutfull 1 

; 


END tonet; 


INVARIANT netinok IS 

FORALL o:Obj 

( netinfull & o = netin => 


EXISTS g:Guard EXISTS l:Lev 
(g«THIS& 


g.fromnet(o,l) & 

1 <= max ) 


); 

INVARIANT filter USING netinok IS 

FORALL o:Obj 

( touser(o) => 


EXISTS g:Guard EXISTS l:Lev 
( g «THIS & 


g.fromnet(o,l) & 

1 <=max ) 


) ; 

INVARIANT netoutok IS 
FORALL d:Subj FORALL o:Obj FORALL l:Lev 
( netoutfull & d = dest & o = netout & 1 = max => 

l=max& 

EXISTS g: Guard 

( g « THIS & 


g.fromuser(d,o) 

); 


INVARIANT transport USING netoutok IS 

FORALL d:Subj FORALL o:Obj FORALL l:Lev 

( tonet(d,o,l) => 


l=max& 

EXISTS g:Guard 

( g « THIS & 


g.fromuser(d,o) ) 

) ; 


CONSTRAINT OnlyToUser IS 

netinfull & NOT netinfull 1 => 


touser(netin); 


CONSTRAINT OnlyToNet IS 

netoutfull & NOT netoutfull 1 => 


tonet(netout,max); 


END Guard; 

CLASS LANSystem REFINES System IS 
CONST Clearance(s:Subj):Lev; 
VAR user(s:Subj):WorkStation(s); 
VAR guard(s:Subj):Guard(Clearance(s)); 

MAP Classification(o) INTO Clearance(Originator(o)); 

MAP ReadAcc(s,o) INTO user(s).knows(o); 

MAP WriteAcc(s,o) INTO Originator(o) = s; 


FORALL s,d:Subj FORALL o:Obj 

SYNC user(s).send(d,o), 


guard(s).fromuser(d,o); 


FORALL d:Subj FORALL o:Obj 

SYNC user(d).receive(o), 


guard(d).touser(o); 


FORALL d:Subj FORALL o:Obj FORALL l:Lev 

SYNC guard(d).fromnet(o,l), 


EXISTS s~Subj guard(s).tonet(d,o,l); 


INVARIANT Origination 
USING 	WorkStation.knowledge, 


Guard. filter, 

Guard.transport 


80 



IS FORALL s:Subj FORALL o:Obj 
( user(s)~knows(o) => 

EXISTS sys:LANSystem 
( sys « THIS & 

sys.user(Originator(o)).write(o) 
) 

); 

INVARIANT SimpleSecurityCondition 
USING WorkStation.knowledge, 

Guard. filter, 
Guard. transport 

IS FORALL s:Subj FORALL o:Obj
( user(s).knows(o) => 

Clearance(Originator(o)) <= Clearance(s) ); 

END LANSystem; 

END lan; 

81 



ISSUES ON THE DEVELOPMENT OF SECURITY RELATED FUNCTIONAL TESTS 


Cornelius J. Haley

Frank L. Mayer 


DoD Computer Security Center 

9800 Savage Road 


Fort George G. Meade, Maryland 20755-6000 

(301) 859-6044 


ABSTRACT 

The Department of Defense Trusted 
Computer System Evaluation Criteria (TCSEC)
requires that a vendor create and use 
security relevant functional tests. A 
functional test examines the behavior of a 
system's user visible interfaces. That is, 
when a system is tested through its 
interfaces, the interfaces are expected to 
perform those functions, and only those 
functions, for which they are designed. This 
paper will discuss issues which must be 
addressed when developing a functional test 
plan to meet the TCSEC functional testing
requirement. 

DISCLAIMER 

The views contained in this paper are 
exclusively those of the authors based on 
experience gained as operating system 
security evaluators at the Department of 
Defense Computer Security Center. This paper 
does not necessarily represent official 
policy of the Computer Security Center. 

INTRODUCTION 

The Department of Defense Trusted 
Computer System Evaluation Criteria (TCSEC) 
requires that vendors create and use security
related functional tests as part of their 
overall development process and maintain 
adequate documentation of the test plan. A 
security related functional test plan should 
examine the behavior of a system's Trusted 
Computing Base (TCB) through its user visible 
interfaces. (TCB is defined by the TCSEC as 
"the totality of protection mechanisms within 
a computer system including hardware 
firmware, and software -- the combination of 
which is responsible for enforcing a security
policy." [sic]). That is, when a TCB is 
tested through its interfaces, the interfaces 
are expected to perform those functions, and 
only those functions, for which they are 
designed. This use of testing provides a 
system developer some assurance that the 
system performs as designed. In the scope of 
the TCSEC, the use of security related 
testing provides the DoD Computer Security
Center (the "Center") a level of assurance 
that the TCB properly implements the security 
policy reflected in the design documentation. 

Historically, testing has been an area 
of concern for system developers. Such 
questions as 'How much testing and 
documentation is sufficient?', 'What parts
of the system need testing?', and even 'What 
are functional tests?' are common. This 
paper discusses issues pertaining to the 
development and maintenance of a security 
related functional test plan sufficient to 
meet the Center's functional testing
requirement. However, it is important to 
note that though this paper will deal 
specifically with security related testing 
as defined in the TCSEC, these issues may
also be relevant when testing the non
security related portion of a system. 

In any discussion in the field of 
computer science, the lack of common 
terminology has traditionally been a 
problem. Therefore, the terms 'feature' and 
'security properties' need to be introduced 
at this time. A feature, as used in this 
paper, is the subject of a test. For 
example, a feature could be a system's
discretionary access control mechanism, a 
module of code or simply a TCB interface to 
read the attributes of a file. In other 
words, a feature is what a test will examine 
and the scope of a feature depends wholly on 
the scope of the test itself. 

Security properties are defined as the 
characteristics of a system that are 
relevant to the TCSEC. These properties
include object reuse, labeling,
discretionary access control (DAC),
mandatory access control (MAC), 
identification and authentication, auditing,
and trusted path. Explanations of the 
policies and requirements behind each of 
these security properties are found in the 
TCSEC. 

SECURITY RELEVANCE 

Security related functional tests 
examine all features of a TCB with respect 
to the security properties of the system. 
For instance, when examining the TCB with 
respect to the security property of 
auditing, all features which generate audit 
messages, collect audit messages, maintain 
audit logs, or retrieve information from the 
audit logs are security relevant and must be 
tested. The TCB must be examined with 
respect to all other security properties of 
the system to determine the features which 
must be tested. 

82 




All aspects of a TCB feature being
tested that affect (or are affected by) a 
security property must be tested. The 
aspects of a TCB feature that are determined 
not to be relevant to any security property
of the system need not be tested to meet the 
TCSEC functional testing requirement.
However, adequate documentation as to why any 
portion of a TCB feature is not security
relevant should be maintained. 

For example, when looking at the 
discretionary access control (DAC) properties 
of the TCB interrace to change the name of a 
file, the check for proper access to the file 
is clearly security relevant. However, the 
check that the new name satisfies a syntax
requirement may not be relevant to the DAC 
security property and would not need testing. 

Ideally, the system designers will 
determine which features are security
relevant during the design phase of a system
and document their findings in the system
design documentation. However, experience has 
shown that security testing is not always 
foremost in a designer 1 s mind. Therefore, 
the tester 
documentation 

may
and 

have 
even 

to examine user 
source code to 

determine 
the TCB. 

the security relevant features or 

COVERAGE 

One of the initial decisions that must 
be made when designing functional tests is 
how extensively to examine a reature (i.e. , 
How much testing is enough?). Some or the 
more popular methods or testing described 
below will each yield entirely different 
levels of coverage. One method of testing is 
the so-called "exhaustive testing", or the 
testing or all possible inputs to a feature. 
This method, while providing a great deal of 
assurance or the correct operation of the 
feature being examined, is impractical tor 
use in testing operating systems due to the 
vast amount or resources required. For 
example, when examining a system with eight
hierarchical access levels and twenty-nine 
non-hierarchical categories (as the TCSEC 
recommends), there will be 2**32 (over 4 
billion) possible security levels. Testing
all 4 billion possible security levels in 
relation to every relevant feature or the TCB 
is impractical and uneconomical. 

Another method or testing requires that 
all possible paths through the code be 
tested. In this method, one need not test all 
possible inputs to a feature, but simply a 
subset of the possible inputs that will cause 
all code paths to be executed. This method 
allows one to make absolute statements about 
the security properties or a feature being 
tested. However, for all but very small or 
simplistic pieces of code, this method again
is impractical due to the complexity or 
determining the inputs needed to cover all 
possible code paths and the time required to 
do the testing. 

A more practical method or testing an 
operating system requires that only a small 

set of all possible inputs be tested. 
However, this set or inputs must be 
representative or all possible inputs. 
Usually this method will not execute all 
possible code paths. Rather, it will cover a 
range of inputs and stress the critical 
boundaries or a feature. To ensure an 
adequate set or representative inputs, one 
should determine a critical boundary of a 
feature and choose test data on both sides 
of this boundary. (Determination of critical 
boundaries will be discussed later in the 
Test Cases section.) For example, when 
testing the DAC properties of the TCB ' 
interface to read the attributes of a file 
(e.g., maximum length, last time used, size) 
a critical boundary would be the fact that 
the user reading the attributes or the file 
must have read access to the file. In order 
to stress this critical boundary test cases 
should include: the user has read access, 
the user has some access but does not have 
read access, the user has no access, and so 
forth. In addition, this method would have 
to examine any suspected critical points of 
a feature. An example of this is to test 
areas where errors. have been known to exist 
or can be reasonably expected to exist. 

Because the set of tests generated by 
the latter method is much smaller than 
either or the other two methods, it can be 
realistically applied to a larger and more 
complex set or features (e.g., an operating
system). Any of these methods should be 
sufficient to meet the TCSEC functional 
testing requirement. However, since 
operating systems tend to be large and 
complex code structures, the last method is 
probably most reasonable for most systems. 

TEST REPEATABILITY 

There are many reasons why tests should 
be repeatable. Primarily, the developer
will want to reuse as much as possible or 
the original tests when a system's design is 
updated or enhanced. Design changes should 
automatically cause updates to the test 
plan. However, tests that examine features 
of the TCB which are not affected by design 
changes should not be modified. Another 
reason why repeatable tests are important is 
due the tact that testing will often 
discover implementation flaws ("bugs").
Since implementation flaws are errors in the 
source code and are not flaws in the design 
of the TCB, the test plan should not require 
modifications before being rerun after "bug
fixes". Further, when the system is 
presented to the Center tor evaluation, the 
evaluation team will want to rerun selected 
portions of the vendor's runctional tests to 
verify fulfillment or the TCSEC functional 
testing requirement. 

With these issues in mind, the test 
designer should design all tests to be 
repeatable in order to allow tests to run 
without modification. To this end, test 
documentation is extremely important. All 

83 



tests should contain sufficient information 
for a third party to rerun the . tests with 
minimum difficulty. 

In addition, test developers should 
ensure tests are not dependent on the 
transient properties of a feature. Transient 
properties are those aspects of a system that 
are unpredictable or arbitrary (e.g., time 
and date, response time). Reliance on this 
type of data for determining the success or 
failure of a test will probably require
modifications of the test suite before it can 
be rerun. If a test can not avoid the use of 
transient properties, this fact and any
special instructions for rerunning the test 
should be well documented. 

TEST CASES 

Tests may be thought of as a sequence of 
actions. Often these actions can be grouped
together in nearly independent test cases. 
Test cases consist of actions which examine 
the rules a feature is designed to implement.
For example, a test case could examine the 
rule of the TCB interface to inspect the 
attributes of a file which states that the 
user reading the attributes of a file must 
have read access to the file. 

Some of the rules governing the designed
operation of a feature may be security
relevant while others are not. A rule which 
states that a user must have at least read 
access to a file in order to inspect the 
attributes of a file is security relevant. 
However, a rule which states that the length 
attribute of a file be converted from octal 
to decimal before being displayed is not 
security relevant. All of the rules of a TCB 
feature which are security relevant must be 
tested to meet the TCSEC functional testing
requirement. 

The security relevant rules governing
the designed operation of a TCB feature can 
be considered critical boundaries. As 
discussed in the Coverage section of this 
paper, test cases should then be chosen to 
stress these critical boundary. One rule can 
produce many test cases. The rule stated 
above for inspecting the attributes of a file 
would produce many test cases by varying the 
user's access permission to a file. 

Since test cases are chosen to stress a 
critical boundary, some test cases will be 
expected to attempt actions which violate the 
rules of a feature's design. Test cases 
which violate a rule will result in the 
failure of an action. This failure would be 
the expected result of the test case. In 
those tests where the expected result is 
failure, this failure would constitute a 
successful test case. Tests must be designed 
to recover from these expected failures. For 
example, an attempt to inspect the attributes 
of a file is expected to fail if the user has 
no access to the file. Since this is an 
expected failure, it would constitute a 
successful test case. 

For efficiency, tests should also 
recover from unexpected failures (whenever
possible) so that all test cases are 
executed once testing is started. 
Unexpected failures can be caused by system 
updates to correct implementation flaws in 
the TCB. These updates, while correcting
the original error, often cause 
unanticipated or incorrect effects. These 
side effects may cause tests examining other 
features of the TCB to fail. For more 
productive testing, these unexpected 
failures should only abort those test cases 
directly affected and allow the remainder of 
the test suite to execute. 

ENVIRONMENTAL ISSUES 

When examining a feature, all tests 
will require that certain environmental 
requirements be met. Many of these 
requirements may be constant throughout a 
·group of tests, or even the entire test 
suite. For example, all tests must assume 
such obvious environmental requirements as 
the appropriate hardware configuration and 
version of the operating system. However, 
certain other requirements such as the 
existence of certain user accounts, a 
predefined file structure, and so forth may
also be constant through out an entire group
of tests. These types of requirements may 

will have unique environmental 

be established prior 
tests and remain 

to running 
constant 

a group of 
for each 

individual test case. 

In addition to the constant 
environmental requirements, most individual 
test cases 
dependencies. As an example, look at the 
following two test cases which examine the 
TCB interface that reads the attributes of a 
file: case one will test that a user may
read the attributes of a file if he has read 
access to the file and case two will test 
that a user may not read the attributes of a 
file if he has only write access to the 
file. Assume that for this group of tests, 
the user account USER1 and file FILEA have 
already been created with no access to FILEA 
for USER1. In these particular examples,
the first test case would also require USER1 
to have read access to FILEA while the 
second test case would require USER1 to have 
only write access. The first test case would 
have to give USER1 read access to FILEA 
before it can execute the test. However, 
when the first test case completes 
execution, it should restore FILEA to its 
original condition by removing USER1's 
access to FILEA. Therefore, the second test 
case can assume that USER1 has no access to 
FILEA and would only have to give USER1 
write access before executing the test. 

Failure to attend to environmental 
requirements will cause problems during
initial testing and may create difficulties 
in repeating tests. For example, if the 
first test case in the previous paragraph
did not reset the original state of FILEA, 
the second test case would fail. All 
environmental 

84 



requirements and dependencies should also be 
well documented in the test design 
documentation. 

DOCUMENTATION 

Documentation of a test should specify 
and briefly describe the TCB feature being 
examined and state the expected results of 
each test case. References to descriptions 
of features in user or design documentation 
may be acceptable. The test documentation 
should also contain an overview of the test 
methodology being used to test the features 
of the system. 

Test documentation should list the 
security properties which are and are not 
pertinent for each particular feature. For 
example, the TCB interface to read the 
attributes of a file would need to be tested 
with respect to discretionary access control 
but probably would not need to b~ tested with 
respect to identification and au'thenticat,ion. 
Both of these facts must be documented. 

A list of all assumptions being made 
about the testing environment should also be 
included in the test documentation. Examples 
of these assumptions are: the existence of 
support programs, the location of inputs, or 
the existence of a predefined hierarchy of 
files. If tests must execute in a particular 
order, that ordering must also be specified 
in the test documentation. 

Documentation should exist describing 
any test support mechanism used to examine a 
feature (e.g., tools written solely for 
testing). An example of such a support 
mechanism is an interface program used to 
make subroutine calls from command level. 
This documentation should be sufficient for 
someone other than the original designer to 
understand, enhance, and operate the support 
mechanisms. 

CONFIGURATION MANAGEMENT 

Developing and maintaining both the 
system and the test plan using good 
configuration management techniques will 
greatly simplify meeting the TCSEC functional 
testing requirement. Ideally, the system 
designer should be responsible for designing 
both the system and the functional test plan. 
During the design stage of a system, the 
coverage and security relevance issues 
discussed•earlier should be addressed and the 
results documented in the syst·em/test design 
documentation. When the system design goes 
to the system programmers for implementation, 
the test design should go to an independent 
testing organization to implement the test 
plan. This allows a check and balance system 
and ensures short cuts are riot taken in the 
testing process. This same procedure should 
be used when updates and enhancements to the 
system occur. 

The configuration management system 
should not only encompass changes to the 

system, but also changes to the test plan 
and any automated tool developed to help 
manage the development and execution of a 
test plan. In short, proper configuration 
management will make both the tester and the 
system security evaluator's job easier and 
more efficient, and will result in a higher 
level of trust in the correctness of the 
TCB. 

SUMMARY 

This paper discussed several issues 
important when developing a functional test 
plan to meet the Department of Defense 
Trusted Computer System Evaluation Criteria 
(TCSEC) functional testing requirement. 
Initially, the problem of what is security 
relevant was discussed to provide guidance 
on determining which parts of a trusted 
computing base (TCB) are required to be 
tested by the TCSEC. The paper then 
described three di£ferent methods of 
testing, explaining the various levels of 
coverage provided by each and a view on 
which method to use when testing a system. 
Other · issues presented include designing 
tests for maximum reuseablity, structuring 
tests into independent test cases, awareness 
of environmental dependencies, and 
maintaining adequate documentation. In 
addition, the merit of a configuration 
management process applied to both the 
system and the test plan was briefly 
discussed. 

Consideration of these issues when 
developing a functional test plan will help 
a developer avoid many problem areas. This 
paper dwelled exclusively on security 
related functional testing as required by 
the TCSEC. However, many of these issues are 
applicable to system testing in general. 
This paper did not attempt to give an all 
inclusive process for developing a 
functional test plan. Rather, it presented 
"food-for-thought" for a potential test 
developer desiring guidance on meeting the 
TCSEC functional testing requirement. 

REFRENCES 

DoD Computer Security Center, Department of 
Defense Trusted Computer System Evaluation 
Criteria, CSC-STD-001-85, Fort George G. 
Meade, Maryland, August 15, 1983. 

85 

.../ r\' J ~ ' •• ' • _,. ... ! J ; I •••~· 



PAPER OUTPUT LABELING IN A DEDICATED SYSTEM RUNNING UNDER MVS 

Helmut Kurth 

Industrieanlagen Betriebsgesellschaft mbH 


Einsteinstr. 20 

D-8012 Ottobrunn 


Federal Republic of Germany 


If classified data are handled in an EDP
system, there exists the problem, that one 
must label all output, especially printer 
output with the proper security level. 
There are three conditions, such a label 
should meet: 

1. 	It must reflect the correct security 
level of the printed data 

2. 	 It must be tamper proof 

3. 	There shall be no way to circumvent the 
labeling process 

But since one can not completely control 
the information flow in todays EDP systems, 
there is in most cases no way to fulfill 
condition 1). Therefore we weaken this c.on
dition to: 

1*· The label must reflect a security 
level, Which is equal to or higher than 
the security level of the printed data. 

Our task was, to design and implement a 
software package which fulfills these con
ditions for printer output on an IBM /370 
compatible computer with the MVS operating 
system and RACF as access control system. 
Since one can not associate a security 
label to objects like data sets or main 
storage with RACF (the design of MVS makes 
it impossible to implement a security model 
like the Bell and La Padula model in a 
secure way), our EDP system works only at 
one security level at a time. It's a system 
working in a dedicated mode. To change the 
security level, one has to shutdown the 
system, remove all data on permanent 
storage and clear main storage before one 
can IPL the system again (of course using 
another IPL source) • So we perform a pro
cedure known as color changing. With this 
organisation 1* is automatically garanteed, 
if all output is labeled with the current 
security level. This security level is 
entered at IPL time by the system operator 
and can not be changed. 

When we specified our requirements for 
design and implementation of a program 
which fulfills condition 1 (or 1*) to 3 we 
took the Fundamental Computer Security 
Requirements specified in the DoD's Trusted 
Computer System Evaluation Criteria known 

as 	the Orange Book as a guideline. 

These requirements are: 

Requirement 1 - Security Policy 

Since we have only one security level at .a 
time, there is no need for a security pol
icy, which is able to control the flow of 
information between different security lev
els. But all exported data must be 
labelled with the current security level in 
a secure way. By organisational measures we 
assure, that only persons cleared to the 
security level of the system can access the 
system. An access control system (in our 
case RACF) controls and monitors the access 
to data sets. This system also protects 
critical system data sets and the data sets 
used by our paper output control program 
against unauthorized access. 

Requirement 2 - Marking 

As we mentioned above, only those objects, 
which are exported from the system have to 
be marked. This is especially true for 
paper output. All paper output must have a 
label, Which reliably identifies the secu
rity level of the data on it. Therefore 
every page of paper output will get a spe
cial label at it's top. This label contains 
the security level, the name of the job 
that produced the output, the name of the 
user that started the job, date and time of 
printing and two numbers. The first number 
is the current page number relative to the 
start of the job's output. The second 
number is a control number, which serves as 
an additional security measure to detect 
attempted deceptions or faults in either 
hardware or software. Before the paper is 
used in the system, every page is already 
uniquely labeled by a consecutive number. 
Every time the system is brought up and 
every time the paper is changed, our pro
gram will ask the operator to type in the 
number of the first page in the printer. 
The program will increase this number for 
every new page and print it as a control 
number into the label of the page. So, if 
the control number and the preprinted 
number don't match a fault or an attempted 
fraud has occured. 

86 


. ,. 



Requirement 3 - Identification 

We must properly identify the originator of 
the output to produce a correct label and 
to perform correct accounting. This iden
tification is done by the operating system 
and the access control system. Identifica
tion information such as the jobname or the 
username is automatically passed to our 
program by the operating system through the 
used interfaces. Our program copies these 
information to the output label and to the 
accounting record. 

Requirement 4 - Accountability 

Our program builds for every printer output 
an accounting record, which contains the 
following information: 
the security level of the output, the 
number of pages printed, the control number 
of the first page, the control number of 
the last page, the jobname, the username, 
date and time the output was printed. So 
each page of output can uniquely be identi 
fied. 

Requirement 5 - Assurance 

The program is divided into independent 
sections. Each section operates as a task 
under MVS. Together with the external 
writer all these tasks form a single 
address space. So it is possible to test 
every program section separately. With this 
structure all tasks can monitor the execu
tion of the other tasks and check, if they 
work properly. The control number is 
another feature to detect a fault or 
tamper. Since we use only documented 
interfaces to the operating system, the 
program flow can be easily examined and no 
major changes are necessary when a new 
release of the operating system is 
installed. 

Requirement 6 - Continuous Protection 

Since our program operates in it's own 
address space, it is impossible for another 
program, which operates in the user state, 
to observe or change the program flow, or 
to modify the program or it's data. The 
program can not be started by a normal 
user, since it resides in an authorized 
library which is protected against every 
access by a normal user. It is not possi
ble to address the printer directly and 
produce unlabelled output. The data sets 
containing our program and all data sets 
used by the program are protected by the 
access control system. Special SMF-records 
are generated at various points of the pro
gram, to help an auditor to keep track of 
the program's operation. 

SPECIFIC DESIGN 

A main design aim was, to make as few 
modifications as possible to the operating 
system and to use only documented inter
faces. So problems with new releases of the 
operating systems are reduced to a minimum. 
We achieved this in the following way: 

The standard way to produce paper output 
under MVS is, to alloacte a so called "Sys
tem Output (SYSOUT) Data Set" to a printer 
output class. Then you copy the information 
you want to print to this data set. When 
you free the data set, a special system 
program, the "Job Entry Subsystem (JES)" 
queues this data set to the output queue 
specified by the SYSOUT output class. Data 
sets in this queues can be dequeued either 
by an output writer program internal to JES 
or by the so called "External Writer". The 
external writer provides an interface, 
which may be used to print output in a non
standard way. The installation may provide 
it's own output writer and job separator 
programs to do that. When the external 
writer dequeues a SYSOUT data set, he first 
calls the installation provided pre-job 
separator program, which may produce one or 
more pre-job separator pages. Then the out
put writer specified at SYSOUT data set 
allocation time is called, which reads the 
SYSOUT data set and copies the information 
to the printer. If no special output writer 
name was specified, the system supplied 
standard writer is invoked. To ensure, that 
our output writer is always called, we 
replaced the system provided output writer 
by our own program. An optional post-job 
separator program is called when the output 
writer has finished. Since we deactivate 
the JES output writer at JES installation 
time, all printer output is spooled to the 
external writer. The external writer is 
not started by the operator directly, but 
it is envoked by a special driver program. 
This driver program is started by the 
operator with the Start command. The exter
nal writer itself calls our output writer 
and job separator programs. The output 
writer is the program, which copies the 
output data sets to the printer, produces 
the page labels and counts the printed 
pages. The driver program provides a spe
cial communication area, which is accessi
ble by all parts of our program. It is used 
to pass information from one program part 
to another and to synchronize the different 
tasks. Accounting is done by a special 
task, which is started by the driver pro
gram. This task runs parallel to the exter
nal writer and saves the accounting infor
mation for each output printed in one of 
the special account data sets. There are up 
to nine of those data sets and they are 
automatically managed by this task. 

87 




The information gathered in the account 
record for a job's paper output are printed 
on the post-job separator page at the end 
of the job's output. On the one hand, the 
user can check these information, on the 
other hand he can get a receipt for those 
pages he brought back to the security 
registration office on a special form, 
which is printed below the account informa
tion. All account records are passed by 
tape to a minicomputer at the security 
registration office. A special program on 
this computer helps the clerks at that 
office to keep track of all the labeled 
output. 

PROGRAM PARTS 

The Driver Program 

The driver program is the program started 
by the operator. It asks for the current 
security level and the control number of 
the first page in the printer. The driver 
then starts the account task and waits 
until it gets a ready signal from this 
task. Then the external writer is started. 
When the external writer is active, the 
driver program watches the printer to 
detect any case, where it enters the "not 
ready state". This is done in the following 
way: 
If the external writer starts printing of a 
job's output, a busy flag is set in the 
communication area by our pre-job separator 
program. When this flag is on, the driver 
checks the "device not ready" flag in the 
UCB (Unit Control Block) of the printer 
every three seconds. When the external 
writer waits for output to be printed, a 
"not ready state" is not reflected in the 
UCB. So our driver program issues a Sense 
Channel Command to the printer every three 
seconds and checks the returned sense 
information to detect a not ready condi
tion. If a "not ready state" is detected, a 
flag in the communication area is set to 
indicate, that a paper change may have 
occured. A subroutine is called which asks 
the operator, if the control number has 
changed and writes a record to the SMF-data 
set. So any manipulation of the printer 
can be detected. When the external writer 
terminates, the driver program sends a ter
mination signal to the account task. This 
task closes the current account data set 
and terminates. Then our driver program 
calls a program which saves the account 
data sets on tape. 

The Account Task 

The purpose of the account task is, to 
manage the account data sets and to write 

the account records to them. The account 
data sets are DA data sets with a fixed 
blocklength and fixed size. The first 
record of each data set contains informa
tion about the status of the data set, i. 
e. how many records will fit into it, the 
number of records already used and the date 
and time the data set was last used. Since 
physical blocklenght is equal to the length 
of one record, the system performs no 
internal buffering. So even when a system 
crash occurs, no account record will be 
lost and no special recovery mechanism is 
needed when the system is brought up again. 
Before an account record is written to an 
account data set, the program checks, if 
the pointer to the first unused record in 
this data set points to a record marked as 
empty. If this is not the case, the account 
task will not use this data set. A message 
is issued to the system console to consult 
the system programmer and a special SMF
record is generated. 

When started, the account task looks for a 
free account data set and opens it. Then it 
sends a signal to the driver program to 
indicate that it is ready for work and 
enters the wait state. This wait state is 
terminated by a signal of our pre-job 
separator program. The account task then 
copies information like jobname, username, 
number of first page of output, date and 
time from the communication area to the 
account record area. A ready signal is sent 
to the pre-job separator program and the 
driver enters wait state again. This wait 
state is terminated by the post-job separa
tor program. The account task copies the 
control number of the last page printed to 
the account record area writes the account 
record to disk and updates the .control 
information in the first record of the 
account data set. If this data set gets 
full, the account task closes this data 
set, releases the control for it and looks 
for another free account data set. If it is 
not able to find a free account data set, a 
program which copies all account data set 
to tape is activated. When the program is 
ready to accept new account information, it 
sends a ready signal to the post-job 
separator program and waits for the next 
job. When the account task gets a stop 
signal from the driver program, it closes 
the current account data set and termintes. 

The Pre-Job Separator Program 

This program is called by the external 
writer before a job's output is printed. It 
generates two separator pages and copies 
information like jobname, username, output 
class, date and time to the communication 
area. The program then sends a signal to 

88 



the account task and waits for the response 
signal. 

The Output Writer Prog:~.·am 

This program is called by the external 
writer to produce the output. It transforms 
the input data set record format, record 
length and control characters to those 
suitable for the printer and produces the 
page label for each page of output. The 
information needed to build this label is 
passed through the communication area to 
our output writer program. 

The Post-Job Separator Program 

This program is called by the external 
writer after a job's output is cpmpleted. 
It produces the post-job separtor page and 
signals the completion of the output to the 
account task. 

The Tape Copy Program 

The tape copy program copies all account 
data sets which are marked as used to a 
tape. Only standard label tapes can be 
used. This tapes are protected by RACF. The 
names of the tapes which may be used for 
this program must be specified at installa
tion time by entering their names in a spe
cial table. When the tape copy program is 
invoked, it asks the operator to enter the 
name of the tape he wants to use. The pro
gram checks, if this name has an entry in 
the table, allocates the tape and copies 
the account data sets to it. Since only 
standard label tapes are used, the operat
ing system checks, if the correct tape was 
mounted. All tapes are protected by RACF 
against access by unauthorized users. The 
first record of each tape contains a flag, 
which is used to prohibit overwriting of a 
tape, which has not yet been read by the 
minicomputer in the security registration 
office. When all account data sets are 
copied to the tape, a SMF-record is gen
erated which contains the following infor
mation: date, time, name of the tape, 
number of records written to the tape. Then 
all account data sets and all records are 
marked as empty and can be reused by the 
account task. 

The Initialization Program 

This program is used only once at installa
tion time to create and initialize the 
account data sets. 

INSTALLATION AND ERROR RECOVERY 

Installation Dependent Parameter 

Some parameters may be changed at installa
tion time to meet special installation' 
dependent requirements. These paramters are 
collected in a member of the macro library 
used to assemble the programs. This member 
is copied into every program. The parame
ters which may be changed are: 

The number of account data sets (minimum 2, 
maximum 9) 

The names of the account data sets 

The size of the account data sets 

Allowed security levels 

The name of the tapes which may be used for 
saving the account data. 

The SMF-record number 

Actions Taken, when a Paper Change is Needed 

If the last page of the paper stack is 
printed, a paper jam happens or stop button 
of the printer is pressed, special actions 
must be taken. In any of these cases, the 
printer enters the "not ready state". This 
causes the next write channel command 
issued to the printer by the basic I/O sys
tem of MVS to fail. MVS then issues a sense 
channel command to get the reason for this 
failure. From the sense information 
returned, MVS detects, that the printer is 
in the not ready state. Then MVS sets the 
"device not ready flag" in the UCB of the 
printer and issues an intervention required 
message to the system console. The output 
writer itself is in the wait state during 
all that time and will get no information 
about the printer stop. So our driver pro
gram watches the UCB of the printer and 
turns on a special flag in the communica
tion area, if'the device not ready flag in 
the UCB turns on. After every I/O operation 
the output writer tests this flag. If it is 
on, he stops further printing and calls a 
subroutine which asks the operator, if the 
control number has changed (i. e. if a 
paper change has happened). Then the output 
writer calls the post-job separator program 
to generate an intermediate post-job 
separator page and an account record for 
the first part of the output. Then a new 
account record is initialized for the 
second part of the output. So when the 
paper is changed, two (or eventually more 
than two) account records are generated for 
one output. 

89 



Additional Changes to the Operating System 

Two additional exit routines ensure, that. 
no unauthorized user is .able to allocate 
the printer and produce unlabeled and unre
gistered output. 

Error Recovery 

Every part of our program has it's own 
error recovery procedures. So for example, 
an error in the output writer or job 
separator will not affect the accounting 
mechanism. On the other ha.nd, any error in 
the accounting task causes the driver pro
gram -to terminate the external writer 
immediately and to save all accounting 
information on tape. Every error condition 
detected by any part of our program gen
erates a SMF record containing information 
which may be useful to identify and locate 
the error. In some cases a main storage 
dump is produced also. Due to the construc
tion of our accounting mechanism, even an 
abnormal termination of the whole system 
has the effect, that only the accounting 
information of that output, which is just 
printed may be lost. So the operator must 
collect the accounting information for that 
specific output manually. 
To avoid a loss of information due to a 
disk crash, it is easy to install a double 
logging mechanism. Only the account task 
must be changed. 

This system is in operation. 

90 

.' 



PANEL DISCUSSION 


What Counts for Success in Computer Security R&D? 


Computer security research and 
development efforts are pursued in many 
organizational settings and with many 
diverse goals within the United States. 
Clearly, criteria for "success" are a 
function of the given setting in which 
the R&D takes place and the goals against 
which the efforts are undertaken. Highly 
successful Federal Government,industrial, 
and academic R&D practitioners and 
managers are represented on this panel.
As the biographies below indicate, each 
br.ings a wealth of pertinent experience 
to share. Each panelist's views on a 
number of key topics are presented. 
These include: 

o 	 How goals, objectives, and 
priorities are set 
in each environment. 

o 	 Who are the customers? Is the 
approach varied for different 
customers?. 

o 	 What metrics are used to tell if 
progress is being made? How do 
you know when you are done? 

The panelists are Mr. Pat Gallagher, 
the National Security Agency's Senior 
Representative to the Department of 
Defense (DoD) and previously Chief of 
NSA's Secure Communications Systems 
Development Group~ Mr. Steve Lipner,
Senior Engineering Manager for Secure 
Systems at Digital Equipment Corporation~ 
and a representative of the academic 
community. The panel chairman is 
Mr. Larry Castro of the DoD Computer 
Security Center. 

PATRICK R. GALLAGHER, JR. 

Mr. Gallagher was born in 
Philadelphia, Pennsylvania, on 16 August 
1936. He graduated from Northeast 
Catholic High School, Philadelphia. He 
received his Bachelor of Electrical 
Engineering degree from Villanova 
University and his Master of Electrical 
Engineering degree from Catholic 
University. Mr. Gallagher was a National 
Institute of Public Affairs fellow at 
Cornell University in 1967-1968 and has 
done further graduate work at the 
University of Maryland and the University 
of 	Pennsylvania. Pat and his wife, 
Eileen, have six sons and presently 
reside in Laurel, Maryland. Mr. 
Gallagher was assigned to NSA as an 
Ensign, USN, in June 1958. He converted 
to 	civilian status in June 1961. Mr. 
Gallagher started his engineering career 
designing digital machines. He then 
moved to TEMPEST R&D where he led a group 
involved in receiver design. 

After returning from a fellowship year at 
Cornell, he was responsible for the group 
that was producing tactical secure voice 
equipment for Vietnam. This effort was 
followed by a tour as Chief of the COMSEC 
Acquisitions Staff where procurement and 
·logistics were of primary concern. 

Completion of a study of the COMSEC 
organization resulted in the creation of 
the new Office of COMSEC Applications, in 
which Mr. Gallagher was appointed the 
Assistant for Systems Engineering. From 
there, he was appointed Deputy Chief, 
Office of COMSEC Engineering, to be the 
principal focus for the final development 
and preproduction efforts on PARKHILL and 
VINSON secure voice equipment. In April 
1976, he was appointed Chief, Office of 
COMSEC Applications, where he served to 
July 1978, at which time he was made 
Chief of the NSA organization in Japan. 
Upon his return from Japan in January 
1981, he was appointed Chief, Secure 
Communications Systems Development Group. 
He was responsible for all COMSEC R&D for 
the u.s. government. He served in this 
capacity until appointment to his present 
position as NSA/CSS Representative 
Defense in February 1985. 

STEVEN B. LIPNER 

Steven B. Lipner is Senior 
Engineering Manager for Secure Systems in 
Digital Equipment Corporation's Central 
Engineering organization. He has been 
responsible for Digital's research and 
advanced development activities in 
computer security since he joined the 
company in 1981. His department's 
principal responsibilities are the 
development of a prototype security 
kernel (or Class Al Trusted Computing 
Base) for Digital's VAX computers and the 
development of an encryption system. His 
organization is also responsible for 
defining a security architecture 
applicable to all Digital's products, and 
for providing computer security support 
and consultation within Digital. 

Prior to joining Digital, Mr. Lipner 
was with the MITRE Corporation where his 
involvement with computer security began 
in 1970. While at MITRE he participated 
in a number of system security
penetration tests, managed the 
development of the first prototype 
security kernel for the PDP-11/45, and 
participated in the design of security 
enhancements for the Multics operating 
system. Mr. Lipner also contributed to 
the hardware architecture design for a 
secure minicomputer and directed the 
development of the primary mathematical 
model of computer security in use today. 

91 




Mr. Lipner holds Bachelor of Science 
and Master of Science degrees from the 
Massachusetts Institute of Technology. 
He is a member of the Association for 
Computing Machinery, the IEEE Computer 
Society, and a member and former Chairman 
of the IEEE Computer Society's Technical 
Committee on Security and Privacy. 

LAWRENCE CASTRO 

Lawrence Castro is Chief of the 
Office of Research and Development at the 
DoD Computer Security Center. In 
addition to directing the Center's R&D 
efforts, he is chairman of the DoD 
Computer Security Program Working Group 
(PWG). This group is charged with 
producing the RDT&E component of the 
five-year Defense Computer Security 
Program. Through this mechanism the PWG 
coordinates all Defense-sponsored 
Computer Security research 
and development. 

Mr. Castro has been a member of the 
professional staff of the National 
Security Agency since 1965. His 
assignments have been primarily in the 
Research and Engineering Directorate, 
where he has held positions as Project 
Engineer, Branch Chief, Division Chief, 
and Office Chief. From 1978 to 1980, Mr. 
Castro served in a career-development 
assignment as Assistant Director for 
Special Intelligence Systems in the 
office of the ASD(C3I). Following 
that assignment, Mr. Castro returned to 
NSA and served as the Chief of the Office 
of Plans and Programs of the Tactical 
Systems Group. In this position he 
played an active part in NSA's research 
and engineering activities to improve 
tactical SIGINT capabilities within the 
Tactical Cryptologic Program. Mr. Castro 
was awarded NSA's Meritorious Civilian 
Service Award for this work. 

Mr. Castro earned Bachelor of 
Science and Master of Science degrees in 
Electrical Engineering from the 
Massachusetts Institute of Technology and 
the degree of Engineer (with 
concentration in Communications Systems) 
from the George Washington University. 
He graduated form the National War 
College in June 1984. Much earlier in 
his career, upon receiving his ROTC 
commission in the u.s. Army, he completed 
the Infantry Officers Basic Course and 
the Army Security Agency Basic Officers 
Course. 

92 



ACHIEVING OPTIMAL COMPLIANCE WITH THE DEPARTMENT OF ENERGY SENSITIVE 

UNCLASSIFIED COMPUTER SECURITY PROGRAM 


Larry Martin 

Computer Security Program Manager


U.S. Department of Energy

Office of ADP Management


MA-24 Room F-309, GTN 

Washington, D.C. 20545 


BACKGROUND 


On 	 July 27, 1978, the Office of Management and Budget
(OMS) issued Transmittal Memorandum No. 1 to Circular 
A-71. The transmittal memorandum (TM), entitled 
"Security of Federal Automated Information Systems"
required the head of each Federal Agency to respond to 
OMS 	 with its plan for implementing a computer security 
program in accordance with the new requirements. In 
its 	response, the Department of Energy (DOE) provided 
an 	 implementation schedule indicating a five year 
effort to bring all of its sites into compliance. 

Computer security was not a new concept to the 
Department of Energy when OMS issued TM#1. DOE has had 
an aggressive computer security program to safeguard 
its classified information for over thirty years.
However, the concept of protecting unclassified infor
mation was new and, at first, encountered considerable 
confusion. The obstacle that had to be overcome was a 
mind set that only classified information was afforded 
protection and that if information was not classified, 
it was not worth protecting. When the need was finally
understood, what evolved was two separate and distinct 
computer security programs administered by two dif
ferent organizations within DOE. The Office of 
Safeguards and Security retained their responsibility
for the classified computer security program. However, 
the Office of ADP Management, under the Assistant 
Secretary for Management and Administration, acquired 
responsibility for the new unclassified computer
security program. 

The DOE Sensitive Unclassified Computer Security
Program is organized into three phases as follows: 

o 	 Implementation Phase - develop, implement, and 
· administer 	a program for safeguarding DOE computer

systems and, in particular, DOE sensitive 
unclassified information. 

o 	 Operational Phase - determine and achieve optimal 
levels of security at each ADP site. 

o 	 Maintenance Phase - maintain required optimal levels 
of security at each ADP site. 

IMPLEMENTATION PHASE 

In March 1979, the Department of Energy issued a policy 
directive requiring the development, implementation, 
and administration of a program for safeguarding DOE 
computer systems and, in particular, DOE sensitive 
unclassified information. This directive, DOE Order 
1360.2 "Computer Security Program for Unclassified 
Computer Systems" implemented Office of Management and 
Budget Circular A-71, TM#1. 

In May 1984, the Department of Energy became the first 
Department in the Federal Government to report success
ful implementation of Circular A-71, TM#1 to the Office 
of Management and Budget. Each of DOE's 75 ADP sites 
comprising major laboratories, power administrations, 
energy technology centers, and the Strategic Petroleum 
Reserve, were certified as having appropriate policies 

and procedures in place and operational. Articles 
describing DOE's effort appeared in various 
period i ca1s .1, 2 

The policies and procedures implemented by the sites 
address the following elements that comprise the 
Sensitive Unclassified Computer Security Program: 

1. 	 Each site must designate a Computer Protection 

Program Manager (CPPM) who must be a management

official knowledgeable of both computing and 

security. 


2. 	 The sensitivity of each ADP application must be 

determined and appropriate safeguards must be 

assured. 


3. 	 A Computer Protection Plan must be formulated and 
updated annually. 

4. 	 Protection specifications for new or significantly
changed sensitive applications must be approved in 
writing by the CPPM. 

5. 	 A design review must be performed for new or 
significantly changed sensitive applications with 
test results certified by the CPPM. 

6. 	 Audits and recertification must be performed at 

least every three years. 


7. 	 Acquisition of computer equipment, software, 
services, facilities, etc. must identify protec
tion requirements. 

8. 	 Risk analyses must be conducted: 

o 	 prior to design approval for new installations 

o 	 whenever the facility or hardware/software
changes significantly 

o 	 at least every 5 years. 

9. 	 All DOE and contractor employees must have 

appropriate background screening. 


10. 	 Data backup and post-disaster recovery procedures 
must be established, maintained and used. 

11. 	 Processing sites providing resource sharing ser
vices must comply with the requirements of the DOE 
Order 1360.2. 

12. 	 A computer access log to identify unauthorized 
access must be developed. 

13. 	 Personnel must have a working knowledge of their 
computer security responsibilities. 

14. 	 Computer file contents must be randomly sampled
annually. 

93 



OPERATIONAL PHASE 


During the post-implementation period, the Office of 
ADP Management provided three guidelines to the DOE ADP 
sites. These guidelines were issued so the sites could 
enhance their programs by further addressing the opera
tional aspects of sensitive unclassified computer
security. 

ADP Internal Control Guideline3 

In August 1984, the DOE ADP Internal Control Guideline 
was issued to dispel confusion created by OMB Circular 
A-123 "Internal Controls" and the Federal Managers
Financial Integrity Act. The DOE ADP sites had 
completed the risk analyses required by OMB Circular 
A-71, TM#1, during the Implementation Phase and were 
being asked to conduct vulnerability assessments. Many 
sites were unable to differentiate between the two 
requirements. Furthermore, it was not evident where 
computer security responsibilities stopped and ADP 
internal control responsibilities started. The guide
line described the similarities and differences between 
the two OMB Circulars and clarified the overlap. In 
addition, it provided a methodology for conducting an 
ADP vulnerability assessment. The guideline was widely 
used throughout the Federal government following its 
announcement in the Government Computer News.4 

Security Guidelines for Microcomputers and Word 
Processors5 

In March 1985, the DOE Security Guidelines for 
Microcomputers and Word Processers were issued. There 
were no references to microcomputers or word processors
in DOE Order 1360.2 since it was issued in 1979. The 
Office of ADP Management recognized the need to issue 
security guidelines as office automation proliferated
throughout the Department. The guideline is directed 
at the user and assumes little or no prior ADP 
experience. It is short, to the point, and is easy
reading. Its objective is to develop a security mind 
set at the time a user first becomes familiar with the 
office automation equipment. This guideline was widely
requested following an announcement in the Government 
Computer News.6 

Sensitive Unclassified Computer Security Program
Compliance Review Guideline7 

The Department developed and issued this guideline for 
ADP site management and program monitors to evaluate 
the effectiveness of a site's program. The DOE 
Sensitive Unclassified Computer Security Program 
Compliance Review Guideline enables the user to deter
mine the level of computer security required by the 
site based on vulnerability and sensitivity and to 
ascertain whether the site has achieved the required 
level. If the site has not achieved optimal security, 
the guideline provides the basis for sound recommen
dations which when implemented will improve a site's 
security to the required level. 

DOE Order 1360.2 requires the Operations Offices to 
conduct annual on-site compliance reviews of DOE and 
DOE contractors to assess the effectiveness of the com
puter security program procedures used and to document 
the results of the reviews. The guideline provides 
effective tools to perform both of these required func
tions. It is not acceptable to simply check to see if a 
site has policies and procedures, it is necessary to 
evaluate the effectiveness of those procedures and 
recommend improvements, as appropriate. 

The objectives of the guideline are: 

o 	 To provide a means to determine the required level 
of security for DOE ADP sites based on vulnerability
and sensitivity; 

o 	 To provide descriptive targets which define the ele
ments of optimal computer security achievable in 
practice with present technology; 

o 	 To provide an objective format for evaluating the 
security procedures currently implemented in 
response to DOE Order 1360.2. 

These objectives and executed in a three step 
methodoloy during the compliance review, as follows: 

Step 1: Establish ADP Installation Security Levels. 
The extent to which an ADP installation achieves opti 
mal ADP security depends upon the vulnerability and 
sensitivity of the installation and applications. Many
installations need only achieve minimum security proce
dures, while other installations must develop and 
enforce more stringent security. The reasons for these 
differences in approach include not only application 
sensitivity, but also perceived risk and value by the 
public, the media, or by unauthorized outsiders. 
Recognizing the need for diversity, DOE has established 
the following 3 ADP installation security levels which 
we have designated as indicated: 

o 	 Low Security (Type A installation) 

o 	 Moderate Security (Type B installation) 

o 	 High Security (Type C installation) 

The section of the guideline that identifies the ADP 
installation security levels provides an objective
method for determining a site's appropriate security 
level. The assessment of a site's security level is 
accomplished by answering a limited number of questions 
relating to vulnerability. An analysis of the answers 
indicates the appropriate security level. However, 
flexibility is built in with the human factor. In the 
event that the analysis of the assessment questionnaire 
indicates a security level that common sense would 
otherwise indicate as either too high or too low, the 
level can be adjusted accordingly by mutual agreement
between site management and the Operations Office 
Computer Protection Program Coordinator. 

Step 2: Identify Goals for Optimal Security. Once an 
appropriate security level has been assigned to an ADP 
installation, objectives are established to achieve 
optimal security. There are twelve target areas for 
which specific security objectives and goals are 
established. These are: 

o 	 Applications Development and Design 

o 	 Data Handling 

o 	 Disaster Recover Plan 

o 	 Hardware 

o 	 Input/Output 

o 	 Internal Audit 

94 




o Microcomputers 

o Personnel 

o Physical 

o Policies and Procedures 

o Remote Job Entry 

o System Software 

If the site is determined to be below the optimal 
level, recommendations based on the security goals 
established during Step 2 of the review are provided to 
site management in the compliance review report. The 
Operations Office will track site progress on the 
implementation of the recommendations against the 
site's milestone plan. Upon completion, a follow-up 
review is performed to verify implementation. The site 
has achieved optimal compliance with the Department of 
Energy Sensitive Unclassified Security Program. 

These 12 target areas are cross-referenced to the 14 
requirements of DOE Order 1360.2 to assist the reviewer 
defining the site's goals for achieving optimal 
security. 

Step 3: Complete Questionnaires. Finally, a set of 
security review questions are provided for evaluating 
the computer security program at a DOE site. The 
questionnare responses are intended to be interpreted
by an experienced computer system professional from the 
DOE operations office performing the compliance review. 
The questionnaire format was designed to provide ade
quate information to both the security program reviewer 
and the reviewee. Codes are designed to be simple and 
useful as practical. 

Upon completion of the detailed questionnaires, the 
reviewer can evaluate the effectiveness of the existing 
security program. Then based upon the level of 
security required by the site and the goals established 
for optimal security, a final determination is made. 
The site is either declared in compliance with optimal 
security or it is declared less than optimal. If 
declared optimal, the site moves into the third and 
final phase of the program. 

Although proven to be effective tools during field 
tests at two DOE contractor ADP sites, the techniques 
and questionnaires in the guideline are presented for 
consideration only. The CPPC at each Operations Office 
may use this Guideline "as is," to develop his/her own 
compliance review criteria, or may select a completely 
different approach. However, in any event, it is man
datory that the effectiveness of the site's policies
and procedures be evaluated and, when appropriate,
sound recommendations be made for improvement. The DOE 
goal is for each site to achieve an optimal level of 
computer security before moving into the Maintenance 
Phase and the guideline provides a path to that end. 
In the event that an alternate method review is chosen, 
the method must be reviewed and approved by the Office 
of ADP Management before it is adopted. 

Traditionally, the unclasssified computer security 
program has been costly in manpower and budget,
requiring that any resources needed be taken out of a 
site's overhead. The Office of ADP Management 
recognized the level of burden this program places on 
the field offices and realized that in some cases, 
reallocation of resources to other priorities could 
hamper the best of intentions by the field offices to 
perform these on-site compliance reviews. The result 
could easily be a list of excuses about why the reviews 
were not conducted. However, due to the commitment of 
DOE management to a strong and effective sensitive 
unclassified computer security program and the major 
importance that the Department places on protecting its 
computers and sensitive information, the Office of ADP 
Management has arranged contractor support and offered 
these resources at no expense to the Operations 
Offices. In other words, operations offices are given
the resources to perform the required reviews, if they 
so choose. 

MAINTENANCE PHASE 

The final phase of the program requires the sites to 
maintain the optimal level of computer security 
achieved earlier in the program. As technology
changes, site management must continue to update its 
sensitive program to maintain the state-of-the-art. 
During this phase, the Operations Offices will review 
each site once every two years to ensure continued 
compliance. The Office of ADP Management will continue 
its oversight role of the Operations Offices and pro
vide guidance and assistance, as appropriate. 

CONCLUSION 

The Department of Energy Sensitive Unclassified 
Computer Security Program is unique and demonstrates 
the commitment of DOE management toward the protection 
of DOE computers and sensitive unclassified infor- · 
mation. The program is structured but has built in 
flexibility to allow for the diversity of sites with a 
variety of missions. DOE has been aggressive in its 
attempt to comply with OMB Circular A-71, TM#1. The 
Department anticipates changes to Federal policy with 
the issuance of National Security Decision Directive 
1458 and the revision of OMB Circular A-71, TM#1, as 
Appendix III of the draft OMB Circular entitled 
"Management of Federal Information Resources."9 As 
policies change, DOE will continue to strive for 
excellence in the protection of its sensitive 
unclassified information and computers which are vital 
to the performance of its missions and functions. 

ACKNOWLEDGEMENTS 

Major contributions to the Department of Energy
Sensitive Unclassified Computer Security Program and 
ADP Internal Control Guidelines were made by Arthur 
Young and Company and the Los Alamos National 
Laboratory. 

The author is indebted to Kathryn Clay Martin who pro
vided valuable guidance and suggestions during the 
development of this paper. 

REFERENCES 

1. 	 "DOE Achieves Computer Security Milestone," 
Government Computer News, p.21, Vol. 3, No.6, 
June 1984. 

2. 	 "Department of Energy Achieves Computer Security
Milestone," Computer Crime Digest, pp. 4&5, 
Vol. 2, No.8, August 1984. 

3. 	 DOE/MA-0165, ADP Internal Control Guideline, U.S. 
Department of Energy, August 1984. 

95 



4. 	 "Energy Department Has New Internal Control Plan," 
Government Computer News, p. 75, Vol. 3, No. 12, 
November 1984. 

5. 	 DOE/MA-0181, Security Guidelines for Microcomputers
and Word Processors, U.S. Department of Energy,
March 1985. 

6. 	 "DOE Issues Security Guidelines," Government 
Com~uter News, p. 68, Vol. 4, No.7, 
Apr1l 26, 1985. 

7. 	 DOE/MA-0188, Sensitive Unclassified Computer
Security Profram Compliance Review Guideline, U.S. 
Department o Energy, June 1985. 

8. 	 National Security Decision Directive 145, "National 
Policy on Telecommunications and Automated 
Information Systems Security," The White House, 
September 17, 1984. 

9. 	 Draft OMB Circular A- , "Management of Federal 
Information Resources:"IDffice of Management and 
Budget, Federal Reiister, pp. 10734-10747, Vol. 50, 
No. 51, March 15, 985. 

96 



Development of a Multilevel Secure Local Area Network 

D.D. Schnackenberg 

Mail Stop 8H-3.5 

Boeing Aerospace Company 


P.O. Box 3999 

Seattle, WA 98124 


Boeing Aerospace Company is developing a multilevel 
secure (MLS) local area network (LAN), designed to meet 
the AI criteria of DoD Trusted Computer System 
Evaluation Criteria (1). The development effort is funded 
under internal research and development. This paper will 
present an overview of the MLS LAN development, and will 
discuss security design issues (e.g., protocol security), 
security architecture, security policy, formal security 
policy model, current status and future directions for our 
MLS LAN. 

OVERVIEW 

The MLS LAN is a high performance network that 
supports simultaneous transmission of digital (1.50 Mbps), 
voice and analog video data, using a wavelength division 
multiplexed fiber optics communications medium. Figure 1 
shows the system diagram for the MLS LAN. The MLS 
LAN comprises network access units (called Secure 
Network Servers or SNSs) and a management node. The 
network trusted computing base (TCB) is distributed across 
the SNSs and the network management node. The SNS 
provides network security functions to ensure that data is 
not sent or received at an inappropriate sensitivity level 
for the subjects the SNS controls. The network manage
ment node provides the administrator interface to the 
network, and maintains the network configuration and 

security databases. The SNS provides embedded upper 
layer protocols (e.g., Transmission Control Protocol (TCP), 
TELNET and File Transfer Protocol (FTP)), supports the 
connection of terminals to the network, and will eventually 
support embedded user services (e.g., file server and mail 
server). 

There are 5 types of users of the network: 
1. 	 human users on a network terminal (or workstation 

configured as a terminal); 
2. 	 host processes acting on the behalf of some human 

user (the network view of host processes is a host-to
network logical channel); 

3. 	 voice devices; 
4. analog video devices; and 

.5. high bandwidth digital stream devices. 


The demonstration system will provide four optical 
channels on the fiber optics medium. The terminal, host 
and voice traffic is transmitted using one of these 
channels. Access to this channel is gained using the IEEE 
token passing bus protocol. The remainder of the channels 
are used to transmit circuit-switched analog video and high 
bandwidth digital stream data. The circuit switching is 
controlJed by users at terminals through the digital 
network. 

Termlno\s 
• 

Phones 

llost 
Computers 

VIdeo 
Mont tors 

Cameros 

Phones 

Printer 

Tope ~~----t--t 

Doto nose 
System 

--------------------------------.!MLS U\N 	 secure l Other 
Network Notwor~6 
server 

Secure 
Network 
Server 


Phones 


:VIdeo Monttors 
Secure 
Network 
Server Camero 

Network 
ManagerSecure 

Network 
Server 

Figure 1 
97 



An SNS comprises multiple 286s, hardware for the 
subscriber interfaces, link control hardware and a fiber 
optics interface. A multi-CPU executive provides dynamic 
domains for the tasks within an SNS across multiple CPUs. 
This executive acts as a separation kernel, and enforces a 
policy of complete isolation of user data streams. 

SECURITY DESIGN ISSUES 

The security design goals include providing a uniform 
interface to hosts, excluding upper layer protocols from 
the TCB, and developing a uniform security policy and 
model independent of the protocol set and subscriber 
device (e.g., host, terminal, or video camera). 

The philosophy for the MLS LAN is to provide 
sufficient protection mechanisms supporting separation of 
host process communication, as specified by the host. The 
goal is to ensure that communication between host 
processes meets the mandatory and discretionary policies 
specified in CSC-STD-001-83 at the system level. To meet 
this requirement, access control to the network is provided 
at or above the transport layer. Within the network, com
plete separation of communication objects (datagrams, 
connections, and sessions) is provided. This implies that 
network software outside the TCB be dedicated to a single 
communication object (connection or session). To support 
separation of host process connections, the TCB assumes 
responsibility for all addressing within the network, so that 
correct delivery is assured by the TCB. 

The network makes some security assumptions about 
the host in areas that are outside the scope of network 
control. It is the responsibility of the security administra
tor to ensure that only hosts with these characteristics are 
attached to the network. The following assumptions are 
made: 
1. 	 each host will authenticate its users, and will provide 

the network with the correct user identity when a 
network service is requested on behalf of the user; 

2. 	 each host will correctly label packets sent to the 
network within the range that the host is assigned; 

3. 	 the host will control the process-to-process covert 
channels available through the modulation of network 
resources; 

4. 	 each host provides adequate protection for data 
within the host's range, and provides adequate discre
tionary and mandatory access controls for the users 
of the host; 

5. 	 the host will perform access checks based on the 
network provided user identity when a remote user is 
attempting to gain access to host resources through 
the network (i.e., the network does not control access 
to host resources, but rather to the host); and 

6. 	 the host will control host process utilization of the 
network, so that host processes cannot deny access to 
other host processes. 

The software architecture allows the major part of 
TCP and all of TELNET to reside outside the TCB. To 
limit the size of the TCB, each TCP connection is single
level. However, multiple concurrent TCP connections can 
be active within an SNS at differing security levels. The 
TCB not only separates data by security level, but also 
provides complete isolation of user sessions. This separa
tion is enforced at both the network and host-to-network 
interfaces, and within the SNS. The User Datagram 
Protocol (UDP) is provided as a multilevel service to hosts. 
The design supports reliable file transfer (through FTP) 
between hosts at different security levels. To provide this 
capability requires that a major part of FTP resides within 
the SNS. The data transfer between the SNSs is reliable 
(uses TCP). When the destination host is at a higher 

sensitivity level than the FTP session, there would be 
limitations placed on the control information passed from 
the host to the non-TCB FTP functions. 

. ~n issue that arises at the system level is the 
provision of end-to-end user identification and end-to-end 
trusted path. The network must be able to support these 
requirements. This implies that the TCB components must 
be capable of detecting modification of information pass
ing through an end-to-end trusted path. 

NETWORK TCB 

Figure 2 shows the network TCB. The TCB includes 
the SNS security functions, the network management soft 
ware, the executive, and the network hardware. 

The SNS security functions include the access control 
functions, and support functions for network management 
and security control. These include executive, multi 
plexing/demultiplexing, access control, session manage
ment, startup, shutdown, audit and performance monitor
ing. Network ~anc;tgement functions include auditing, 
performance momtormg, network and security administra
tor support, network configuration and reconfiguration' 
authentication, maintenance of access control tables' 
recognition and notification to the security administrato; 
~or secur~ty alarm conditions These functions are provided 
m a dedicated network device that is assumed. to be 
physically protected from unauthorized tampering. 

Within an SNS there are two or more Intel 286 micro
processors. The tasks (Intel 286's concept of process) in 
these proc.essors provide the network protocol and manage
ment services. These tasks are controlled by an executive 
~hich provides memory management, task management: 
timer management, signal management, and intertask 
communication services to these tasks. For intertask 
communication and signals, the communicating tasks may
?r may not be within the same processor of the SNS. This 
IS transparent to the tasks. 

SECURITY DESIGN 

The network level security design is illustrated in 
figure 3. Each packet placed on the network has an 
attached sensitivity label provided by the TCB. When a 
packet is received at an SNS, the TCB checks to make sure 
that. the packet destination is active, and is permitted to 
receive a packet at the provided sensitivity level. For 
terminals attached directly to the network the SNS 
provides login and authentication services. The overall 
network security control resides at the network manage
ment node. 

Within an SNS the executive acts as a separation 
kernel (3). It enforces complete separation of the non-TCB 
processes that support different user sessions. Figure 4 
Illustrates the software architecture for the SNS. Each 
active service (e.g. TCP) is logically separated by the TCB 
from all other services within an SNS. There is a different 
processing stream for each active service. This is similar 
to the software architecture for the Communications 
Operating Sy~tem. Network Front End (2). The separation 
of these services Is supported by the multiplexing/demulti 
plexing functions in both TCP and the WWMCCS HFE 
protocol. The session managers enforce the access control 
policies at the interface between the network and external 
devices, and control the creation and deletion of the 
proce.ssing streams .that perform the non-TCB protocol 
functions. The secunty design uses the Intel 286 processor 
features to provide task separation and separation of TCB 
from non-TCB functions within an SNS. 

98 



• sesstcn secutty cant.ral 
• Process Reglstrattcn 

1.,;,~;;;....1 • Adt CoUectkrl 

• 

~ TCB Software In Device Interface Processor 

~ TCB Software in SNS Processor 

l1liD TCB Software in Management Workstation 

0 Nan-TCB Software In Device Interface Processor 

Host 

Trusted Computtng Base 
Ftgure 2 

• sec:urtty Ontrcl 

• set lAeriOevlce 
securtty Pa::ess 
Tables 

• ~VAlarm 
• 	 \llaeoiSt1'ean 

Chmel Ontro1 

Host: 

sean 
NatWOJk ~----
S8MII' 

\JidBO Ccmectlan 
Sacutty Ccnlol 

Adt CoUectlan 

•sewre • user PllttlentlcaUcn 
Netwrk 	 • Sesskn securtty o:ntml 
server • Al:llt CollecUcn 

-

Terminals 

MLS Destgn Approach 

Figure 3 


99 



Secure Network Server 


Device Interface Processor SNS Processor 

Host Network 
I 

Medium 

Olannel Machine 
SAPI 

TELNET 
TCP 

Channel Machine 
SAPI 
TCP 

Channel Machine 
SAPI 
TCP 

m TCB Components 
Software Architecture 

Figure 4 
SECURITY POLICY 

The policy and model for the MLS LAN address the 
control of access to network communication objects by 
network subjects. In addition to the external subjects 
listed above, there are internal network subjects -untrusted 
tasks performing communication functions. The policy for 
these internal subjects is complete isolation of processing 
for different user sessions. 

The policy enforced at the external interface to the 
network is an extension of the policy defined in the DoD 
Trusted Computer System Evaluation Criteria for Class 
Al. The extensions address multilevel subscribers and 
multilevel services for these subscribers. 

Discretionary Access Control Policies 

The policies enforced by the network TCB at the 
network external interface are as follows: 

1. 	 if a subject has send access to a communication 
object, then the communication object and subject 
are active and the subject has send discretionary 
access rights to the communication object; and 

2. 	 if a subject has receive access to a communication 
object, then the communication object and subject 
are active and the subject has receive discretionary 
access rights to the communication object. 

Mandatory Access Control Policies 

The policies enforced by the network TCB at the 
network external interface are divided into two cases: 
multilevel subjects and single-level subjects. In either 
case, each subject is associated with a device, and the 
maximum and minimum sensitivity levels for a subject 
must be within the range of levels for the associated 
device. The multilevel subjects (currently UDP processes 

are the only multilevel subjects) are permitted concurrent 
access to multiple communication objects at different 
sensitivity levels. The single-level subjects are given a 
range of sensitivity levels, but can connect to only one 
communication object at any time. This is used to model 
services such as a TELNET server on a multilevel host. 
The server is announced to the network by the host along 
with the range of sensitivity levels that the host is willing 
to support for the server. The TELNET service (and 
server) is single-level, so that when a TELNET session 
request is received at the SNS, the session sensitivity level 
must be within the range for the server. The server's 
sensitivity level will be the same as the session level for 
the duration of the session. 

Multilevel Subjects 

1. 	 If a subject has send access to a communication 
object, then the communication object is active and 
the communication object's current sensitivity level 
is within the subject's range of sensitivity levels. 

2. 	 If a subject has receive access to a communication 
object, then the communication object is active and 
the communication object's current sensitivity level 
is at or below the subject's maximum sensitivity 
level. 

Single-Level Subjects 

1. 	 If a subject is single-level, then the subject's current 
level is between it's maximum and minimum levels. 

2. 	 If a subject has send access to a communication 
object, then the communication object is active and 
the communication object's current sensitivity level 
is equal to the subject's current sensitivity level. 

3. 	 If a subject has receive access to a communication 
object, then the communication object is active and 

100 



the communication object's current sensitivity level 
is at or below the subject's current sensitivity level. 

FORMAL SECURITY POLICY MODEL 

The principle state components in the MLS LAN 
security model are the attributes of the active communica
tion objects and subjects. Of particular interest are the 
sensitivity levels of the objects and subjects, and the 
discretionary access control lists for the objects. 

The system may change state when a subject requests 
activation of a communication object, a subject requests 
access to a · communication object, a subject requests 
disconnection from a communication object, a subject 
requests that subjects be added to a communication 
object's discretionary access control list, a communication 
object becomes inactive, a subject becomes active, or a 
subject becomes inactive. When a subject requests com
munication object activation, that subject becomes the 
owner of the communication object. The owner is the sole 
subject able to modify the discretionary access control list. 
When the communication object is initialized, the subject 
specifies a sensitivity level for the object (or this can be 
set to the subject sensitivity level if the subject is single
level), and an initial list of subjects and modes of access 
for the discretionary access control list. The specified 
level must be within the subject's range. The discretionary 
access control list will typically be specified as the remote 
socket (or logical name for a remote process) for a TCP 
connection. The state invariants (Ina Jo criterion) for the 
model are formalizations of the policy defined above. 
When a subject attempts to connect to a communication 
object, the state invariants are enforced to ensure that the 
subject has the appropriate authorization for that object. 

When a subject becomes active, a range of sensitivity 
levels is set for that subject, and this range must be within 
the range specified for the associated device. For host 
processes, the host TCB is responsible for providing the 
network with this range of sensitivity levels. This range 
must be within the limits placed on the host by the network 
security administrator. 

Excerpts from our formal security policy model 
written in the Ina Jo language are included as an appendix 
to this paper. The part of the model presented describes 
the policy enforced at the network external interface. The 
formal verification approach is (1) to use the Ina Jo tool to 
prove the theorems required for the model, (2) to develop 
the formal top-level specification (FTLS) required by the 
Criteria as an Ina Jo second level specification, and (3) to 
use the Ina Jo tool to prove consistency of the FTLS with 
the formal model. 

CURRENT STATUS AND FUTURE DIRECTIONS 

We currently have prototype hardware, and a large 
part of the network software is complete. Network 
functionality will be added in increments, with a full scale 
demonstration system completed by the end of 1985. 

The major protocol security issue encountered was 
determining the degree of support provided within the LAN 
for system-wide session layer security. There is a need for 
end-to-end user identification and trusted path to support 
the system level security requirements. The DoD protocol 
suite does not have a session layer supporting these 
requirements. We are addressing these issues as part of 
this research program, and plan to provide this capability 
as part of our MLS LAN product. We are also investigating 
the incorporation of encryption into the MLS LAN. 

Enhancements are planned for the MLS LAN to 
approach the functionality shown in figure 1. In 1986, we 
plan ·to develop a file server, mail server and gateway to 
DON. An effort is underway to address the packaging 
issues for the MLS LAN. Provision of higher data rates (up 
to 300 Mbps) is being investigated. 

References 

(1) DoD Computer Security Center, "DoD Trusted 
Computer System Evaluation Criteria," CSC-STD-001-83, 
1983. 

(2) Grossman, G., "A Practical Executive for Secure 
Communications," Proceedings of the 1982 Symposium on 
Security and Privacy, Oakland California, IEEE Computer 
Society, April1982. 

(3) Rushby, J., "A Trusted Computing Base for Embedded 
Systems," Proceedings of the DoD/NBS Computer 
Security Conference, Gaithersburg Maryland, September 
1984. 

101 



Appendix 

Formal Security Policy Model for an MLS LAN 

Type 

Level, 

Ext User, 

Subject< Ext User, 

Device <Ext -User, 

Subjects = Set of Subject, 

Comm Object, 

mode ;-(send, receive), 

Security_Mode = (sl, mls) 


Constant 

Lteq(Level, Level) : Boolean, 

Resides_On(Subject): Device 


Variables 

Active Comm Object(Comm Object) : Boolean, 

Send DAC LiSt(Subject, Comm Object) : Boolean, 

Receive DAC List(Subject, Comm Object) : Boolean, 

Object Level(Comm Object) : Level, 

Connection(mode, Comm Object, Subject) : Boolean, 

Active Subject(Subject) tBoolean, 

Subject_Mode(Subject): Security_Mode, 

Current Level(Subject) : Level, 

Min Level(Ext User): Level, 

Max-Level(ExtUser): Level, 

Owner(Subject,-Comm_Object): Boolean 


Initial 

A" c : Comm Object 

(-Active Comm Object(c)) 


& A" s : Subject,c : Comm Object 

(-send DAC List(s, c) & -Receive DAC List(s, c)&- Owner(s, c)) 


& A" s ?Subject, c : Comm Object,-m : m-ode 

(-connection(m, c, s)) 

&A" s: Subject 

(-Active_Subject(s)) 


Criterion 
A" m : mode, c : Comm Object, u : Subject 

( Connection(m, c, u)- > 

Active_Comm_Object(c) & Active_Subject(u) 

& (m = send - >Send DAC List(u, c)) 

& (m =receive ->Receive-::_DAC_List(u, c))) 


& A" m : mode, c : Comm Object, u : Subject 

( Connection(m, c, u) &Subject Mode(u) = mls- > 


(m =send- > 
Lteq(Object Level(c), Max Level(u)) 

& L teq(Min =Level(u), Object_Level( c))) 


& (m = receive- >L teq(Object_Level(c), Max_Level(u)))) 


& A" m : mode, c : Comm Object, u : Subject 
( Connection(m, c, u) &Subject Mode(u) = sl- > 

& (m = send ->Current LeveT(u) = Object Level( c)) 
& (m = receive - >Lteq[Object Level(c), Current Level(u))) 
& A" c1: Comm_Object, ml :-mode (cl- = c- >-Connection(ml,cl,u))) 

A" u : Subject 
(L	teq(Max Level(u), Max Level(Resides On(u))) 


& Lteq(Min Level(Re;ides On(u)), Mir"l Level(u)) 

& L teq(Min -Level(u), Max -Level(u)) 
& (Active SUbject(u) & Subject Mode(u) = sl - > 


L teq(Min- Level(u), Current Level(u)) 

Lteq(Current_Level(u), Max_ Level(u)))) 


Transform Set_Up_Comm_Object(u: Subject, c: Comm_Object, I: Level, 
S : Subjects, R : Subjects) External 

102 



Effect 

L teq(Min _ Level(u), 1) &- Active_Comm_Object(c) & Active_Subject(u) 

& ( Subject Mode(u) = sl - > 


(A" cl :-Comm Object, m : mode 

(-connectioO<m, cl, u)))) 


& A" cl : Comm Object, ul : Subject 
((N"Active_Comm_Object(cl) <-> cl = c IActive_Comm_Object(cl)) 
& (N"Send DAC List(ul, cl) <-> 

ul <: S &. cl =C ISend_DAC_List(ul, cl)) 

& (N"Receive DAC List(ul, cl) <-> 


ul <: R & cT = c rReceive DAC List(ul, cl)) 

& (N"Object Level(cl) = (cl-; c =>-1 


- < > Object Level(cl))) 

& (N"Owner(ul, cl) <-> ul = u & cl = c IOwner(ul, cl)))


INC"(Active_Comm_Object, Send_DAC_List, 

Receive_DAC_List, Object_Level, Owner) 


Transform Connect to Comm Object(u : Subject, c : Comm Object, m : mode) 

- - - External 

Effect 

( Active Comm Object(c) & Active Subject(u) 

& (Subject Mode(u) = sl - > 

(A" cl :comm Object, ml :mode 

(Active Comm Object(cl) & Connection(ml, cl, u) ->cl =c))) 


& ((m = send &-Send DAC List(u, c) 

& L teq(Min _ Level(u}, Object_Level(c)) 

& L teq(Object Level(c), Max Level(u))) 


I (m = receive & Receive DAC _ Cist(u, c) 
& L teq(Object_Level(C), Max_ Level(u)))) 

& A" ml :mode, cl : Comm Object, ul :Subject 
(N"Connection(ml, cl, uD <-> 

ml = m & cl = c & ul = u I Connection(ml, cl, ul)) 
& (Subject_Mode(u) = sl- >(m =send & N"Current_LeveJ(u) = Object_Level(c) I 

m.. receive&:Lteq CobJ ect Le.ve I< c ),N 11 Currerit Lev e. I Cu l J> 
& A" ul :Subject ( ul- = u :-> N"Current Level(ui} =Current Level(ul)))
I NC"(Connection, Current_Level) - 

Transform Disconnect from Comm Object(u: Subject, c: Comm Object, 

- - - m : mode) External 


Effect 

A" ml :mode, cl : Comm Object, ul :Subject 
(N"Connection(ml, cl,-ul) <-> 

(ml -= ml cl- = c Iul- = u) & Connection(ml, cl, ul)) 
NC"(Connection) 

Transform Add to DAC List(u : Subject, c : Comm Object, S : Subjects, 
- - - R: Subjects) External 

Effect 
Owner(u, c) & Active Subject(u) & Active Comm Object(c) 
& (Subject-Mode(u) =sl = > L teq(Current_Cevel(u)-;Object-Level(c)) 

< > L teq(Min _ Level(u), Object_Level( c))) 

& A" ul : Subject, cl : Comm Object 


((N"Send DAC List(ul, cl)<- > 

ul <:S & c[ = c ISend_DAC_List(ul, cl)) 


& (N"Receive DAC List(ul, cl) <-> 

ul <: R & cl = cl Receive DAC List(ul, cl)))


INC"(Send_ DAC _List, Receive_DAC _ Cist) 


Transform Release_Obj(u: Subject, c: Comm_Object) External 

Effect 

(Receive DAC List(u, c) ISend DAC List(u, c)) & Active Subject(u) 
& (Subject Mode(u) = sl = > L teq(Current Level(u), Object -Level(c)) 

- < > L teq(Min Level(u), Object Level(c))) 
& A" ul :Subject, m : mode - 

(-Connection(m, c, ul)) 
& (A" cl : Comm Object, ul : Subject 

((N"Active_Comm_Object(cl) <-> cl- =C & Active_Comm_Object(cl)) 

103 



&: (N"Send_DAC_List(ul, cl)< -> cl ~= c &: Send_DAC_List(ul, cl)) 
&: (N"Receive DAC List(ul, cl) <-> cl ~= c &: Receive DAC List(ul, cl)) 
&: (N"Owner(ul, cO<-> cl ~= c &: Owner(ul, cl)})) - 

INC"( Active_Comm_Object, Send_DAC_List, Receive_DAC_List, Owner) 

Transform Activate Ext Subject(u : Subject, 11 : Level, 12 : Level, 
- - sm : Subject_Mode) External 

Effect 

~Active_Subject(u) 
&: L teq(11, Max_ Level(Resides On(u)}) 
&: L teq(Min_ Level(Resides _ On{u)), 12) 
&: L teq(l2, 11) 
&: A" ul : Subject 

((N"Active_Subject(ul) <-> ul = u I Active_Subject(ul)) 
&: (N"Subject_Mode(ul) = (ul = u = >sm 

< > Subject_Mode(ul)}) 
&: (ul = u => (Lteq(l2, N"Current Level(ul)) 

&: Lteq(N"Current Level(ul), 11)) 
< > (N"Current Level(ul) = Current Level(ul)}) 

&: (N"Max Level(ul) = (uC= u :> 11 
- < > Max Level(ul)}) 

&: (N"Min Level(ul) = (ul = u = >12 
- < > Min Level(ul)))) 

I NC"(Active _Subject, Subject_Mode, Current_Level, Max_ Level, Min_ Level) 

Transform Deactivate_Ext_Subject(u: Subject) External 

Effect 

A" c : Comm _Object, m : mode 
(~"Connection(m, c, u) &:~ Owner(u, c)) 
&: A" ul : Subject, 
(N"Active Subject(ul) <-> ul ~ = u &: Active Subject(ul)) 
INC"(Active_Subject) - · 

104 




Bl 	SECURITY FOR SPERRY 1100 OPERATING SYSTEM 

R. E. Ashland 
Executive Systems Development 

P.O. Box 43942 
St. Paul, MN. 55164-9907 

(612) 635-6082 

INTRODUCTION 

This paper discusses how Sperry is enhancing 
the 	1100 Operating System to meet the DoDCSC 
Bl security level. We consider this to be a 
major development feature. However, our Bl 
effort is not without limitations and is only 
an evolutionary step towards higher security 
levels. 

Some of the discussions in this paper deal 
with Sperry 1100 OS unique concepts, and we 
recognize that you may find some o£ this not 
applicable to your environment. Hopefully, 
you will gain an overview of our Bl efforts. 

Implementation Requirements 

In addition to providing all the necessary 
features for a Bl system, we also have the 
following requirements: 

1. 	 Full compatibility for current users. 

a. 	Customers that choose not to use 
security cannot be impacted in any 
way. 

b. 	Customers that utilize security 
features can only be affected in the 
following ways: 

- system generation and site 
administrator/security officer 
procedures. 

- interactive terminal sign-on process. 

Existing programs cannot be impacted. 

2. 	 Performance must be maintained, where 
possible. 

3. 	 All user types must be included; that is, 
batch, demand (interactive), transaction 
(TIP), and MAPPER. 

Scope of 	Bl Security 

Adding security for transaction processing 
extends protection to a major type of system 
user. Security at the Bl level will not be 
provided for UNIX, Distributed Data Process
ing or networking. 

Data Base Management (OMS 1100) security will 
not be multi-layered within one OMS. However, 
more than one OMS, each of a homogeneous data 
security level, may exist in one system. 
Each OMS copy is fully isolated and user 
access is fully controlled. 

Current 1100 OS Security Status 

Sperry received an unofficial Cl rating in 
1983 on an older Executive level. we· have 
corrected some of the noted deficiencies, 
have added discretionary file ownership to 
files, and by adding erasure of storage resi 

due 	left from another user, we will have the 
requirements for a C2 system for batch and 
demand users. 

Sperry's 	Security Strategy 

We do not plan to have our system formally 
evaluated at C2, but we will complete the 
development of the Bl features discussed in 
this paper, continue our Preliminary Product 
Evaluation phase with DoDCSC, and move 
directly towards a formal Bl rating. 

Brief 1100 OS overview 

The 1100 OS is a complete, and, therefore, a. 
large system. The major components for 
purposes of our security discussions are: 

• 	 EXEC -Controls hardware and all users; 

security kernel. 


• CMS -	 Communications management. 

• UDS/DMS 	 - Data base management. 

• MAPPER 	 - Interactive information manager. 

TIP 	- Transaction processing. 

• 	 SIMAN - Site administrator's tool for 

Security. 


SIMAN is used to establish the user security 
profile. The EXEC, along with CMS, TIP, 
and MAPPER, process user sign-on. All of 
these components share in enforcing the Bl 
mandatory labelling policy, and are there
fore part of the TCB. 

Customers 	tailor their selected system 
components to provide the type of system 
suited for their environment, such as bank
ing, business, airlines, universities, 
government, or defense. 

Bl FEATURES! 

In 	addition to erasing storage residue, the 
following 	features will be added to the 
1100 OS to achieve a Bl security level: 

• Common 	 sign-on for all users. 

• Password controls. 

• Compartment labelling of all objects. 

• Transaction file and program security. 

Device security. 

• Output 	labelling. 

105 



Common Sign-on 	 1. TIP terminal sign-on. Actually a C2 

Batch and demand users currently have pass
word and clearance level control. Trans
action mode (call TIP, for Transaction 
Interface Package) and MAPPER will be placed 
under this same sign-on process. In addition, 
the following extensions will be made to the 
sign-on process: 

• 	 Hacker frustration, with terminal disabling, 
if selected by the Security Officer (SO). 

• 	 Password expiration - requiri'ng a new 
password at the time interval selected by 
the Security Officer. 

Password encryption. 

• 	 Password phrasinQ capability by allowing 
lenQths of 30 characters. 

Compartments - which categories of data 
the user is allowed and chooses to access. 

Project-id control. ~perry currently 
attaches a project name to files, which is 
used for file administration purposes. 
Control of which project-ids a user may 
usc will be provided. 

Least Privilege - permit the selection of 
the desired privileges, within the set 
allowed, for this session. 

• 	 Session mode allowed -demand, MAPPER, or 

one of 9 TIP applications. 


The Executive, along with SIMAN, the SO's 
administrative tool, will be enhanced to 
provide these features. In addition, the Log 
Analyzer (LA) will be enhanced to provide 
logging reports, for auditing purposes. 

Compartments 

A compartmeQt set, identifying the category 
of 	data, along with the security sensitivity 
level, constitute the security attributes for 
Bl 	mandatory data labelling. Sensitivity 
level is currently used to label files in 
batch/demand environments. Compartments will 
be 	added to this label and extended to TIP 
files and messages, tape and disk units and 
volumes, and printers and printed output. 

The following compartment f~atures will be 
provided: 

• 	 SO control of creating, deleting and re

naming the current set of compartments. 


• 	 User selection of sign-on, trom allowed 

set, of compartments desired for this 

session • 


• 	 900 possible compartments, with no added 

file I/O if only 30 compartments used • 


• 	 Versioning control to recognize changes in 
the current compartment set. 

Transaction (TIP) Security 

Four areas of Transaction Processing will be 
extended for Bl security: 

requirement, this sign-on will be just 
like demand sign-on. Maintaining session 
information about users is a major change 
for TIP, in that currently no information 
is saved about a user from one transaction 
to the next transaction. 

2. 	TIP file security. The Executive file 
containers for TIP files have security 
attributes which will be accelerated for 
TIP user access checks • 

3. 	TIP program access checks. Transaction 
programs may be grouped and user access 
rights to these groups may be controlled, 
as well as which terminals may be used 
to transact these programs • 

4. 	TIP message security. TIP terminals and 
TIP users will be checked against tho TIP 
message la~l (compartment set and clear
ance levei) for access rights. 

TIP terminal connectivity and performance 
will not be sacrificed with these features. 

Device Security and Output Labelling 

The following will have security attributes: 

• 	 Removable disk units and packs. 

• 	 Tape units and tape reels • 

• 	 Printers and printed output. 

• 	 Terminals and terminal messages. 

Device security attributes will be specified 
via SIMAN and validation at reference time 
performed by the Executive. 

Output labelling will be written to all tape 
reels and removable disks packs by prep 
utilities or at tape writing. 

Printed output labels will indicate the 
compartment set and the symbolic sensitivity 
level on printed output. 

Auditing 

Additional required auditing will be added 
and existing audits enhanced to tho current 
system log for the new Bl features. Reports 
of Hecurity-related events will be produced 
upon request • 

CONCLUSION 

This has been a brief overview of what 

features Sperry is adding to the 1100 OS to 

provide a Bl system. 


106 



1. 	Lee, T.M.P., "Future Directions of Security 
for Sperry Series 1100 Computers", .7th DoD/ 
NBS Computer Security Conference, Sept. 24
26, 1984. 

107 



DESIGNING THE GEMSOS SECURITY KERNEL 
FOR SECURITY AND PERFORMANCE 

Dr. Roger R. Schell 
Dr. Tien F. Tao 

Mark Heckman 

Gemini Computers, Incorporated 

P. 0. Box 222417 


Carmel, California 93922 


INTRODUCTION 

Gemini Computers, Inc., offers as a com
mercial product a family of secure, high
performance computer systems based on the 
Intel iAPX 286 microprocessor. These systems 
are designed to meet the Class B3 requirements 
of the DoD Trusted Computer Computer System 
Evaluation Criteria,[!] and a developmental 
evaluation by the DoD Computer Security Center 
is ongoing. An earlier paper[2] of about a 
year ago discussed the major concepts under
lying the d~sign and the functionality of the 
Gemini Multiprocessing Secure Operating System 
(GEMSOS). The security kernel as discussed in 
that paper is structured into eleven distinct 
layers, and as of that time only the lower 
five layers were implemented. All of the 
layers described have now been implemented and 
delivered as a Version 0 kernel, and a pro
duction Version 1 is currently being imple
mented. The purpose of this paper is to re
port on the major design choices for security 
functionality and to report the results of 
initial system performance measurements on the 
Version 0 GEMSOS commercial product. 

BACKGROUND 

The GEMSOS security kernel design is 
based on the trusted computer system techno
logy that has emerged over the past decade. 
This technology provides a high degree of 
assurance that a system developed in accor
dance with the principles underlying the DoD 
Trusted· Computer System Evaluation Criteria 
can be objectively evaluated to determine its 
ability to protect sensitive information from 
unauthorized viewing or modification. The 
primary experience with this technology is 
with general purpose operating systems for 
single processor computers. 

The Gemini design extends this security 
technology into the realm of a multiprocessor 
computer specifically intended for incorpora
tion as a component of embedded systems. The 
question is often raised whether secure compu
ters can be expected to deliver high perform
ance. In the design of the GEMSOS security 
kernel, a good deal of attention has been 
given to supporting throughput and response 
time without adverse impact on security assur
ance. Of particular importance are the oper
ating system techniques provided to ensure 
that the multiple processors can indeed be 
used effectively to increase overall system 
performance in concurrent computing applica
tions. 

The Reference Monitor Foundation 

The reference monitor is the primary 
abstraction for dealing with a system that is 
designed to be "evaluable" with respect to 

security, i.e., a system for which we want to 
have a high degree of assurance of its correct 
security behavior. In this abstraction a 
system is considered as a set of active en
tities called "subjects" and a set of passive 
entities called "objects". The reference 
monitor is the abstraction for the control 
over the relationships between subjects and 
objects and for the manager of the physical 
resources of a system. To be effective in 
providing security, the implementation of a 
reference monitor must be: (1) tamper-proof, 
(2) always invoked, and (3) simple enough for 
analysis. The hardware and software that 
implement a reference monitor that meets these 
principles is defined as a security kernel.[3] 

Security Policy Model 

For a specific set of applications, e.g., 
for DoD systems, there will be a particulari 
zation of the reference monitor abstraction 
that incorporates the "security policy" (the 
desired security behavior) of the system. 
This particularization is formally defined in 
a "security policy model." The choice of a 
model will be influenced by a desire to have 
an intuitive tie to the engineering properties 
of the target system. Thus, in selecting a 
model for a trusted computer, it is desirable 
that the model's objects can easily represent 
tbe security-relevant information repositories 
of the contemplated applications. By far, the 
most widely used formal security policy model 
is the Bell-LaPadula model.[4] This model has 
a level of abstraction that is high enough to 
permit application to a wide variety of spe
cific designs and is also deliberately design
ed to be extended to support system-specific 
policy refinements. This model has been used 
as the basis of the GEMSOS security kernel 
design. 

An Extensible TCB 

A pivotal concept in developing a system 
that is secure in a practical sense is the 
identification of a Trusted Computing Base 
(TCB). A security policy model is expected to 
model a broad range of actual systems. How
ever, if the system is of a practical size it 
is expected that it will be too complex to 
systematically evaluate for security. How
ever, the reference monitor concept provides a 
basis for identifying a small and simple sub
set of the system that is responsible for and 
able to assure the security of the total sys
tem. This subset is called the TCB. The TCB 
includes both (1) the security kernel that 
implements the reference monitor and manages 
the physical resources, and (2) the "trusted 
subjects" that support refinements to the 
fundamental policy supported by the security 
kernel. 

108 



As noted in a recent paper by Marvin 
Schaefer of the DoD Computer Security Cen
ter,[S] if the TCB has a strict hierarchical 
layering it is possible to extend a mandatory 
policy security kernel to support a richer set 
of security properties, such as those desired 
for a discretionary security policy of a par
ticular application. The GEMSOS security 
kernel has the kind of strict layering that 
was postulated. The Intel iAPX 286 processor 
that is used in the Gemini computer provides 
four strictly hierarchical, hardware enforced 
protection rings that enforce the strict lay
ering. In particular, the most privileged 
ring (Ring O) is devoted to the mandatory 
policy security kernel. Typically, Ring 1 
would be similarly devoted to the particular 
discretionary policy of an application. 

The key to the evaluation of the security 
of a TCB is the Descriptive Top Level Specifi
cation (DTLS) and for the Class Al a corre
sponding Formal Top Level Specification (FTLS) 
for the interface to the TCB. For the GEMSOS 
security kernel the approach is to have speci
fications that are themselves layered so that 
there is a DTLS of the mandatory security 
kernel as well as a DTLS for the refinements, 
such as that for discretionary security pol
icy; the latter specification includes ref
erences to the underlying mandatory DTLS. 
Thus the GEMSOS security kernel provides an 
ideal foundation for a truly extensible TCB 
for support to a wide range of extended poli
cies, such as those frequently encountered in 
military embedded systems. 

MAJOR SECURITY CONCEPTS 

A reference monitor implementation such 
as the GEMSOS security kernel must mediate all 
access by active entities (called "subjects") 
to passive entities (called "objects"). The 
GEMSOS kernel permits or prevents each access 
by a subject to an object based on relation
ships between the subject's authorization and 
the objects sensitivity. This set of rela
tionships is called a security policy. The 
GEMSOS mandatory policy security kernel can 
enforce any of the various policies that are 
represented by the lattice of security labels 
used in the Bell and LaPadula mathematical 
security model.[4] This model provides a set 
of rules for controlling the dissemination and 
modification of information in a secure sys
tem. Kernel calls map into the rules of the 
model, and internal data structures represent 
the model's mathematical sets. The GEMSOS 
security kernel is secure because it is a 
valid interpretation of this security model. 
In the sections that follow, we define and 
introduce the major security system concepts 
and then use those concepts to describe the 
specific GEMSOS security kernel features. 

Subjects and Objects 

Rules in the Bell and LaPadula model are 
concerned with controlling the access of sub
jects to objects. Subjects are "active" enti
ties that observe or modify objects. Objects 
are "passive" entities that are observed or 
modified. A subject is defined as a process 
executing in a specific domain and may be 
thought of as a (process, domain) pair. Ob
jects are distinct, logical entities that 

contain information and possess security at
tributes called access classes. 

Domains 

A domain is a set of objects to which a 
subject has a given type of access, e.g., the 
"observe domain." Domains in the GEMSOS secu
rity kernel are determined by the hardware
enforced ring mechanism. The rings define a 
set of hierarchically ordered domains (see the 
section on ring integrity). 

Security Policy 

The permission of "authorized" access and 
the prevention of "unauthorized" access by 
subjects to objects constitutes the security 
enforced by a system. A security policy is 
the set of relations between subjects' auth
orizations and objects' sensitivities that 
determines permissible access. A system that 
enforces a particular security policy may be 
said to be secure only with respect to that 
policy.[3] 

Nondiscretionary Security. A security 
policy based on externally defined constraints 
enforced by a secure system is called a "man
datory" or nondiscretionary security policy. 
A nondiscretionary policy controls all ac
cesses by subjects to objects and may never be 
modified or bypassed within the system. The 
military classification and compartment policy 
is an example of a nondiscretionary policy. 

Discretionary Security. Within the 
limits of mandatory controls, authorized sub
jects in the system may place additional con
straints on other subjects' access to objects. 
This internally modifiable set of constraints 
is called a discretionary security policy. 
The military "need-to-know" policy is an exam
ple of a discretionary policy. The complete 
security of a system may include both man
datory and discretionary controls, but while 
discretionary controls provide finer access 
"granularity," in no case may they override 
mandatory controls. The GEMSOS mandatory 
policy security kernel (viz., Ring 0) enforces 
a nondiscretionary security policy and pro
vides a base to which a discretionary policy 
may be added (e.g., in the Ring 1 "supervisor" 
domain, as noted above). 

Access Classes 

Every entity in the GEMSOS security ker
nel possesses an access class. The access 
class of an object reflects the object's sen
sitivity, viz., its "classification." The 
access class of a subject reflects the sub
ject's authorizations to observe and modify 
objects, viz., its "clearance." The complete 
nondiscretionary (mandatory) security attri
butes of any subject or object in the GEMSOS 
security kernel are defined by its access 
class. 

Security Labels. Security labels are 
attached to every entity (subject and object) 
in the system. A security label is a repre
sentation of an entity's access class. 

Access Components. An access component 
is a way of describing separately the secrecy 
and integrity security attributes that consti-

I 

109 



tute an access class. Discussion of access 
components simplifies the description of rela
tions between subjects and objects based on 
access classes (i.e., the non-discretionary 
security policy). In the GEMSOS security 
kernel, an access component is defined sim
ilarly to a Bell and LaPadula "security 
level." Both the secrecy and integrity access 
components consists of two parts: a hierarch
ical classification level and a set of com
partments (induced by disjoint "categories"). 

Access Component Dominance. One access 
component (A1) is said to dominate another 
access component (A2) if the hierarchical 
level of A1 is greater than or equal to that 
of A2, and A1's compartments are a superset of 
A2's compartments. The symbol "}=" is used in 
following sections to indicate dominance 
(e.g., "A1 dominates A2" is depicted as 
"A1 }= A2") 

Dissemination and Modification £i Information 

The nondiscretionary· security policy en
forced by the GEMSOS security kernel addresses 
both the secure dissemination and secure mod
ification of information. The access class of 
every subject and object in the GEMSOS securi
ty kernel contains an access component to 
control dissemination and another access com
ponent to control modification. These two 
access components are referred to as "secrecy" 
and "integrity," respectively. 

Secrecy Protection 

Secrecy protection in the GEMSOS security 
kernel is similar to the usual interpretations 
of "security" in the Bell and LaPadula 
model.[4] The notion of secrecy is concerned 
with the secure distribution of information. 
Although the exact statement of security in 
the model is considerably more complex, the 
rules £or enforcing secrecy protection in the 
GEMSOS security kernel can be simply described 
by two properties: 

1) If a subject has "observe" access to 
an object, the secrecy access component 
of the subject must dominate the secrecy 
access ~omponent of the object. 

2) If a subject has "modify" access to an 
object, the secrecy access component of 
the object must dominate the secrecy 
access component of the subject. 

Property 1 is called the "no-read-up" or 
"simple security" property. Its effect is to 
keep low-secrecy subjects from observing in
formation of higher secrecy. Property 2 is 
called the "no-write-down" property or "*
property" (read "star-property"). Its purpose 
is to keep high-secrecy subjects from improp
erly transmitting sensitive information to 
low-secrecy subjects (e.g., with a Trojan 
Horse). Thus, a low-secrecy subject can never 
directly or indirectly observe high-secrecy 
information. 

Integrity 

The concept of integrity is concerned 
with the secure modification of information. 
The GEMSOS security kernel provides two com
plementary mechanisms for enforcing integrity: 

one in software and one in hardware. The 
software mechanism enforces an integrity poli 
cy equivalent to the strict integrity policy 
described by Biba.[6] The hardware mechanism 
supports Multics-like hierarchical protection 
rings[7]. The integrity enforced by the ring 
mechanism is equivalent to the notion of "pro
gram integrity"[8] and is a subset of the 
strict integrity policy. 

The two mechanisms for enforcing integ
rity are provided for efficiency reasons. 
Were no ring mechanism available, the complete 
strict integrity policy could still be en-, 
forced by separate processes (rather than 
separate rings) using the software mechanism, 
but the hardware ring switching mechanism is 
considerably faster than process switching. 

Strict Integrity. Like secrecy pro
tection, the rules for enforcing strict integ
rity protection in the GEMSOS security kernel 
can be described by two properties: 

1) If a subject has "modify" access to an 
object then the integrity access com
ponent £i the subject dominates the in
tegrity access component of the object. 

2) If a subject has "observe" access to 
an object then the integrity access com
ponent of the object dominates the integ
rity access component of the subject. 

Property 1 is called the "simple integri
ty" property. Its purpose is to prevent sub
jects of low integrity from modifying objects 
of higher integrity. Property 2 is called the 
"integrity *-property." It preven~s high
integrity subjects from observing and relying 
on information that a low-integrity subject 
might have modified. If high-integrity sub
jects could observe low integrity information 
then their behavior might be improperly in
fluenced ("spoofed") by a low-integrity sub
ject. The two integrity properties prevent 
low-integrity subjects from directly and in
directly modifying high-integrity information. 

Ring Integrity. Under the GEMSOS ring 
integrity mechanism, each subject and object 
possesses a hierarchical ring level ranging 
from 1 (most privileged) to 3 (least priv
ileged). Subjects are only permitted access 
(observe, modify, or both) to objects with 
equal or greater ring numbers (equal or less 
privileged rings). No access to objects with 
a lower ring number is permitted. 

For example, only the GEMSOS security 
kernel supervisor is allowed to have ring 
~evel 1. No application program, therefore, 
can access any part of the supervisor, but the 
supervisor can access any object in rings 1 
thru 3. Ring 0 of a Gemini system is reserved 
for the isolation and protection of the sec
urity kernel. 

Trusted Subjects 

In general, the properties of secrecy and 
integrity are strictly enforced by the GEMSOS 
security kernel. Rigid idherence to these 
properties, however, can complicate the use of 
a system by forcing extremely fine "granular
ity" of security on objects. For example, 
imagine a system where storage objects are 

110 




large files, and which has an incoming stream 
of messages at different access classes. One 
logical method of distributing messages would 
be to have all incoming messages put in the 
same file, and to have a single process dis
tribute the messages to the proper recipients. 

The secrecy and integrity properties 
described above, however, force a secure sys
tem to create a different file for each access 
class in which to store messages. In addi
tion, a different process of the appropriate 
class must be used to distribute messages out 
of each file. Distributing messages, a rela
tively simple operation on most systems, could 
become a needlessly complicated, resource
consuming procedure in a secure system. 

Imagine instead that the secrecy and 
integrity *-properties were relaxed just for 
this application. All incoming messages could 
be temporarily put in the same file and a 
single process could distribute messages of 
any access class. What would be the security 
characteristics of the file and process? The 
file would have the most sensitive access 
class possible, since it could conceivably 
contain messages of that class. Messages in 
the file, however, could be of lower classes. 
The distributing process would need authoriza
tion to observe objects of the highest class 
in order to read the file, and be able to 
modify objects from the most sensitive class 
down to the least sensitive in order to dis
tribute the messages at their appropriate 
class. Since the process would be operating 
at many different access classes simultaneous
ly, it must be trusted not to improperly pass 
sensitive messages to subjects with insuffic
ient authorizations. 

In order to support this type of applica
tion, the Bell and LaPadula model includes a 
"trusted subject" as part of the model. 
Trusted subjects in the model are subjects 
unconstrained by the *-property. Trusted 
subjects in the GEMSOS security kernel, unlike 
Bell and LaPadula 1 s definition, are trusted 
(the *-property is relaxed) only within a 
given range, and are therefore "multilevel" 
subjects instead of general trusted subjects. 
Even with this additional security constraint 
the GEMSOS security kernel is still a valid 
interpretation of the Bell and LaPadula model 
for, as Bell and LaPadula write, " ••• restric
tions of the concept of security will not 
require reproof of the properties already 
established because additional restrictions 
can only reduce the set of reachable 
states."[4] 

GEMSOS SECURITY KERNEL FEATURES 

Each of the structures and concepts des-· 
cribed above is embodied in some way in the 
GEMSOS security kernel. The GEMSOS security 
kernel organization for implementation has 
been described previously,[2] and the reader 
interested in the specific primitives and 
kernel calls identified in the following dis
cussions is encouraged to review this descrip
tion. The following sections describe the 
major security features. The basic abstraction 
used in the GEMSOS design are segments, pro
cesses and devices. The segments are instan
ces of "objects" of the model. The processes 
and devices are "subjects" of the model. 

Security Labels 

Security labels are representations of 
the sensitivity of objects and the authori
zations of subjects. A security label is 
attached to every subject and object in the 
GEMSOS security kernel. Security labels are 
called "access classes" since they symbolize 
the complete set of security attributes pos
sessed by each entity. The GEMSOS security 
kernel access classes (security labels) are 
records with two fields, representing secrecy 
and integrity access components. For secrecy 
the default label has eight (8) hierarchical 
classifications and twenty-nine (29) non
hierarchical categories. For strict integrity 
the default label has eight (8) hierarchical 
classifications and sixteen (16) non-hier
archical categories. 

Some entities in the GEMSOS security 
kernel have two access classes: a maximum and 
a minimum. The secrecy and integrity access 
components of the maximum access class always 
dominate the secrecy and integrity access 
components . of the minimum access class. The 
maximum and minimum classes together describe 
a range of permissible access classes. 

Segments 

All information in a Gemini system is 
contained in discreet, logical objects called 
segments. Each segment has an access class 
that reflects the sensitivity of information 
contained in the segment. Segments may be 
simultaneously and independently shared by 
multiple subjects but access to the segment 
(observe, modify, or both) on the part of each 
subject is controlled by the relationship 
between the segment's access class and each 
subject's access class, in accordance with the 
security properties of the model. 

Every segment in the GEMSOS security 
kernel has a unique identifier. This identi
fier is effectively different for every seg
ment ever created in any Gemini system. 
Unique identifiers are used internal to the 
kernel to prevent "spoofing" of the system by 
substituting one segment for another and are 
not visible at the kernel interface. 

Eventcounts and Sequencers. The GEMSOS 
security kernel uses abstract data objects 
called 11 eventcounts" and "sequencers" for 
process synchronization and communication. 
These objects may be observed and modified by 
subjects so, to preserve security, the GEMSOS 
security kernel must control access to them. 
In order to identify eventcounts and sequen
cers, one eventcount and one sequencer are 
associated with the name of each segment. Each 
segment name, therefore, is used to identify 
an eventcount and a sequencer as well as a 
segment (see the section below on segment 
aliasing for more information on segment 
names). The eventcount and sequencer asso
ciated with a segment name have the same ac
cess class as the segment whose name they 
share. Process synchronization and communica
tion are thus subject to the same rules of 
security as observing and modifying segments. 

In order to modify an eventcount (using 
the primitive "advance") a process must be 

111 



permitted modify access to the segment. Sim
ilarly, in order to observe an eventcount 
(using the primitives "read" or "await") a 
process must be permitted observe access to 
the segment. The primitive "ticket" for se
quencers requires the potential for both ob
serve and modify access to the segment. See 
the description by Reed[9] for more informa
tion on eventcounts and sequencers. 

Volumes. Secondary storage in Gemini 
systems is divided into distinct logical vol
~· Each segment is associated with only 
one volume, determined when the segment is 
created. Each volume may be considered to be 
a collection of segments. Volumes have two 
access classes, a maximum and a minimum, as
signed when the volume is formatted. The 
secrecy and integrity components of the maxi
mum access class must dominate the secrecy and 
integrity of the minimum class. The maximum 
and minimum volume access classes are upper 
and lower limits on the security of informa
tion contained on the volume (see the section 
below on the use of volumes). 

Processes 

A subject in the GEMSOS security kernel 
is a (process, domain) pair, where the domain 
is determined by the current hierarchical ring 
level at which the process is executing. The 
ring level determines the set of objects to 
which, within security constraints, the pro
cess potentially has access. Processes may 
change their ring levels, but the same process 
executing in a different ring is a different 
subject. The primary application of rings 
envisioned under the GEMSOS security kernel is 
for the creation of distinct domains so that a 
process can have up to three (rings 1, 2, and 
3) "subjects." Each subject has a minimum and 
a maximum access class (security label) that 
is typically uniform for a process, no matter 
which ring it executes in. The secrecy and 
integrity access components of the maximum 
access class dominate those of the minimum 
access class. If the maximum and minimum 
access classes are equal then the subject is a 
"single-level" subject. If the two classes 
are unequal then the subject is a "multilevel" 
subject. 

Single-level Subjects. Subjects that 
have equal maximum and minimum access classes 
are single-level subjects. Single-level sub
jects may only have the access to objects 
permitted by the simple and "*" secrecy and 
integrity properties (see the sections on 
secrecy and integrity). 

Multilevel Subjects. Multilevel subjects 
have unequal·maximum and minimum access clas
ses. This property of multilevel subjects 
gives them the ability to have both observe 
and modify access to objects whose access 
classes fall between the subject's minimum and 
maximum. Multilevel subjects are the the 
GEMSOS security kernel implementation of 
"trusted subjects" (see the section on trusted 
subjects). Unlike general trusted subjects, 
however, multilevel subjects are only trusted 
within a range demarcated by their maximum and 
minimum access classes. Within this range, 
multilevel subjects are not constrained by the 
*-properties of secrecy and integrity (but 
they are still subject to ring integrity). 

Only subjects guaranteed not to improperly 
downgrade or modify information should be 
created as multilevel subjects. 

I/0 Devices 

I/O devices are viewed by processes as 
system processes. Processes communicate with 
I/0 devices using shared segments and may also 
use eventcounts. Like other processes, I/0 
devices have both maximum and minimum access 
classes. These limits are intended to reflect 
the security constraints-imposed by the physi
cal environments in which devices are located 
and are critical to the employment of a secure 
computer in a multilevel environment. 

Devices may be either single-level or 
multilevel. Unlike processes, which are clas
sified single-level or multilevel based on 
their minimum and maximum access classes, the 
Criteria[!] categorizes I/O devices as 
"single-level" or "multilevel" based on the 
access classes of the data they manipulate. 
Data transmitted or received by a single-level 
device has no attached security label. 
Single-level devices thus consider all data to 
have a single access class. Data transmitted 
or received by a multilevel device has a secu
rity label attached to or stored with the data 
in the same form as the data. Multilevel 
devices therefore may handle data with a range 
of access classes. 

Single-level Devices. A single-level 
device handles data to which no explicit secu

.rity label is attached. In many environments 
the minimum and maximum access classes for a 
single-level device will be the same. A 
single-level device at a given time treats all 
input data as having a single access class, 
which is determined by the security of the 
physical environment at that time. Output 
data must have an access class that falls 
within the range of the device's maximum and 
minimum access classes. 

In order to establish communication be
tween a process and a single-level device in 
the GEMSOS security kernel (called "attaching" 
the device), the range of the subject must 
"intersect" the range of the device. Specif
ically, the following relationships between 
the process's access classes and the device's 
access classes must hold to ensure that the 
process will be able to receive or send data 
through the device. 

1) To receive ("read") infor~ation: 

Process maximum secrecy }= 

Device minimum secrecy 


Device maximum integrity }= 
Process minimum integrity 

2) To send ("write") information: 

Device maximum secrecy }= 

Process minimum secrecy 


Process maximum integrity }= 

Device minimum integrity 


An example of a single-level device with 
different minimum and maximum access classes 
is a log-on terminal in a room to which users 

112 




with authorizations ranging from the highest 
possible (system-high) access class down to 
the lowest possible (system-low) access class 
have access. In this example, the maximum and 
minimum access classes of the device would be 
system-high and system-low respectively, al 
though narrower ranges are possible in other 
situations. There is only the single terminal 
in the room and only one person is allowed in 
the room at a time. Users log on to the 
system through a "trusted path"[l] which al 
lows the GEMSOS security kernel to directly 
and securely determine their access class; it 
then creates a process of the same access 
class to represent the user in the system. 

After a user has logged on using the 
trusted path, and the user's process has at 
tached the device, the GEMSOS security kernel 
considers the security of the terminal device 
environment to be the same as the security of 
the user's process. Different users will have 
different access classes, but at a given time 
there is only one user so the data has only a 
single access class. 

When a single-level device receives data, 
an access class (security label) must be es
tablished for the data. If the current secu
rity of the device has been reliably transmit
ted to the GEMSOS security kernel (e.g., 
through a trusted path) then the attached 
process will have an access class that repre
sents the current security of the device. The 
received data is usually assigned the maximum 
secrecy and minimum integrity of the process 
that attached the device. A single-level 
device with a range of access classes, as can 
be seen from this example, must have a trusted 
path of some sort in order to be used in a 
secure manner. If not, t~en the minimum and 
maximum access classes of the single-level 
device should be identical. 

Multi-level Devices. Any data input or 
output through a multilevel device must have 
an access class that falls within the range 
defined by the device's maximum and minimum 
access classes. Multilevel devices may handle 
data with a range of access classes. All data 
transmitted or received by a multilevel device 
has a security label attached or stored along 
with the data. 

In order for a process to attach (estab
lish communication with) a multilevel I/0 
device, the following relationships between 
the process's access classes and the device's 
access classes must hold to ensure that the 
process can send and receive information 
through the device without violating security. 

1) To receive ("read") information: 

Process maximum secrecy }= 

Device maximum secrecy 


Device minimum integrity }• 

Process minimum integrity 


2) To send ("write") information: 

Device minimum secrecy }• 

Process minimum secrecy 


Process maximum integrity }= 

Device maximum Integrity 


Process and Segment Interaction 

This section explains how the GEMSOS 
security kernel controls the ability of sub
jects, viz., (process, domain) pairs, to ac
cess objects (segments). A proce~s may create 
and destroy segments, may add segments to and 
delete segments from the process's address 
space, and may move segments between main and 
secondary storage. 

The total set of objects to which a sub
ject potentially has access is the subject's 
access domain. A subject's access domain is• 
determined by the subject's hierarchical ring 
level. The subset of the access domain that 
includes all objects to which, at a given 
time, a subject actually has access is called 
the subject's address space. Segments are 
brought into a subject's address space using 
the kernel call "makeknown_segment". 

Access Modes. The GEMSOS security kernel 
allows processes-to have execute only, read
execute, read only, and read-write access mode 
combinations to segments. Of these access 
mode combinations, all but read-write are 
considered to be "observe" type access modes. 
Read-write is both an "observe" type and a 
"modify" type access mode. The GEMSOS secur
ity kernel has no write only (modify only 
type) access mode for segments. 

A process may have only one access mode 
combination to a segment at a time, but may 
simultaneously have different access modes to 
different segments. The access mode a process 
has to a segment is selected by the process at 
the time the segment is brought into the sub
ject's address space. The actual type of ac
cess selected need only be a subset of the 
potential types of access allowed by the secu
rity policy. For example, if a process may 
potentially have both observe and modify type 
access to a segment based on the relationship 
between the process's and segment's access 
classes, it need not select the read-write 
access mode (observe and modify) to the seg
ment, but can instead select any of the ob
serve type access modes, since "observe" is a 
subset of its potential access types. 

In order to have any of the observe ac
cess mode combinations to a segment, a pro
cess's maximum secrecy access component must 
dominate the segment's secrecy and the seg
ment's integrity access component must domi
nate the process's minimum integrity. These 
requirements enforce the simple security and 
integrity "*" properties. In order to have 
modify access to a segment, the segment's 
secrecy access component must dominate the 
process's minimum secrecy and the process's 
maximum integrity access component must domi
nate the segment's integrity. These require
ments enforce the secrecy "*" and simple in
tegrity properties. In order to have both 
observe and modify access to a segment all 
four of these requirements must be met. 
Multilevel processes thus potentially have 
both observe and modify access to any segment 
whose access class falls within the process's 
range, while single-level processes are only 
permitted both observe and modify access to 
segments with the same access class as the 
process. 

113 



I 

Segment Naming (Aliasing}. In order to 
create or delete a segment, or to add a seg
ment to its address space, a process must tell 
the GEMSOS security kernel the process-local 
name of the segment. The method of naming 
segments is called aliasing. Aliasing allows 
processes to uniquely identify shared segments 
in the system while still maintaining securi
ty. 

A segment name consists of a system-wide 
component and a process-local component. The 
system-wide component is an index called an 
"entry number." A segment's entry number is 
the same for all processes, can be stored for 
future reference to the segment, and can be 
passed to and used by other processes. Were 
it not for the danger of covert information 
channels, the totally "flat" (non-hierarch
ical) entry number naming scheme would itself 
be sufficient for naming all segments. 

Due to the danger of covert channels 
however, the system-wide entry number of a 
segment is always relative to a "mentor" seg
ment. The mentor segment is identified by a 
process-local number that is not unique across 
processes, that cannot meaningfully be passed 
to another process, and that cannot be saved 
for future use (although the mentor itself 
also has a system-wide name, as described 
below). The paired process-local mentor seg
ment number and system-wide entry number con
stitute a process-local segment alias used by 
a process for identifying the segment to the 
kernel. 

A segment's alias is different from its 
("invisible") unique identifier (described in 
the section on segments). Only one segment 
can have a particular (mentor, entry) pair as 
its name at a time, but if that segment is 
deleted then another segment can be created 
with the same name. The unique identifier of 
the new segment, however, will be different 
from the old segment. 

A mentor segment may not be deleted until 
all segments named with that mentor have been 
deleted. This restriction prevents the prob
lem of "zombie" segments that, although they 
exist in storage, cannot be accessed or de
leted since they cannot be named. 

Segment Naming Hierarchy. The process
local segment alias, viz., (mentor, entry) 
pair, of a segment can be used to add the 
segment to a process's address space. When a 
segment is entered into a process's address 
space, the process assigns the segment its own 
process-local segment number. The segment may 
then itself be used as a mentor segment if its 
process-local segment number is used as the 
mentor in the alias of another segment. Re
cursive application of this naming scheme 
results in a "hierarchy" of segment aliases. 

Compatibility Property. The hierarchical 
segment naming scheme, using segment aliases, 
allows the GEMSOS security kernel to preserve 
system security by preventing the creation of 
covert channels through the use of segment 
names. Were processes able to name and there
by sense the presence or absence of any seg
ment in the system (as they would in a flat 
naming scheme), this would constitute a source 
of covert channels. High secrecy level pro-

ceases could signal low secrecy level proces
ses, and low integrity level processes could 
signal high integrity level processes, just by 
creating and deleting segments. 

The GEMSOS security kernel alias hier
archy, however, allows processes to name seg
ments only where that naming will not cause a 
covert channel. The hierarchy prevents covert 
channels by strictly ordering the security 
relationship between segments and their men
tors: 

Segment Secrecy }= Mentor Secrecy 
Mentor Integrity }= Segment Integrity 

These properties of the hierarchy have 
been called the Compatibility Property[4] (for 
secrecy) and the Inverse Compatibility Proper
ty (for integrity).(6] 

The compatibility and inverse compat
ibility properties are maintained because of 
the way segments are named. A segment name 
consists of a (mentor, entry) pair. The entry 
number is relative to that particular mentor 
and is considered to be information associated 
with the mentor segment. A segment's entry 
number, as a result, is considered to bave the 
same access class as the segment's mentor 
segment. 

Whenever a process tries to create or 
delete a segment, or to add a segment to its 
address space, the process must "observe" the 
segment's entry number to see if, in fact, the 
segment exists. Since entry numbers are in
formation associated with a mentor, a process 
must potentially have observe access to the 
segment's mentor in order to name the segment. 

A mentor's alias consists of another 
(mentor, entry) pair, its mentor is named in 
the same fashion, and so on recursively back 
to the "root" of the naming hierarchy. Each 
segment's alias can thus be thought of as a 
vector consisting of a series of entry numbers 
that together uniquely describe a "path" to 
the segment. Clearly, in order to name a 
segment~ a process must be able to name every 
mentor segment in the segment's path and it 
must therefore potentially have observe access 
to each of the mentor segments. 

If the compatibility property was not 
maintained and a segment's compromise did not 
necessarily dominate the secrecy of its men
tor, a situation might arise where a process 
that should have access to the segment based 
on the relationships between their access 
classes cannot have it, since the process 
cannot get observe access to the mentor. 
Every segment's secrecy, therefore, must domi
nate the secrecy of its mentor. Applying this 
rule recursively back to the root gives the 
result that secrecy is monotonically non
decreasing following a name path from the root 
to any segment. 

Every segment has a unique path. This is 
achieved by requiring all segments with the 
same mentor to have unique entry numbers. 
Whenever a process creates or deletes a seg
ment it specifies the name of the segment 
(conceptually "modifying" the segment's entry 
number to indicate the entry is in use or 
free). Since entry numbers are information 

114 




associated with a mentor, a process must 
potentially have modify access to the mentor 
in order to create or delete a segment's name. 

Because a segment name is a vector con
sisting of a series of entry numbers, changing 
any of the constituent entries would change 
the segment's name. A segment's name, there
fore, must have at least the integrity of the 
segment (i.e., must dominate the segment's 
integrity). Since a segment's name consists 
of a (mentor, entry) pair, and since the entry 
number has the same access class as the mentor 
segment, the integrity of the mentor segment 
must dominate the integrity of the segment. 
Applying this rule recursively back to the 
root gives the result that integrity is mono
tonically non-increasing following a name path 
from the root to any segment. 

To create a segment, a process requires 
the potential for both observe and modify 
access to the segment's mentor segment. Cre
ating a segment affects only the segment's 
name, which is associated with the mentor, and 
does not affect the contents of, or informa
tion associated with, the segment being 
created. A process that creates a segment, 
therefore, does not need to be able to access 
the segment it creates. 

To delete a segment a process requires 
the potential for both observe and modify 
access to the segment's mentor and, in addi
tion, requires the potential for observe ac
cess to the segment being deleted. This ad
ditional restriction is necessary because 
mentor segments may not be deleted. A process 
deleting a segment must therefore know if the 
segment it is trying to delete is a mentor 
segment, requiring the process to "observe" if 
any other segments are named using the seg
ment as a mentor. Those segments names, as 
stated above, are information associated with 
the mentor and possess the same access class. 

The Use of Volumes. Volumes are col
lections of segments useful for physically 
organizing and protecting information of simi
lar access classes. Volumes are brought into 
the GEMSOS security kernel using the kernel 
call "mount volume." The first time a volume 
is mounted, -it is uniquely associated for the 
life of that volume with a segment that will 
serve as the "root" mentor to segments on the 
volume. The segment used as a volume mentor 
may serve as a volume mentor to that volume 
only, and must not ever have been a mentor to 
other segments before the initial mounting of 
the volume. In this way all segments on the 
volume are guaranteed to have unique path
names, distinct from the pathnames of segments 
on other volumes. Were pathnames indistinct, 
the system could be spoofed by substituting 
one segment for another of the same name. 

Volumes may be unmounted and mounted 
repeatedly, but, to ensure unique pathnames, 
if ~ts mentor is deleted a volume may never be 
remounted. A volume whose mentor is deleted 
must be reformatted to be reused -- a process 
that destroys whatever information the volume 
might contain. A volume mentor segment may 
not be deleted while the volume is mounted. A 
volume may not be unmounted if any of the 
segments on the volume are currently "known" 
in any process's address space. These pre

cautions prevent the problem of "zombie" vol
umes (mount~d volumes that cannot be unmounted 
because they are not addressable) and "orphan" 
segments (segments addressable but not able to 
be swapped-out to disk). 

The names of all segments on a volume 
must have access classes that fall within the 
volume limits. Since some segments on the 
volume will have the volume mentor segment as 
their mentor, the volume mentor segment's 
access class must also fall within the maximum 
and minimum access classes of the volume. 
According to the compatibility property, sec
recy is monotonically nondecreasing and integ
rity is monotonically nonincreasing. When a 
volume is first mounted, therefore, the maxi
mum potential secrecy access component of 
segments on the volume is the volume maximum, 
but the effective minimum compromise access 
component becomes the mentor's secrecy. Simi
larly, the minimum possible integrity access 
component of segments on the volume is the 
volume minimum, but the effective maximum 
possible integrity becomes the the mentor's 
integrity. 

In order to satisfy the compatibility 
property, the secrecy access component of any 
segment created on a volume must dominate the 
secrecy access component of the volume mentor 
and be dominated by the maximum compromise of 
the volume. The integrity access component of 
any segment created on the volume must domi
nate the minimum integrity of the volume and 
be dominated by the mentor's integrity. These 
relationships are summarized below (where S 
indicates Secrecy, and ~ indicates Integrity); 

S(volume max) }= 

- ~(segment) }= 


~(volume mentor segment) 


~(volume mentor segment) }= 

~(segment) }= 


~(volume min) 


To prevent a covert channel caused by the 
mounting and unmounting of volumes, a process 
that mounts or unmounts a volume must have a 
minimum secrecy access component dominated by 
the secrecy of the volume mentor and a maximum 
secrecy access component that dominates the 
maximum compromise of the volume. The minimum 
integrity access component of the process must 
be dominated by the minimum integrity of the 
volume and the maximum integrity access com
ponent of the process must dominate the integ
rity of the volume mentor segment. That is: 

S(process max) }= 

- S(volume max) }= 


- ~(volume mentor segment) }= 

~(process min) 


~(process max) }= 
!(volume mentor segment) }= 
- !(volume min) }= 

- ~(process min) 

An example of the use of volumes is a 
floppy diskette environment. Each floppy 
diskette is a different volume with its own 
maximum and minimum access classes. Disks are 
labeled with these classes at the time they 
are formatted. The first time a diskette is 
used, the process that represents the diskette 

115 



user in the system creates a mentor segment 	 the proven process oriented approach, as re
for the diskette volume and mounts the volume. 	 flected in the security discussion above. Two 
Other users' processes may share the volume if other choices of particular importance relate 
the security policy allows them to "make 	 to the how multiprocessing is implemented, 
known" 	 the volume mentor segment in their viz., techniques for avoiding bus contention 
address spaces. After the volume is unmounted 	 and for preventing the kernel from being a 
and the diskette put away, the diskette may be 	 critical section bottleneck. These are dis
reused 	 so long as its mentor segment is not cussed below. 
deleted. If the diskette volume's mentor is 
deleted, the diskette must be reformatted to Bus contention is a potential performance 
be reused, destroying any information 	 con concern in the Gemini multiprocessor config
tained on the diskette. 	 uration, since all processors share a single 

bus. In reality however, only shared, writ 
SYSTEM PERFORMANCE MEASUREMENTS 	 able segments need be in a global memory on 

the shared bus. All other segments can be in ' 
The security-kernel approach to the de processor-local memory. Our use of a purely 

sign of a multilevel secure computer system virtual, segmented memory permits the kernel 
offers a solution to the size and complexity to determine exactly which are the shared, 
problems that have dogged other approaches. writable segments. The memory manager layer 
However, some previous implementations of internal to the kernel totally controls the 
security kernels ha•e resulted in systems with allocation to global memory to insure that 
discouraging performance, reportedly as much only the required segments are in global mem
as 75 to 90 percent below that of equivalent ory. This policy can require some transfer 
non-trusted systems. between local and global memory but this 

structure markedly controls bus contention by 
Design Factors allocating segments to the processor-local 

memory whenever possible. Our experience with 
After about a decade of work in the area sample applications is encouraging in that 

of trusted systems, substantial information is typically much less than 10% of the references 
available on factors that relate to some of of a processor are to a global memory. Thus, 
the disappointing performance that has been a number of processors can be effectively used 
experienced. Several of these factors are on a single, shared bus. 
discussed below. 

In most, if not all, previous security 
Language Efficiency. For verification kernel implementations, the kernel is a single 

purposes, security kernels are written in critical section. This means that the kernel 
igh-level languages which are chosen for can be executed by only a single process at 

f tures such as strong typing of data. Some a time, and in addition cannot be interrupted. 
of t ese languages tend to produce inefficient For a single processor, the adverse impact of 
code. In the case of the GEMSOS security this choice is somewhat contained in that 
kernel, the PASCAL language has been chosen there are no other processors that can be 
because of its support for evaluation. The forced to wait. However, even in the single 
compiler used is not particularly efficient, processor case real time response may be 
but is considered typical for microcomputer affected because there will be no response to 
compilers. Thus there is some performance an interrupt from an external device until any 
impact from choosing to use a higher-order call to the kernel, that has begun before the 
language, but no significant additional impact interrupt, is completed. The GEMSOS security 
from the choice to support security. kernel is designed to be close to interrupt

ible throughout its entire execution. 
Hardware Support. The different securi

ty classes of users and information must . be The impact of the critical section design 
distinguished and where incompatible, kept choice is much more severe in the multiproces
separate; when hardware support is inadequate, sor case. With a critical section, if one 
the supporting overhead restricts the band processor is executing in the kernel when 
width of information that a secure computer another processor wants to invoke the kernel, 
system can process. Previous work has identi  the second processor must wait in essentially 
fied[3] four general architectural areas where an "idle" condition until the first processor 
hardware features are particularly useful or completes its execution of the kernel call. 
necessary: process management and switching, The degradation is .clearly a function of the 
memory segmentation, Input/Output mediation, amount of service, viz., the number and type 
and execution domains. The Intel iAPX 286 of calls, that the application demands of the~1~~~~ 	 processor used for the Gemini computers pro kernel. In addition, the degradation in
vides a high level of hardware •upport in all creases as the number of processors increase.~{·:~{?~~ 
these areas. 	 In the GEMSOS security kernel there are limit

ed critical sections internal to the kernel 
System Architecture. The implementation itself that can result in contention, but the 

choices for organizing the internal structure kernel itself is not a critical section so 
and the environment for applications have a that multiple processors can execute simul
major impact on the performance of· any operat taneously in the kernel. 
ing system. Generally the approach in the 
GEMSOS security kernel has been to take advan Performance Results 
tage of the techniques found effective in the 
industry as long as these do not adversely Although the design approach to provide 
impact security. For example the choice of good performance is of interest, the real 
system computational model, e.g., process proof of any system is the actual measured 
oriented or capability based, can directly performance. We have taken some preliminary 
affect system response time. We have chosen measurements that focus on demonstrating (1) 

116 



the throughput performance for multiprocessor 
configurations and (2) the response to real
time inputs. It is emphasized that these 
measurements were taken on Version ~. and that 
several performance enhancements have been 
designed for Version 1 that have not yet been 
implemented. Although we believe the results 
illustrate the general behavior, these early 
measurements should not be considered a defin
itive characterization of the Gemini product. 

Multiprocessing Throughput. We have pre
pared a message processing emulation that 
runs on the multiprocessor environment. The 
emulation is reminiscent of a military com
munications processing application. The pro
cessing consists of a "front end processor" 
servicing multiple communication lines, and 
interfacing to an additional single communica
tion line. The demonstration is not connected 
to physical communication lines, but emulates 
receiving messages from an input buffer seg
ment and putting output messages in an output 
buffer segment. 

The details of the demonstration are not 
very important to the measurements, but will 
be briefly summarized. Messages are treated 
as a series of line blocks of 84 bytes each. 
Each message requires some amount of proces
sing and then a resulting message is placed in 
the message queue segment for "transmission" 
through the output buffer segment. A message 
processing process is created for each pair of 
input communication lines; this process does 
all the message processing and places the 
message, a line block at a time, in the mes
sage queue. In addition there is a single 
output process that takes messages, a line 
block at a time, and puts them in the output 
buffer. The kernel synchronization primitives 
for eventcounts are used to ensure that each 
message processing process waits for room in 
the message queue and to ensure that the out
put process takes the messages from the queue 
when they are available. 

All the processes and buffer segments are 
actually created and used. The only actual 
Input/Output is to a screen for interface to 
the test operator. A display is generated for 
each message line block, and at the end of the 
"test run" timing information based on the 
internal real-time clock is displayed. The 
demonstration is intended to show the ad
ditional capacity that can be provided by 
additional processors. A distinct "test run" 
is used for each processor configuration of 
from one to seven processors, emulating ser
vice for from two to fourteen input lines, 
with each processor servicing two lines. The 
test operator selects a parameter that con
trols the amount of processing for each mes
sage. This parameter determines the amount of 
processing that is in the demonstration appli 
cation versus the amount of processing in the 
kernel. The processing is simulated by re
peated execution of a mix of instructions 
taken from a communication processing applica
tion. 

An estimate is made of the percentage of 
the total processing time spent in the appli 
cation for various choices for the parameter 
that controls the amount of processing for 
each message. The measurements taken on a 
single processor are used to normalize the 

results for additional processors, so that the 
number of "effective processors" can be deter
mined. The number of effective processors 
becomes the primary figure of merit for the 
true effectiveness of the multiprocessing. 
Because of the multiprocessor contention with
in the kernel, this will be reduced if the 
application requires extensive services from 
the kernel, viz., as the percentage of appli 
cation processing is reduced. 

The results of a series of actual meas
urements as described above are summarized in 
Figure 1. This shows that for substantial 
application processing, there is a nearly' 
linear inc·rease in system throughput as the 
number of processors is increased. This 
clearly reflects that there is very little 
contention between processors for the shared 
bus. Futhermore, even when only 85% of the 
processing is in the application, there is 
still effectively six processors worth of 
throughput for a seven processor configura
tion. 

Real Time Response. We have prepared a 
set of tests that require real-time response 
to external input. For this test we process 
communications input in a way that requires 
character-at-a-time processing. For each 
character there is an interrupt and the system 
must respond before two additional characters 
are received, or else with the hardware used 
for the interface, the communication will be 
broken. This is not necessarily the preferred 
i~plementation for such communication, but 
serves as a useful test implementation. Thus 
if the interrupts occur frequently (i.e., for 
a high transmission rate), it is essential 
that the kernel be int~rruptible. The specific 
test is an implementation of the HDLC support 
for the X.25 protocol that is used for the 
Defense Data Network interface to a computer 
host. The test has no higher level "flow 
control" protocol, so the input data must be 
received in real time. 

The communication is synchronous, so that 
the actual amount of time available to respond 
to the interrupt depends on the transmission 
rate used. The other primary parameter for 
the test is the size of the HDLC frame used. 
Each HDLC frame includes about three bytes of 
overhead in addition to the frame size, so 
that the effective throughput will be in
herently reduced for small frame sizes. The 
test uses a kernel call for each HDLC frame. 
Thus the choice of frame size affects both the 
probability that the interrupts will occur 
while the kernel is executing and the amount 
of kernel processing required for each frame. 

The test is conducted using two Gemini 
computers connected with an HDLC link. The 
application programs in one computer makes a 
series of kernel calls to transmit a sequence 
of frames and the other makes a series of 
kernel calls to receive the sequence of calls. 
Figure 2 shows the results of the series of 
tests. For all the tests there were no com
munications errors, demonstrating that the 
kernel was able to support the real-time re
sponse at all the transmission rates tested - 
up to 64 kilobits per second. The amount of 
application and kernel processing per frame 
was constant for all the data points. For 
purposes of this test, unrealistically small 

117 




---------------------------------------------------------------------

frame sizes are included to illustrate that provide an implementation that is particu1arly 
even when the throughput is being limited by attractive for application in embedded sys
this processing, the character-by-character tems. We have also reported the results of 
real-time response is still maintained. preliminary throughput and real-time perform

ance measurements. These show effective real
SUMMARY AND CONCLUSIONS time capability and nearly linear increase in 

throughput as the number of processors is 
The design of the GEMSOS security kernel increased up through seven processors. Al

for the Gemini commercial product has been though these are on an early version of the 
influenced first by the Class B3 security kernel that will be improved, we believe that 
requirements and second by the objective of these results already demonstrate that a se
high performance. We have described the major cure system can also have high performance. 
security design choices and believe that these 

8 

PERCENTAGE OF 
7" PROCESSING IN 


APPLICATION
E 
F 

98% = 0F & 92% = +E 
85% = <>c 

T 
I .::. 
v 
E 

p 4 
R 
0 
c 
E 3 
s 
s 
0 
R .2. 
s 

0 

7 
NUMBER OF PROCESSORS 

Figure 1. Gemini Multiprocessor Enhancement 

118 



100 ---------------------------------------~-----

T e.:; BAUD RATE 
H 
R 64K = 0 
0 ¥> 19.2K = + 
u 2.4K = 0 
G 25H 
p 
u 16
T 

10 

K e.
B 
I 
T 4 
s 

:;p 
E 
R 2 

s 
E 
c 
0 
N 
D 

0 ~--------r----~-------~---------r--------r-·-------,--------·,.--------~ 
2 4 8 IB 32 64 1.2S 25B 

BYTES 8 BITS PER FRAME 

Figure 2. Gemini Real-Time Processing 

REFERENCES 

1. DoD Trusted Computer System Evalua
tion Criteria, CSC-STD-001-83, 15 August 1983, 
DoD Computer Security Center, Ft. Meade, Md. 

2. Schell, R. R., and Tao, T. F., Micro
computer-Based Trusted Systems for Communica
tion and Workstation Applications, Proceedings 
~ the 7th DoD/NBS Computer Security Initia
~ Conference, NBS, Gaithersburg, MD, 24-26 
September 1984, pp. 277-290. 

3. S.R. Ames, M. Gasser, and R.R. Schell, 
"An Introduction to the Principles of Security 
Kernel Design and Implementation," Computer, 
Vol. 16, No. 7, July 1983, pp. 14-22. 

4. D.E. Bell and L.J. LaPadula, "Computer 
Security Model: Unified Exposition and 
Multics Interpretation," Tech. report ESD-TR
75-306, AD A023588, The Mitre Corporation, 
Bedford, Mass., June 1975. 

5. M. Schaefer and R.R. Schell, "Towards 
an Understanding of Extensible Architectures 
for Evaluated Trusted Computer System Prod
ucts," Proceedings of the 1984 Symposium .2.!!. 
Security and Privacy, April 1984, pp. 42-49. 

6. K.J. Biba, "Integrity Considerations 
for Secure Computer Systems," Tech. Report 
ESD-TR-76-372, The Mitre Corporation, April 
.lil.'L.. 

7. M.D. Schroeder and J.H. Saltzer, "A 
Hardware Architecture for Implementing Pro
tection Rings," Communications of the Am:! 
Vol. 15, No. 3, March 1972, pp. 115-124. 

8. L.J. Shirley and R.R. Schell, "Mech
anism Sufficiency Validation by Assignment," 
~ 1981 ~ Security ~ Privacy, IEEE 
Cat. No. 81CH1629-5, April 1981. 

9. D.P. Reed, and R.K. Kanodia, "Synch
ronization with Eventcounts and Sequencers," 
Communications of the ACM, Vol. 22, No. 2, 
February 1979, pp.-rfS-124. 

119 



SECURE SYSTEM DEVELOPMENT AT DIGITAL EQUIPMENT: 

TARGETTING THE NEEDS OF A COMMERCIAL AND GOVERNMENT CUSTOMER BASE 


Steven B. Lipner 

Secure Systems Engineering 


Digital Equipment Corporation 

Littleton, Massachusetts 


INTRODUCTION 

This paper is a brief summary of 
Digital's perspective on the problems of 
security in computer systems and networks, 
and on strategies for achieving improved 
security in commercial products. The paper 
begins with an overview of the security 
problems faced by Digital and its customers. 
It then presents an overview of development 
directions and options in the areas of 
operating system security and network 
security. Finally, it presents some thoughts 
on the problems and opportunities that result 
from enhancing the security of a family of 
commercial products. 

SECURITY THREATS AND REQUIREMENTS 

In thinking about the security 
requirements of our government and commercial 
customers, we have identified a rough 
characterization of the threats to system 
security and the associated range of 
countermeasures. We have come to think of the 
security threats to computer systems in terms 
of: 

o 	 User irresponsibility; 
o 	 Probing; and 
o 	 Penetration. 

User irresponsibility refers to the class 
of incident that occurs when an authorized 
user of a computer system takes some action 
that, while precisely within his or her area 
of authorized activity, constitutes disloyal 
or criminal conduct. For example, a bank 
teller might falsify the balance of an 
accomplice's account, or an intelligence 
officer might steal a copy of a report that he 
or she was authorized to receive. In each 
case, the user is abusing the trust that the 
computer system's owner has vested in him or 
her. Cases of user irresponsibility have 
received a great amount of publicity in recent 
years. But to the extent that user 
irresponsibility represents an abuse of trust 
by an authorized person, it is almost 
independent of the computer or communications 
system involved. 

Probing is a term that we have "invented" 
to refer to cases where an individual takes 
advantage of a computer system that is poorly 
managed or whose security features do not 
allow it adequately to protect its resources. 
A system that is operated with unchanged 

"default" or distribution passwords is 
vulnerable to probing. So is one that only 
allows its users to share files with other 
users by making them accessible to all users 
on the system. Similarly, an uncontrolled 
broadcast local-area network is vulnerable to 
probing. In each case, one can take actions 
that are completely legitimate within the 
context of the computer system, but that have 
consequences that are unanticipated and 
unfortunate for the system's owners or 
managers. Most of the widely publicized 
incidents of "hacking" directed at computer 
systems appear to have fallen into the 
category of probing. 

Finally, penetration involves completely 
circumventing or bypassing a system's nominal 
controls to achieve some unauthorized 
objective. One might, for example, write a 
program that exploits a flaw in an operating 
system's parameter checking to gain control 
of a computer system in supervisor or kernel 
mode. Or one might break into the wire 
closet in an office building to install a 
wiretap on a telephone line. While probing 
involves gaining access to information that 
is readily available, penetration typically 
involves the application of a relatively high 
level of effort and malice. Particularly in 
the area of computer security, the incidents 
of penetration that we have seen are in the 
nature of security test results, rather than 
actual malicious incidents. 

If we consider the needs of the users of 
computer systems in the context of the three 
classes of abuse outlined above, we can draw 
the following conclusions: 

o 	 Almost everyone who uses a computer 
or communication system to process 
valuable information must worry 
about user irresponsibility. 

o 	 Users who operate their computer 
systems in open, shared, or exposed 
environments must worry about 
probing. 

o 	 To date, the problem of penetration 
has been of concern primarily to 
users who process national security 
information in relatively open or 
exposed environments. 

The classes of threat or abuse 
identified above seem to map reasonably well 
to the evaluation divisions and classes 
defined by the DoD Tfusted Computer System 
Evaluation Criteria • Since user 
irresponsibility is a problem of abuse of 
trust by an authorized individual, the need 
to counter user irresponsibility imposes 

120 



little burden on the trusted computer system. 
One installs one's controls at. the 
application level, perhaps supplementing them 
with a Trusted Computing Base (TCB) of Class 
Cl or C2. To resist probing, in contrast, 
one must have a better set of security 
features in the TCB and they must be 
effectively used. The mapping to the 
criteria is perhaps to classes from C2 to 82. 
Finally, a very robust system indeed, in the 
82 to Al range, is required to address a 
threat of penetration. One might envision a 
similar mapping in the area of computer 
network or communications security, but in 
the absence of criteria, it is harder to 
identify a definitive structure. 

SECURE SYSTEM DEVELOPMENT DIRECTIONS 

The characterization of threats to 
system security is one major factor in 
determining the direction of Digital's 
efforts in secure system development. Given 
that many of the computer systems that 
Digital has supplied are used in environments 
where their features and interfaces are 
relatively exposed to manipulation by inside 
or outside users, it is appropriate for those 
systems to be able to withstand threats of 
probing. Thus it is appropriate for the 
preponderance of Digital's computer systems 
to achieve the high ncn or low nsn ranges of 
the DoD criteria over time. 

The second major factor in determining 
plans and strategies for improved system 
security is the fact that Digital, as a 
commercial manufacturer of computer systems, 
has a large number of customers and Original 
Equipment Manufacturers (OEMs) who have 
developed software to run on existing 
operating systems and networks. Therefore, 
improved security must be achieved without 
sacrificing that software investment. The 
Digital strategy is to develop compatible 
security enhancements to its computer system 
products, rather than develop a new, 
incompatible line of "secure systems". 

The following paragraphs give a few 
specific comments on Digital's development 
efforts in the areas of operating system and 
network security. 

Operating System Security Enhancement 

Digital began research efforts in 
computer security in 1979 with a project to 
develop prototype security enhancements for 
the VAX/VMS operating system. These 
enhancements were intended to meet threats in 
the probing category, and were aimed at 
meeting both commercial and national security 
requirements. In addition to providing a 
broad set of security enhancements, the 
project also had goals to maintain complete 
upwards compatibility with the th~n curr~nt 
version of VAX/VMS, to not requ1re a maJor 
reimplementation of the operating system, and 
to have minimal adverse performance impact. 

The purpose of the research prototype was to 
evaluate the technical feasibility of these 
goals and to permit experimentation with 
various human interfaces to the security 
features. 

The prototype explored enhancements to 
VAX/VMS in the areas of discretionary access 
controls, mandatory access controls, 
authentication, auditing, and system 
integrity. In each area, it was found to be 
possible to enhance the security of VAX/VMS 
without undue impact on compatibility, ' 
performance or human interface. The 
prototype effort was completed in early 1981, 
and the results provided to the VAX/VMS 
Development Group. 

Expressions of interest by both 
government and commercial customers clearly 
justified an effort to improve the security 
of VAX/VMS. The research prototype pointed 
the way in terms of feature definitions, and 
a significant effort was undertaken as part 
of the development of VAX/VMS Version 4.~. 
Version 4 was released to customers in late 
1984 and includes major enhancements in the 
following areas: 

o 	 Log in and password management a 
number of controls have been 
introduced to encourage users and 
system managers in good password 
habits, and to make it more 
difficult to guess a password and 
log in to a VAX/VMS system without 
authorization. 

o 	 Discretionary access control an 
access control list mechanism has 
been introduced, supplementing the 
owner/group/world system, and 
allowing users to grant or deny file 
access to the granularity of an 
individual user. 

o 	 Auditing a selective auditing 
facility allows recording of 
security-sensitve login and file 
access events. 

o 	 Integrity improvements - a number of 
changes have been made to reduce the 
possibility that a user will violate 
the system's controls and gain 
access to information without 
authorization. 

o 	 Documentation - the 2Guide to VAX/VMS 
System Security consolidates 
information about the secure use and 
management of a VAX/VMS Version 4.~ 
system in a single handbook. 

VAX/VMS Version 4.~ has been submitted to the 
DoD Computer Security Center as a candidate 
for evaluation at Class C2. 

The prototype sec_ur,-ity~~nhancements . to 
VAX/VMS included mandatory controls on maJor 
storage objects. As part of the development 
of VAX/VMS Version 4.~, preliminary work was 
completed toward the incorporation of 
labelled protection on files, directories, 
and certain other objects, and toward 
introducing the notion of user security 
"clearance.n While these features are not yet 
supported parts of VAX/VMS, the development 
completed to date clearly indicates the 

121 



feasibility of a future version of VAX/VMS 
reaching Division B in the DoD Criteria. 

Security Kernel Development 

As the discussion above suggests, the 
demand for systems that can resist 
penetration has been relatively limited and 
specialized to date. Nonetheless, there does 
appear to be a growing set of users, 
especially in the national security 
community, for systems in the higher classes 
of the DoD Criteria. Accordingly, Digital 
has been exploring the possibility of 
developing a security kernel - a Class Al 
system - for the VAX architecture. 

It is a given that a security kernel for 
the VAX could not require the development of 
an entirely new set of layered products 
(compilers, data base systems, and the like), 
for the cost of such development would 
substantially exceed that of the kernel 
itself. Rather, the kernel would have to be 
compatible with the existing VAX/VMS layered 
products. In addition, because many Digital 
customers now use VAX/VMS to process 
sensitive information and have substantial 
investments in application programs and data 
bases, a kernel would have to support the 
continued use of those programs and data with 
no more change than is introduced in the 
transition from one major release of VAX/VMS 
to the next. 

The remaining concerns pertaining to a 
security kernel for VAX are performance and 
verification. While users who needed a 
penetration-resistant system would probably 
be willing to pay a performance penalty, it 
is clear. that they would not be willing to 
pay an unlimited price. A kernel for VAX 
should operate at a moderate performance 
penalty compared to VAX/VMS running on the 
same hardware. Finally, formal verification 
of any secure system poses a fearsome 
challenge especially to an organization 
whose experience runs to operating system 
development rather than verification 
research. 

Digital initiated advanced development 
of a prototype security kernel for the VAX 
architecture in mid-1982. The prototype 
embodies a strictly layered internal 
organization, and is tailored to provide an 
efficient environment for the execution of 
VAX/VMS appli:ation programs. It is 
implemented 1n the PL/I and Pascal 
programming languages, with machine-dependent 
and performance-critical components in 
assembler language. 

The initial phase of the VAX kernel 
prototype development was completed in 
mid-1984 when the system achieved the 
capability of running VAX/VMS layered 
products and application programs without 
modification. Since that time, experiments 
with the prototype have centered on continued 
assessment of the system's user interface and 
security characteristics. Digital has also 
initiated a "developmental evaluation" of the 

prototype kernel with the DoD Computer 
Security Center. 

Network Security Developments 

The evolution of the Digital Computing 
Environment is taking us to the day when it 
will be unusual for Digital to sell a 
computer system without also selling a 
network connection. While there are not yet 
formal evaluation criteria for the security 
of computer networks, it seems intuitively 
clear that the classes of threats outlined 
above have their analogues in the network 
environment. It is also clear that, in most 
environments, encryption is required to 
protect information in a network. 

Digital has developed a prototype 
end-to-end encryption capability for DECnet, 
based on the National Bureau of Standards 
Data Encryption Standard (DES). End-to-end 
encryption was chosen because of its 
flexibility with regard to alternative 
transmission media and "untrusted" network 
switches, and because broadcast networks like 
the Ethernet cannot support link encryption. 
Digital has been participating in ANSI and 
ISO working groups and committees on network 
security standards. We have also been 
examining encryption concepts that might be 
especially suited to local area networks. 

Although our work to date has employed 
the DES algorithm, we are very interested in 
NSA's new way of doing business. Thus we 
have joined the Commercial Comsec Endorsement 
Program (CCEP) and are examining the 
implications of this program on possible 
future network security products and options. 

OBSERVATIONS ON ENHANCING SYSTEM SECURITY 

Digital has been working with the DoD 
Computer Security Center and its predecessor, 
the DoD Computer Security Initiative, since 
the late seventies. We have been involved 
with the CCEP for a much briefer period 
less than a year at this writing. We have 
enjoyed our contacts with the DoD security 
evaluation teams, and we believe that our 
secure system development efforts have 
benefited from them. 

Some of the factors that have influenced 
the character of our secure system 
development and evaluation activities may be 
of interest, both to other companies that are 
planning to develop secure systems, and to 
government agencies and contractors involved 
with the secure system development and 
evaluation processes. Among these are: 

o 	 The compatibility constraints on our 
commercial products, and on any 
systems that must interoperate with 
them are fairly high. These 
constraints can influence the cost, 
schedule and feasibility of 
developing a secure system. 

122 




o 	 The lead times for the development 
of our products are relatively long. 
It is possible for government 
security requirements to· change 
faster than we can build products, 
with the result that no product that 
we deliver complies with the 
requirements current at the time of 
its completion. Such a situation is 
neither in the government's interest 
nor ours. 

o 	 The product development process is a 
conservative one, relying on early 
and accurate estimates of 
development cost and schedule. The 
introduction of technology at the 
"research" or "advanced development" 
level of maturity is usually 
inconsistent with the development of 
a commercial product. Historically, 
formal security specification and 
verification have been at this ~~vel 
of maturity. 

o 	 A significant fraction of the market 
for our products is an international 
one. If building security into our 
products makes them subject to 
export controls that would not 
otherwise apply, that is an argument 
against the security enhancements. 
This is a tradeoff of which both we 
and the government must be aware as 
we define security requirements, 
export control policies, and product 
content. 

o 	 As a commercial manufacturer., we 
deal with classified information 
only in relatively contained areas. 
A secure system development effort 
that required us to handle such 
information in many of our design, 
manufacturing and support groups 
would have a major impact on our way 
of doing business, and be 
impractical. 

Digital is expending significant 
resources to improve the security of its 
products. Our approach is an evolutionary 
one that is aimed at providing a very broad 
base of products that are resistant to 
probing, combined with selected high-security 
systems for use in environments where 
penetration is a significant concern. 
VAX/VMS Version 4.0 is the first product of 
this strategy. Over time, additional 
products will provide further demonstrations 
of our commitment to security. 

REFERENCES 

1. 	 Departmen.t of Defense Trusted 
Computer System Evaluation Criteria, 
CSC-STD-001-83, Department of 
Defense Computer Security Center, Fort 
George G. Meade, MD 20755, August 
1983 

2. 	 Guide to VAX/VMS System Security, 
AA-Y510A-TE, Digital Equipment 
Corp., Maynard, MA 01754, September 1984 

123 


CAVEAT 

This paper presents the opinions of 
its author, which is not necessarily that 
of Digital Equipment Corporation. 
Opinions expressed in this paper must not be 
construed to imply any product commitment on 
the part of Digital Equipment Corporation. 

The following are trademarks of the 
Digital Equipment Corporation: DEC, DECnet, 
DIGITAL, VAX, VMS. 



DIAL-UP SECURITY UPDATE 

Eugene F. Troy, COP 

National Bureau of Standards 


Institute for Computer Sciences and Technology 

Building 225, Room B-266 

Gaithersburg, MD 208·99 


(301)921-3485 


INTRODUCTION 

There have been many recent stories in the 
news media about the widespread ability of 
computer enthusiasts to get into other 
people's computer systems. The most common 
access path for these so-called "hackers" is 
via the common dial-up telephone and the 
communications ports which are connected to 
almost every business computer system. 

How do we protect against this threat? This 
presentation describes a number of ways that 
more communications protection can be 
achieved for business computers. A wide. 
variety of hardware devices are on the market 
today which can do a creditable job of 
protecting dial-up lines entering a 
computer. These devices perform the 
communications protection function in several 
different ways, which can be confusing to the 
potential purchaser. There is also a 
significant variety in the ways that the 
devices interact with users to perform 
their security functions. There are some 
traps for the unwary purchaser, also. Many 
of the devices tend to be inefficient or 
require the user to do additional steps that 
may not be acceptable. The prices vary 
considerably. Other features, particularly 
the level of protective strength, vary
substantially among the devices. 

This presentation will help the system 
manager to make an informed decision 
regarding whether or not additional security 
is needed for the computer system's dial-up 
lines. It will also help the manager
determine what kind of mechanism is most 
suitable to provide the necessary level of 
protection. The six different hardware 
approaches that are presently available to 
perform dial-up security will be explored in 
detail. 

4PEOUATE CONTROLS FOR DIAL-Uf COMPUTER ACCE~~ 

There are certain minimum controls which 
should be in place in a computer system in 
order to provide a good level of protection
from intruders via dial-up communications. 
The advent of the hackers raised into public 
consciousness the potential vulnerability
from this source, although the weaknesses 
have been there all along. 

Dial-Up versus pirect-Connect Access 

Any user's terminal or printer is connected 
to a computer by means of some form of 
communications. The very nature of dial-up 
communications implies that the user may be 
anywhere in the world that the common-user 
telephone network reaches. It also implies 

that the computer must assume the job of 
screening incoming calls, because anyone in 
the world who comes into possession of the 
computer's dial-up port telephone number may 
attempt to gain access. 

Direct ProtectiQD gf CQmmunicatigns Circuits 

Using hardware mechanisms to protect the 
computer's dial-up ports and its external 
communications is a fairly new idea for 
almost everyone who does not work with 
military or government secrets. If the 
communications circuits are directly 
protected, the organization is less dependent 
upon the routine and often weak operating 
system access control mechanisms to shield 
the system from intruders. As the 
sensitivity, criticality, and need for 
accuracy of the information in a system with 
dial-up capability increases, this special 
form of protection becomes more important, 
and can be performed by means of various 
hardware techniques. 

Special Measures tp Prptect Pial-up Pp[t§ 

Three security measures are extremely 
valuable in protecting a computer from the 
threat of intruders via the dial-up telephone 
system. Not all computer systems are 
presently able to provide these capabilities 
without modification to the operating 
system. If the three measures are not 
available, it is possible to provide overt 
protection by addition of special external 
devices which are discussed in the 
presentation. There is a fourth measure that 
may be used to protect the information being 
transmitted from disclosure or tampering. 

Highly Effective Identificatipg. The 
keystone of all access control is effective 
identification and authentication of users. 
This generally mean~ the use of a well 
administered user name and password process. 
If these standard mechanisms are not 
available or are weak, a number of mechanisms 
can be used to provide this capability. Most 
external dial-up protection devices 
concentrate on this area. 

Adequate Eyent Lpggigg. The system's own 
journaling capability should be used to 
monitor communications events in order to 
identify user difficulties and intrusion 
attempts. If this is not possible, as is the 
case with many smaller systems, several 
devices can be fitted to perform the function 
in connection with access control. 

Limiting narute Fgrcen Attacks. Mechanisms 
that limit the effectiveness of "brute force" 
repetitive attacks will significantly reduce 
the likelihood of a successful attack from 

124 




an intruder. Brute force is the single most 
common approach that an unsophisticated 
attacker will use. Any mechanism which 
prohibits more than a very small number of 
log-on attempts per connection is very
useful. 

~rotecting Information from Disclosure. In 
addition to access controls, it may be 
appropriate to protect the information being 
transmitted between terminal and computer 
from disclosure or tampering. It is very 
easy to intercept stand~rd dial-up traffic by 
means of wire taps. It requires only a 
slightly more sophisticated intruder to 
modify and retransmit information that has 
been intercepted, for the purposes of fraud. 
Mechanisms that encrypt the information on 
the line can prevent this condition if it is 
viewed as a problem. 

ONE-END 0 PORT PROTECTION; 

STRAtEGIES AND FEATURES 


If the internal software controls of the host 
computer are inadequate to protect it from 
penetration by dial-up intruders, a 
straightforward means of improving access 
control is to add an external device to the 
communications link which will perform an 
independent call-screening function. 
Typically, this type of device is totally
independent of the computer itself. 

Depending on the manufacturer's approach, the 
protection device may be placed on either_end 
of the communications circuit. Most vers1ons 
are installed at the host computer end, but 
some newer devices are designed to be 
connected to the user's terminal. 
Additionally, such a device may be designed 
to perform its function on the digital signal
emanating from host or terminal, or it may be 
placed on the "analog side", between modem 
and telephone set. Some versions are even 
incorporated directly into a modem, as parts 
of a single unit. There are various reasons 
for these placements, depending upon system 
configuration and security needs. 

The following discussion will separate these 
devices into two categories, First, the 
devices which may be placed on the host 
end of the circuit will be described. These 
devices are properly called "port protection 
devices", or PPDs. Second, a newer and 
more flexible type of device, called 
"security modems" will be discussed, 

Direct Protection of Dial-up Lines -
Port Protection Deyices 

A port protection device (PPD) is any 
external device fitted to a communications 
port of a host computer, which is intended to 
provide the function of authorizing user 
access to the port itself, prior to and 
independent of the computer's own access 
control functions. It is specifically 
intended to help control terminal access when 
dial-up communications are used. Four 
primary features of PPDs are: 

Password Tables. All PPDs require the user 
to enter a separate authenticator 
(essentially a password) in order to access 
the computer's dial-up ports. This set of 
password tables external to and independent
of the computer's operating system is 
characteristic of PPDs and is available on 
all models. This feature is the primary
protection given by PPDs. In effect, these 
devices do little more than establish 
password protection for the computer's ports. 

Dial-back to Call Originator. Some users 
erroneously refer to PPDs as "call-back 
devices". This is incorrect, because not all 
PPDs either have or require that capability. 
The function of call-back or dial-back to 
call originator (the potential system user) 
is available on some models, but may have 
significant drawbacks in practice. Its 
purpose is to operate as a second level of 
user or port authentication beyond the 
standard PPD password table. In effect, this 
provides a second hurdle for the potential 
user to surmount before gaining system 
access. If call-back is used, the sequence 
of user connection is as follows: The user 
dials the computer access number and is 
connected to the PPD. The PPD requires the 
user to enter a PPD table password, and then 
hangs up the line. The PPD searches its 
table and, if the password is found, 
identifies the user's telephone number that 
matches the password. The PPD then initiates 
a return call to the user and, once 
connected, becomes passive in the circuit for 
normal operations. If the PPD does not find 
the password in its table, this error is 
logged in some way as a security violation. 

Hiding the Port's Existence. A PPD may 
"camouflage" the computer's dial-up ports so 
that the identity or even existence of the 
computer is not evident to an unauthorized 
caller. This is commonly a side-effect of 
some password entry methods, but may be 
separately engineered. Some PPDs, which use 
"analog-side" placement in the circuit, 
respond with a synthesized voice when 
connected to the user •. Other PPDs, which are 
placed on the digital side of the modem, may
display special screens on the user's 
terminal upon connection that are either 
blank or ambiguous, and which require the 
user to know what to do next to gain access 
'to the system. 

~ournalling gf Security Eyents. It is 
desirable to log and examine security-related 
events which take place, especially in the 
dial-up communications circuits, This will 
provide the system administrator with the 
ability to make a measured response to any 
security threat. Many models of PPD provide 
some form of logging or other warning signal 
of dial-up attack. T~is varies all the way 
from display lights on the front panel of the 
device to the use of a personal computer's
disk files to record all types of user 
connection information. Information that 
should be logged for a given system varies 
with the sophistication of system and local 
administrative requirements. For example, 
systems which use the call-back approach may
need to record enough information to generate 
telephone usage bills to 7yste.lll u~ers, 

125 



because the host incurs all telephone toll 
charges with this approach. 

Typical Examples of Port Protection Deyices 

The National Bureau of Standards (NBS), which 
sponsored the development of this 
presentation, does not provide evaluations of 
products or services to the general public. 
Mention of products in this presentation in 
no way constitutes endorsement of them by NBS 
or the author. Products described below are 
typical members of a class, and are discussed 
for general information only. 

PPDs range widely in terms of price, basic 
capability, and additional features. The 
potential purchaser must closely evaluate 
his/her security needs in terms of such 
devices, because any of them may be 
appropriate in specific circumstances. The 
easiest way to categorize them for purposes 
of discussion is in terms of the number of 
communications lines or ports a given PPD is 
designed to protect. 

A Single-port PPD; Optimum Electronics 
DL-125. Many dial-up security applications 
require the protection of a single port in a 
very straightforward way. Examples would be 
personal computers with auto-answer modems 
set up for remote operation, or larger 
computers with only one or two dial-up 
ports. There are a large number of PPDs 
which provide basic password-table security 
on one port for a nominal cost. The Optimum 
Electronics DL-125 is one of these. It 
protects a single port by means of a 25-entry
password table, with optional expansion to 
100 entries. There is no call-back, 
camouflage, or logging capability. The unit 
is placed on the digital side of the modem, 
and uses the user's terminal keyboard for 
password entry. Because of this feature, 
passwords can be made up of the full 
128-character ASCII set, which provides 
greater potential security than the numeric 
password used on PPDs placed on the analog 
side. The current price of the unit is 
$275. A separate modem is needed. 

A Small Multi-port PPD; Backus Dial-Safe 3
It is recommended that for control purposes 

no more dial-up ports be assigned than 
necessary. If the computer uses less than 16 
ports for this purpose, as is common with 
small minis or multi-user micros, there are a 
few PPDs which can handle all the lines at 
once. The Backus Dial-Safe 3 is designed to 
protect from one to three ports. Its user 
password table contains 65 entries, 
expandable to 150. This table also contains 
the call-back telephone number dialing 
sequence for each user. There is no port 
camouflage capability, but the Backus does 
provide a Centronics-compatible printer port 
for logging purposes. It uses the user 
terminal keyboard for password entry. This 
system costs $1295 total, which works out to 
$424 per port. No modems are provided. 

A Large Multi-port Model; Digital Pathways 
Defender II. For larger systems, there are a 
few units which can handle upwards of 16 
dial-up lines. These are rack-mounted units, 
which can be configured to meet a variety of 

needs. Thi PPD which has the largest 
capacity is the Digital Pathways Defender 
II. It h•s a standard configuration that 
will handle 48 ports, but it is incrementally
expandable to 384. Its password and 
call-back tables accommodate 1 ,000 users, but 
may optionally contain up to 4,000. The 
Defender· can use an IBM PC as its supervisory 
terminal and logger. It is very flexible in 
terms of the ways that users interact with 
it, permitting both terminal and telephone
touch-pad entry of password information. 
Devices in this range typically have a number 
of other standard or optional security
features, such as selectable tables which 
specify permitted user hours of operation.
The Defender also has optional encryption and 
token-method user authentication (discussed 
in the next section). In the standard 
48-port configuration, this unit costs 
$9,800, or $204 per port without modems. 

A Small Modem with PPD Capability; 
Lockheed-Getex GTX-100. 
A potentially important new trend in dial-up 
communications protection is the addition of 
protection features to standard items of 
equipment, such as modems, multiplexers, and 
port expanders. This can represent 
significantly improved security for lower 
cost than if the functions were purchased 
separately. The Lockheed-Getex GTX-100 is a 
standard Hayes-compatible asynchronous 
300-1200 baud modem with port protection
designed into it. This unit has table 
capacity to hold 16 user passwords and 
call-back sequences. Call-back is an 
inherent feature of the device, and is 
performed uniquely. The user dials up the 
device, which then prompts for the user's 
telephone number and hangs up. Then the 
GTX-100 searches its telephone number table 
for a matching password. If both telephone 
number and password are found, then it calls 
the user back and prompts for the password. 
If the password is given properly, the 
GTX-100 enters normal mode as a modem. If 
the password is not correct after a specified 
number of tries, the unit will flag the 
matching telephone number and refuse to 
connect with it until reset by the security 
administrator. This unit costs $800 to 
protect one port, which includes the cost of 
the modem. 

Protecting Computers from the Terminal End -
Security Modems 

Several new devices which represent a new 
approach to dial-up protection have recently
entered the marketplace as part of the trend 
towards combining security functions with 
standard communications units. These devices 
are special-feature "security modems" for 
user terminals. The approach is similar to 
the Lockheed-Getex PPD described above, in 
that the devices incorporate security 
functions into an asynchronous modem. 

Features that are characteristic of security 
modems include the following. They refuse to 
operate as normal modems for dial-out 
purposes until the user enters a specified 
password. Passwords are correlated in a 
secured table inside the modem with dial-out 
telephone number sequences necessary to 

126 



connect the user with specified host 
computers. The table also has the ability to 
the complete log-on sequence for transmission 
once connection is made. This simplifies the 
job of connection for users, because all they 
have to do is enter the appropriate 
password. The unit will then automatically 
dial the computer and make connection with a 
pre-selected user account. Users have no 
co~trol over the connection information 

communications traffic may be needed. In 
these cases, the "two-end" appr6ach is 
required. In this approach, there is a 
security device attached to or used with each 
user terminal plus a matching device or 
softwa~e attached to or used by the host 
computer. 

Increased Security With Two-end peyices 
.stored in the security modems. The security 
administrator can connect with these units 
remotely and change the information whenever 
desired. 

Examples of Security Modems 

Recent product announcements indicate that 

modem manufacturers have discovered the 

marketability of embedded security features. 

Several major vendors have added security 

into their modems, often at no apparent 

increase in cost. 


.An Asynchronous Security Modem; 
Racal-Jadic Maxwell 2400PA. This unit is 
typical of the new products being announced. 
It is a 300-1200-2400 baud modem which stores 
complete connection and log-on information 
for 15 accounts. The information is remotely 
entered by the security adminstrator. In 
addition, the unit has a secret serial number 
that can be checked as a terminal identifier 
by the host computer. It costs $995 for one 
port, including both security and modem 
functions. 

A Single-port PPD and Security Modem; 
Cermetek Security Modem. 
Perhaps even more indicative of the new trend 
is the Cermetek device. This is a standard 
Hayes-compatible 300-1200 baud asynchronous 
modem which can operate in three different 
modes: as a standard asynchronous modem, as 
a security modem on the user end of the 
dial-up circuit, and as a call-back PPD with 
modem on the host computer end. A low-cost 
device like this would work well with 
personal computers which may operate at times 
as dial-up terminals for host computers and 
at other times as auto-answer devices for 
polling or information entry by remote 
units. In the terminal "security modem" 
mode, the Cermetek can store up to 16 host 
computer telephone numbers and accounts. As 
a PPD, its table has room for 25 user 
passwords and telephone connection 
sequences. The Cermetek costs $695 for one 
port, including .both security and modem 
functions. 

8 TWO-ENP 8 PROTECTION APPROACHES 

FOR ADQITIONAL piAL-UP COMMUNICATIONS 


~ECURIIY 

The "one-end" security devices discussed in 
the previous section were designed to improve 
dial-up access control by adding a password 
screen to the communications port. In 
higher-security systems, this level of 
control may still seem inadequate. More 
positive identification of the specific 
terminal or user may be needed. Or a measure 
of resistance to snooping or tampering with 

When the "two-e~d" security device approach 
is used, the level of communications security 
can rise markedly and user convenience may 
improve, but there may be a substantial 
increase in cost plus other drawbacks. 
Further, there may simply be no risk basis 
for installing that degree of security in a 
given system. All these issues must be 
examined before any purchase decision is 
made. 

Degree of Additional Security Afforded. Most 
of the techniques used fdr "two-end" security
invo.l ve the use of highly complex algorithms 
uniquely associated with specific terminals 
or users. In some cases, these algorithms 
are coded onto integrated circuit chips which 
are encased in some form of "token", such as 
a plastic card. In others, the algorithms 
are embedded in the circuitry of a box that 
is connected directly to the communications 
link. The premise is that the hardware or 
software at the host computer end "knows" 
what algorithm or special token is associated 
with each user or terminal. The host can use 
this algorithm to perform a mathematical 
computation and then challenge the user or 
terminal device to do the same. If the 
results generated at the user terminal end 
match those generated by the host end, then 
the host has authenticated the identity of 
the communicating party with a high degree of 
certainty. This approach does not require 
that the user remember anything which may be 
written down or given to someone else. 
The units are designed specifically to 
prevent copying of the token or authenticator 
device. 

Tradeoffs in Cost and Flexibility. In all 
cases, the "two-end" approach requires that 
each remote user or terminal possess a device 
that matches in some way with a device or 
software at the host. This substantially
increases the cost to secure any given 
dial-up communications network. The costs 
for these systems vary widely according to 
level of security provided and other 
features. Costs can range as high as $6,000 
per user-host link if sophisticated 
concealment of the traffic is needed in 
addition to access control. Most of the 
"token" authentication devices cost between 
$50 and $100 per user, not counting the 
equipment or software required at the host 
end. 

Two-end security devices break out between 
those which provide user or terminal 
authentication (access control) and those 
which provide concealment safeguards against 
eavesdropping or tampering. The latter also 
inherently perform a strong access control 
function. The potential purchaser must 
determine whether the concealment function is 
necessary. 

127 



Devices in the "two-end" category are 
generally easier to use than the "one-end", 
primarily because no passwords must be 
remembered and connection delays can be 
lower. On the other hand, the approach is 
more complex. There are more items to break, 
become misplaced, install, and maintain. 

User Authentication ntokensn 

Numerous new devices are based around the 
concept of a unique "token" for each system 
user. Each token has a special algorithm 
or some other unique and non-copyable 
identifier embedded in it. The host computer 
can challenge the user in some way that can 
only be answered correctly by means of the 
token. 

There are two varieties of user 
authentication tokens. The first and simpler 
approach is hand-held, which requires no 
terminal attachments. The token may be in 
various forms. Some examples now on the 
market include a calculator with special 
circuitry, a "smart" plastic card which 
displays the authenticator continuously, and 
a photo-sensitive wand which is designed to 
read and interpret special terminal displays 
sent by the host. With this approach, the 
user must read the authentication information 
from a liquid crystal display (LCD) on the 
token and then enter it in the terminal when 
challenged. In some cases, the user must 
first read a challenge string on the terminal 
and enter it into the token via keys. The 
host reads the authentication information and 
compares it to the "right" answer it has 
generated before approving access. 

The second authentication approach is simpler 
to use but may be more costly. It requires 
the user to place his/her token into a device 
connected to the terminal that can read the 
token and transmit information to the host. 
The token can be in the form of a plastic 
card or key with embedded microcircuitry, or 
in a less secure approach it can be a plastic 
card with a magnetic stripe. 

Terminal Deyice Authentication Methods 

Often, terminals which are placed in areas 
well protected by a physical security 
perimeter are used in a dial-up mode. 
Commonly, there is no need to make special 
identification of the users beyond normal 
log-on procedures, but it would be valuable 
to verify terminal location and 
identification. There are three basic 
approaches to positive identification of the 
user terminal by "two-end" techniques. 

Many standard terminals or workstations 
already have provisions for internal terminal 
identifiers, also called "answer-back 
memory". These are either fixed and 
pre-assigned identifiers (hard-wired), or 
more commonly, memory locations in firmware 
that can be changed to the desired code 
sequence during terminal set-up. It is 
usually possible to secure the code once it 
is entered so that it cannot be read or 
copied by the user. The host system can send 

a standard ASCII code (ENQUIRE) to the 
terminal that will cause it to respond with 
the "answ~r-back memory" contents for 
authentication. Some commercial software 
telecommunications packages for personal 
computers (for example, Crosstalk XVI) have 
provisions to emulate this feature. Also, 
some modems (for example, the Racal-Vadic 
Maxwell described earlier as a security 
modem) have this feature. 

A second approach to terminal identification 
involves the use of matching pairs of devices 
that are inserted in the communications 
circuit. One device is placed between the 
terminal and modem, and the other device is 
placed on the host computer's port. An 
example is the Microframe 11 DataLOCK and 
DataKEY" system. The DataLOCK is a four-port
unit for the host end which is able to 
generate challenges to the small portable 
DataKEY units that connect to the terminals. 
Each DataKEY is uniquely encoded by the 
DataLOCK, and can be re-coded at any time. 
The DataKEYs also require physical unlocking 
by use of a standard brass key.
A newer version of the DataKEY unit, called 
the MagnaKEY, has a slot for magnetic striped 
cards, so that it can be used for user 
authentication as well. This represents the 
third approach to terminal authentication, in 
which a user's token can be inserted into the 
terminal authenticator unit. The "Codercard" 
is a similar approach, which requires each 
user to insert a thick plastic card with 
embedded identification circuitry into the 
terminal unit. 

Encryption Deyices 

The process of encryption is simply 
"scrambling" information in a pre-determined 
way so that it is unintelligible to anyone 
who does not know how to "unscramble" it. 
This process has been used by governments for 
centuries to protect secrets while in 
transmission, but has been little used 
elsewhere. Increasingly sophisticated ways 
have been invented to do encryption, because 
attempts are always being made by intruders 
to "break the code". The newer encryption 
methods can only be done by computers or 
special microcircuitry. 

There is a st•ndard method that has been 
·developed by the National Bureau of Standards 
for use within the Federal Government and 
elsewhere, called the Data Encryption 
Standard (more commonly referred to as DES). 
This method uses a highly complex algorithm 
that has been well known for nearly 10 years 
but has not been broken, although many 
mathematicians have attempted to do so. DES 
requires the entry of a 64-bi t "key 11 sequence 
for encryption and decryption. Since each 

11 on 11bit can be or "off", this makes an 
extremely large number of keys possible, 
wherein lies the strength of DES. It is 
essentially impossible to use even 
computerized brute force techniques to 
discover the key used to encrypt a given 
message. 

The use of encryption techniques for dial-up 
communications represents the highest form of 
security wh{ch can be applied to it. 

128 



Encryption has several attributes which cover 
most communications security needs. First, 
it secures the information passing over the 
communications link from disclosure to 
snoopers. This is the primary rationale for 
using encryption. Second, encryption 
effectively assures integrity of the message, 
so that tampering or inadvertent errors 
cannot take place. In modern, computer-based 
encryption processes, any modification of 
the encrypted message at any point will · 
result in all subsequent portions of the 
message to be garbled, so the change will be 
noticed immediately by the recipient. Third, 
the uniqueness of the encryption key which 
must be shared by sender and receiver 
enforces an extremely high degree of user 
identification. If both sender and receiver 
share a single key, they must have exchanged 
it or been assigned it by a third party. 

There is one common problem with 
communications encryption. If the key used 
by sender and receiver is the only real 
security, then the problem of exchanging keys 
so that both know which key to use at a 
particular time becomes paramount. Most 
encryption systems rely on the users to 
transfer keys manually in some way, which may 
or may not be secure. The intruder may have 
an opportunity to intercept the key while it 
is in transit. Encryption security quickly 
becomes a key management problem. 

An Innoyatiye Encryption Approach; 
Isolation Systems •Enigma•. There are 
numerous encryption devices on the market. 
One interesting device represents a trend 
towards more practical applications of 
encryption because it handles the key 
management problem. This unit is the 
Isolation Systems "Enigma", which makes use 
of drop-in circuit boards for IBM PCs to 
create a secure dial-up network. Each board 
is pre-programmed by the system security 
administrator with a profile that specifies
which of the other stations on the network 
each user may contact. Each Enigma board 
consists of encryption circuitry, a 
microprocessor with secured memory, and a 
standard modem with both auto-answer and 
auto-dial capabilities. The boards can 
communicate with each other in a secure way 
to exchange encryption keys to be used for a 
single communications session. If one user 
wants to connect with another to exchange 
sensitive information, the user calls up a 
special program and requests connection. 
The Enigma board then determines whether the 
user may make the connection. If so, the 
board places a telephone call to the other 
system's Enigma board, exchanges session keys 
encrypted in a higher-level encryption key 
the two boards share, and enters into the 
communications session with the session keys 
operative. 

Message Authentication Methods 

One "two-end" dial-up security approach has 
been designed specifically for electronic 
funds transfer (EFT), although it can be used 
in other applications. In EFT, it is 
important to verify that the contents of a 
message have not been changed, because these 
messages are in effect electronic chebks 

which are subject to fraud or embezzlement. 
The banking industry, in conjunction with the 
National Bureau of Standards and the American 
National Standards Institute (ANSI), has come 
up with ANSI Standard X9.9 for Message 
Authentication in EFT. This standard uses 

-DES encryption to encrypt selected fields in 
an EFT message to ensure that the message is 
not altered in transit. The encrypted 
information is brought together to form the 
"message authentication code" (MAC), which is 
then appended to the clear-text message to 
serve as a signature. The same process of 
partial encryption of significant portions of 
a pre-formatted message can be used in a 
number of business applications for 
verification purposes. 

RECOMMENDED COURSES QF ACTIQN 

A number of different alternatives for 
improving dial-up security via add-on devices 
have been presented. It is important to have 
a way of determining which, if any, of the 
devices have enough merit for the 
organization to warrant purchasing them. 
Each device provides enhanced dial-up 
security at some cost, in real dollars or in 
efficiency. 

The problem of determinining dial-up security 
needs can be a very complex issue. Few 
persons outside of the military establishment 
are trained to make decisions about 
communications security. This section 
provides guidance on making the right dial-up 
security decision. The following set of 
evaluative questions should help focus the 
decision process and aid the system manager 
to settle upon a final course of action: 

Does the Computer System Need Better Dial-up 
Security? 

The first question to ask is: "How bad off 
are we now?" The following criteria are 
suggested to help determine whether the 
computer system even needs supplemental 
dial-up communications security devices: 

Defining Security Requirements for 

Information Flowing on Dial-up Circuits. 

There are three measures which can be used to 
determine security requirements for 
collections of information or the systems
which process them. The first is sensitiyity 
to disclosure. There may be some negative 
impact that could occur if the information in 
the system were disclosed to unauthorized 
persons, such as dial-up intruders. This can 
be measured in terms of degree of impact.
The second measure is criticality or 
availability. There often is impact to the 
organization if the information or processing 
system is not available within a specified 
period of time. The third security 
measurement factor is integrity or fragility 
to modification. If the information must be 
error-free to be useful or if it is the 
potential target of fraudulent modification, 
this factor is involved. 

129 



Characteristics of a Dial-uo Circuit Needing 
Communications Security. Dial-up
communications security devices can reduce 
organizational impact from all three security 
factors noted above, especially sensitivity 
and integrity, If the potential exposure via 
dial-up communications networks is high, that 
is, if intruders could gain access to the 
system to affect it or if they could tap or 
interfere with communications and thereby 
cause harm, then additional security
protection is needed. 

A dial-up circuit needing strong 
communications security is one that has one 
or more of the following characteristics: It 
passes data that must not be modified or 
disclosed, it supports processes with great 
time sensitivity, or it permits easy access 
to fragile data bases or files that must not 
be modified improperly. 

If More Security Is Needed, Is One-end or 
two-end Best? 

If management determines that dial-up 
security devices are required in order to 

_shore up internal host computer security
capability, the next decision is about the 
general type of device, The following 
criteria are suggested to help decide whether 
the one-end (host or terminal port protection 

·devices) or one of the two-end types of 
mechanism is best for meeting the computer 
system's security needs: 

Sensitivity to Dsclosure and Integrity. If 
sensitivity of the information in the 
communications channel to disclosure or 
fraudulent modification is very high, then 
one of the two-end approaches which involves 
encryption should be used. If it is low to 
moderate, then a one-end approach which 
provides extra ability to screen out 
intruders via access control barriers may be 
appropriate. 

User Resistance to Remembering More 
Passwords. If users are resistant to 
remembering extra passwords for access 
control, then one of the two-end approaches 
which involves automatic user or terminal 
authentication via insertion of a token may 
be approprate. Possession of the token is 
functionally identical to remembering a 
password. 

User Resistance to Call-back Delays. If 
users are resistant to call-back delays, but 
higher levels of user identification and 
authentication are required, then a one-end 
device which does not have call-back may be 
appropriate. None of the two-end approaches 
use call-back, but some of them induce user 
connection delays by requiring the user to 
perform some process of receiving a 
challenge, processing it with the token, and 
then entering the result on the keyboard. 

If PPD's Are Desired, What Features Are 
Needt=:d1 

If it is determined that additional security 
should be in the form of a low to moderate 
improvement in user access control 

(identification and authentication), then 
port protection devices (PPDs) or security 
modems may be needed. The following criteria 
are useful for selection and application of 
PPDs: 

Access Security Versus Password Entry 
Methods. There are three basic methods of 
entering the password into a PPD, each with 
its own security or convenience 
considerations. Some units require the user 
to respond with voice to challenges, in such 
a way that a numeric password is formed. 
This is time-consuming and will not be 
appropriate for users who use direct-connect 
modems instead of telephone sets. Similar 
units require the user to enter a numeric 
password via the telephone keypad. The 
problems with this approach are that some 
terminals may not have keypads, and more 
importantly, the numeric password does not 
have enough possible variations to be highly 
secure. The third method of password entry 
is via the user's terminal keyboard. This 
approach permits far stronger passwords to be 
created, because any character of the 
password can be any one of the 128 characters 
in the ASCII character set. Even terminals 
with direct-connect modems can use this 
method. 

Security Eyaluation of Various Features. Two 
PPD features that are either standard or 
optional merit special discussion. An 
important feature that all units share is the 
procedure for changing security tables, 
Low-security PPDs permit this to be done 
either manually or via a connected terminal 
with no special external security controls. 
Higher security devices require a special 
password plus a physical key to enter the 
device into supervisory mode. 

A much-vaunted feature of many PPDs that 
gives additional protection but has numerous 
drawbacks is call-back. Once almost 
synonymous with PPDs, call-back can serve as 
a second password hurdle, but in many systems 
the users may call in from any of a number of 
possible telephone numbers. Also, if the 
first PPD password procedure is strong, the 
second hurdle may not be needed unless 
management wants to strongly control the 
locations that dial-up users may call from. 
Major drawbacks include user connection 
delays, reversal of toll charges, and 
increased security table administration 
problems. 

If Two-end Security Is Needed, Vbat Aoproacb 
Is Best? 

If the straightforward user authentication 
features of the PPD do not meet the security 
requirements of the dial-up communications 
network, then one of the four two-end 
security device approaches may be 
appropriate. 

Information Sensitivity. If the information 
transmitted on the dial-up network is so 
sensitive to disclosure that it should be 
protected against wiretaps, the best solution 
is some form of line encryption. 

130 



Information Fragility. If there is a strong 
need to make certain that the information 
cannot be tampered with during transmission, 
the specific solution is some form of message 
authentication (MAC) via selective 
encryption, although full-time line 
encryption achieves the same objective by 
hiding the information. 

Terminal Location. If it is important to 
know that a specific terminal device is being 
used or that the communications come from a 
specific location, the best solution is use 
of existing terminal authentication 
capability (if available on presently 
installed user terminals) or a terminal 
authentication device. However, if all that 
is needed is a check on the originating 
location of the call, a PPD with call-back 
will also do the same job, possibly at less 
cost. 

User Identification. If it is necessary to 
know with some certainty that a specific 
individual is accessing the system, one 
of the various user authentication devices 
will meet this need. Line encryption can 
also help, if the user is required to enter 
an encryption key in order to use the device. 

Wbat Are the Tradeoffs in Adding Dial-up 
Security Deyices? 

The prospective buyer of hardware for 
communications protection should carefully 
consider the potential negative impact of 
installing these devices in the 
organization. This impact can arise from 
several factors, discussed below. 
Communications protection devices typically 
cost several hundred dollars per line. In 
addition, there are signigicant potential 
problems in terms of user acceptance. 
Finally, these devices impose an increased 
burden on the organization in the form of 
additional administrative procedures. 

User Conyenience and Enhanced Security. 
Users may understandably resist the 
requirement for remembering additional 
passwords for PPDs or security modems. The 
requirement to carry around an authentication 
token, such as a card or wand, is perceived 
by the typical user as little different. 
Even more onerous than these methods is the 
set of administrative procedures associated 
with maintaining some manual forms of 
encryption key management. The typical 
system users may view any of these additional 
requirements imposed for the sake of security 
as unnecessarily burdensome unless they 
clearly perceive the necessity due to 
risk. 

their work done. There is a strong 
possibility that the computer and its 
associated security requirements (personified 
by the system security administrator) may be 
viewed as opponents and hindrances to the 
worker trying to get his or her job done. It 
is therefore important that additional 
security measures be fully justified by the 
level of risk to the system. It is equally 
important that users be properly educated on 
these risks and the clear need for additional 
security mechanisms. 

System Management Effectiveness and Enhanced 
Security. When system security weaknesses 
are examined closely, the most common 
problems are seen to be administrative. In 
other words, more security potential is 
available in a system than the people 
who manage the system use effectively. This 
is especially true of the user account name 
and password scheme. The issue boils down to 
people problems. Imposing hardware 
protective devices typically will not cure 
that malady. Rather, this new approach may 
make it worse. 

For example, consider what happens when an 
organization decides to install PPDs on the 
numerous dial-in lines attached to its 
primary computer. Immediately, the problems 
of managing these devices will surface. One 
obvious problem to be faced is that of 
managing an additional access control 
(password) system, separate from that used by 
the host computer. The procedures for 
assigning and changing passwords for PPDs 
should be rigorous, otherwise the real 
protection they can offer will be reduced. 
Usually, this means that more people will be 
needed to manage the system. This will be 
especially true if the organization takes 
this opportunity to separate out the 
communications security function from the 
computer security function. 

As noted earlier, the additional security 
devices will cost substantial amounts of 
money. The bare minimum cost per port to 
install hardware protection seems to be about 
$200, and it can range into the thousands, 
depending upon approach and level of security 
desired. Along with this initial capital 
cost is the recurring cost of maintaining and 
repairing the devices. Other direct and 
indirect dollar costs imposed by these 
devices may include the following: 

~ User inefficiency (one minute per 
connection times many connections per year 
adds up quickly in terms of salary). 

~ Computer processing delay while token 
authentication takes place. 

Similarly, any form of connection delays due 
to security will often not be taken kindly. 
These delays will be induced by the call-back 
procedures used by some PPDs. Other 
procedures, such as the manual entry of an 
identification string generated by a 
hand-held authenticator token such as a wand 
or card, will also generate connection delays 
of a minute or so. Granted, a minute may not 
seem like much, but it is strictly overhead 
and must be justified in the users' minds as 
a valid imposition on their ability to get 

~ Increased host computer telephone bill 
because dial-back procedures require session 
connections to originate at the host end. 

All of the costs involved must be identified 
and estimated to determine the true cost of 
installing additional dial-up security 
protection. This final cost should then be 
compared to an estimate of present risk from 
damage due to dial-up intruders, to evaluate 
whether the new devices are warranted. 

131 



SUMMARY AND CONCLUSION~ present administrative procedures are wea~, 
adding the devices may not be a valid 

Both one and two-end dial-up security devices strategy. The first requirement is to make 
can provide a valuable increase in protection full use of present operating system security
from intruders. In some cases, this capabilities.
protection can come at very significant cost, 
however. B The deyices can be used improperly or 

ineffectiyely. In terms of passwords, for
The following conclusions may be drawn about example, they are subject to the same 
this family of devices: administrative weaknesses as operating system

security features. It is also possible to 
m The present dial-up secyrity deyices are a install ~security capability than needed.
valid short-term strategy if the present 
security capability of the system is 
inadequate to meet the perceived threat from The Bottom Line;
dial-up intruders. It is important to note 
that vendors are integrating these security Dial-up communjcations protection devices 
functions directly into newer models of should be considered if the system manager is. 
standard communications devices at little or unwilling to trust the computer's operating 
·no extra cost. system security capability, when fully 

.utilized, to keep dial-up intruders out of 
B These deyices should supplement, not the system.
replace other security mechanisms •. If 

{1£-ENO
SQ..UTIOO 

lW0-00 
SQ..UTIOO 

HOST END: 
POU PROTECT I00 
DEVICE 

LINE 
ENCRYPTIOO 

TERMINPL 
AUTHENTI-

CATIOO 

SIRE 
<PASSW<JID) 

EtfiANCED 
<CALL-BACK, CNOJFLAGE,
LOOGING, ETC.) 

RESTRICTEDTERMINPL END: CALL-WTSECURITY f«llE4 

SIRE 

EN-lANCED
(KEY MANAGBt£NT,

HAIDIARE CALL usn 
CCJMJN ICAT I00 
PROTECTIOO 
DEVICES HAtll-HELD 

USER 
AUTHENTI-

IN-Lit£CATIOO. .~ ~ 

<KEY m CARD> 

IN-LINE 
<FIXED> 

INTERNAL 

feESSAGE ft\4\C 
AUTHENTI- <aECTROOIC FUNJS 

CATIOO TRANSfER) 

Figure 1. Hardware Communications Protection Device Alternatives 

132 



AN EMACS-BASED DOWNGRADER FOR THE SAT 

John McHugh 

P.O. Box 12194 


Research Triangle Institute* 

Research Triangle Park, North Carolina 27709 


Abstract 

This paper describes the design and verification of a 
downgrader to be supplied as a kernal extension for the 
Honeywell SAT. The downgrader implements a restrictive 
protocol based on traditional, paper document, downgrader 
procedures. specification and proofs techniques are described 
for both the security and functional aspects of the downgrader. 

Introduction 

The Honeywell SATl (Secure Ada•• Target) is a proces
sor designed to meet or surpass the At level requirements of 
the Department of Defense (DoD) Trusted Computer System 
Evaluation Criteria2 (TCSEC). It differs from previous sys
tems which attempt to meet the criteria in a number of 
respects. The most important of these is the use of extensive, 
specialized hardware to provide the mechanisms for enforcing 
security policy while allowing the policy itself to remain in 
software to the greatest extent possible. The SAT is not 
intended to support a specific application, but rather to provide 
a vehicle for the construction of a diverse set of applications, 
military and otherwise, which have in common their need for a 
security policy and rigorous enforcement thereof. The down
grader discussed in this paper represents the first of a series of 
verified and trusted kernel extensions to be built for the SAT. 

In this paper, we will briefly describe the philosophy 
behind techniques used to build a system on top of the basic 
SAT and show how this philosophy and guides construction of 
an extension such as the downgrader. With this background, 
we will describe the downgrader in terms of its functionality 
and operational interface. The process through which the 
downgrader is specified, designed, and verified is then 
described, followed by a discussion of the ways in which it fits 
into the overall SAT based system organization. Finally, it 
will be argued that incorporation of such verified trusted 
extensions in the SAT framework results in a system which 
can be shown to comply with an appropriate security policy in 
all of its operations. 

Software and the SAT 

The SAT is intended to support systems consisting of a 
number of user programs written in Ada. The hardware of 
the SAT provides the mechanisms for the enforcement of a 
security policy, but the policy is largely defined in software. 
The mechanisms provide support for a very general Meta Pol
icy3 of which the Bell and La Padula4 policy is an instance. In 
providing a formal framework to support verified applications 
on the SAT, the Meta Policy is mapped to an abstract model 
level which is in turn mapped to an interpretation and ulti
mately to a formal top level specification (FILS) which pro
vides definitions of the actual machine instructions used to 
manipulate the security state of the SAT. Below the FILS is a 

*This work was supported by Honeywell Wlder U.S. Government Contract MDA904· 
84·C·6011. 

••Ada is a registered trademark of the Department of Defense. 

detailed design specification which defmes the internal 
representations of the security state and the mechanization of 
the security relevant operations. 

As noted in the SAT description, 1 complete verifications 
are performed at each of these levels and convincing argu
ments are made about the mappings between levels. These 
constitute the base proof for a SAT system. Addenda, which 
are proofs of software extensions to the SAT kernel, are com
bined with the base proof to produce a completely verified 
application. 

The proof strategy of the SAT has been discussed in detail 
because the SAT design philosophy has been governed by pro
vability considerations. These considerations continue to 
govern the construction of much of the user software to be run 
on the SAT to support a given application. 

There are two major classes of software 
in an SAT system: applications software, 
whose operation is mediated by the 
reference monitor, and kernel exten
sions, which extend the functionality of 
the base hardware to produce a reference 
monitor that meets the full and detailed 
DoD requirements. 

The first set of kernel extensions, and 
hence the first reference monitor to be 
built on the SAT hardware, will be those 
required for operation as an Ada Target. 
The initial et of users for SAT will then 
be system developers who wish to pro

. duce secure applications and more ela
borate reference monitors in the Ada 
language. This choice of initial reference 
monitor characteristics was made in 
order to provide a secure, Ada-based 
capability to the development community 
as rapidly as possible. 

Consistent with this goal of timeliness, 
the first set of kernel extensions will be 
extremely simple. In general, kernel 
extension software is subdivided into 
three classes, based on the degree of 
trust and verification. (It should be 
recalled that "trust," in the sense used 
here, is the privilege to selectively violate 
the •-property, e.g., "write information 
down" in security level.) The three 
classes are: 

1. 	 Software that is neither trusted nor 
verified. Such software performs 
common resource management 
tasks, and its behavior is mediated 
in the same fashion as applications 
software. An example of this class 

133 



of software is the Ada Run-Time 
Support Library (RSL), which pro
vides a virtual machine congenial to 
the semantics of the Ada language. 

2. 	 Software that is verified but not 
trusted. Certain kernel extensions 
must be verified to exhibit security
relevant properties, but these pro
perties may not involve the benign 
violation of the • -property. Exam
ples of this class of software are 
labelers, which must be shown to 
properly format exported labels, and 
login responders, which must be 
shown to properly consult a table of 
passwords before assigning a user 
name and a security level to a sub
ject. Both modules perform func
tions that are security-critical yet do 
not involve information flows 
between security levels. 

3. 	 Software that is both trusted and 
verified. An example of such 
software are the tools that support 
the downgrading of information. 
Such tools must selectively violate 
the *-property and be verified to do 
so only in ways that are visible to 
and cleared by an authorized user. 
A secure downgrader, with an 
Emacs-like user interface, will be 
developed for SAT as a proof of 
principle that the basic SAT func
tionality simplifies the development 
and verification of such software. 1 

The downgrader discussed above is typical of kernel 
extensions which must be provided in order to produce a use
ful system for some application. It is patently ·obvious that 
such a facility violates the *- property of Bell and La Padula. 
It does not, however, violate the Meta Policy.3 

In its broadest sense, the Meta Policy captures our intui
tive motion of security. The policy can be simply stated as 
"information J;Day not be disclosed to any individual without 
the necessary authorization. ,3 It is important to note that, in 
this context, information is a semantic concept rather than a 
syntactic one and that the notion of authorization may involve 
the exercise of judgements based on semantics as well as syn
tactic constructs such as classification labels. This allows us to 
prove the security of the resulting system in a broader sense. 

There are three sets of properties which must be included 
in a proof addenda for an extension such as the downgrader. 
The first of these is its functionality. The downgrader must be 
shown to enforce a protocol which is satisfactory for accom
plishing the declassification of information when exercised by a 
trusted individual. It must then be shown that, as integrated 
into the SAT framework, the downgrader can only be invoked 
by such trusted individuals and, even then, only under suitably 
audited circumstances. Finally, it must be argued that this 
usage is consistent with our broader notion of security as 
represented by the Meta Policy. 

The Downgrader 

The downgrader is designed to force its user, a trusted 
individual, to follow a protocol which mimics the pencil and 
paper world. A primary objective is to ensure that the produc
tion of a draft document .for downgrading takes place at 
human rather than electronic speeds. There are three phases 
in the operation of the downgrader. In the firSt phase, the 
user transfers information from a file representing a document 
at a high level of classification, H to a draft document, also 
classified at level H but ultimately intended for downgrading 
to a lower level L. This transfer is done a sentence at a time. ' 
During this transfer, limited changes can be made to the infor
mation being transferred. Following the transfer phase is a • 
review phase in which both documents are reviewed in parallel 
with the context of each sentence displayed in both versions. 
During review, sentences in the draft may be accepted or 
rejected. Once review is complete, the draft document is 
copied down from classification H to classification L using the 
privileged TOPOP 1WO (Trusted Write Override}. The 
operations during each phase are discussed below in more 
detail. 

Several aspects of the process are worth discussion. The 
most important is the fact that trust in the downgrader resides 
primarily in the human user who makes the judgments as to 
what information can be downgraded. The protocol serves to 
raise the level of assurance associated with the downgrading 
process by ensuring that the user has transferred· information 
in relatively small chunks and under conditions requiring at 
least two inspections of each chunk. The process is also 
audited. Initiation of the downgrading process can create an 
audit record containing the identities of the user and the object 
being downgraded. Because the process operates on syntactic 
entities in the source object, the exact transformation of the 
source required to produce the downgraded object may be 
recorded for audit purposes. The actual downgrading of the 
draft may be made a System Security Officer {SSO) function. 

The discretion implied above is deliberate. The down
grader design provides for capture of the transformations and 
for separating the transfer and review phases from the 1WO. 
The SAT base provides the ability to restrict use of the down
grader and to preserve audit detail. The question of how 
much to restrict use of the downgrader is one of administrative 
policy and is ultimately a question of interpretation of the 
security Meta Policy. 

The downgrader appears to its user as a two window 
screen editor which executes a set of commands which are a 
very restricted subset of those provided by EMACS. 5 In the 
transfer mode, the user may scroll through the source docu
ment at will, but may not change it. This assures a constant 
basis for the transformation history. The display is labeled 
with the classification of the object being downgraded as 
required by the TCSEC. 2 The user selects sentences to be 
transferred to the draft. In order to assure that the user is 
presented with a t:ontext containing the selected sentence, sen
tences are limited to approximately four lines. Limiting sen
tence length prevents simple subversions of the protocol such 
as converting a document to a single "sentence" prior to 
invoking the downgrader and downgrading it in asingle opera
tion. Restricting a sentence to a maximum of four lines 
ensures at least three lines of context on either side of the sen

134 



tence in each window (plus the security labeling required by 
the TCSEC2 assuming a standard 24line CRT display. 

When a sentence is selected for transfer, it is highlighted 
or displayed in reverse video. The user then positions the cur
sor in the draft window which is labeled with the level of the 
source object and an annotation of the target level of the draft. ' 
The draft is displayed as individual sentences in cannonical 
form, separated by blank lines. New sentences can only be 
inserted at the beginning or end of the draft or between exist
ing sentences. The user may scroll through the draft to deter
mine an appropriate location to insert the transferred sentence. 
When the user issues the transfer command, the selected sen
tence is inserted in the draft window in cannonical form. 

The cannonicalization process left justifies the sentence on 
the screen, converts all nonprinting characters to blanks and 
replaces all multiple blanks by single blanks. Une breaks are 
inserted as necessary. The purpose of the cannonical form is 
to prevent the covert passing of information to the draft docu
ment in the form of invisible data encodings such as sequences 
of nulls, backspace/blank pairs, etc. The user is left to deal 
with visible encodings although some of these could be 
included in the cannonicalization if desired. 

At this point, the "whiteout" sub mode is entered. In this 
mode, the user can delete any word or sequence of words or 
can replace any word or sequence of words in the sentence 
with a cannonical marker. The words and phrases thus 
removed are saved for use during the review phase. Once the 
''whiteout" phase is finished, the sentence is considered as 
part of the draft. The user may delete sentences from the 
draft at any time or may re-enter the ''whiteout' sub mode for 
any sentence in the draft at any time, but no other modifica
tions are possible. 

When the user has constructed the desired draft, the 
review phase is entered. At the beginning of this phase, the 
user reviews the list of deleted and replaced words and 
phrases. Unless the user explicitly eliminates a word or phrase 
from the list, it will be used as a review pattern, and all sen
tences in the draft containing the word or phrase will be sin
gled out for special review in "whiteout" mode. During this 
part of the review, the user will be required to take an affrr
mative action to retain the word or phrase. These actions are 
subject to audit. 

The general review causes the system to display the draft 
document in order while displaying the source document and 
context for each sentence in the draft. The user retains or 
rejects each sentence in the draft based on this review. 

When the review is complete, the protocol has been satis
fied and the actual downgrading of the draft may take place. 
The downgrading process may be suspended and resumed at 
will. Only the downgrader has access to the draft, ensuring its 
integrity. It is possible to revert to the transfer phase from the 
review phase, but the review must begin anew if this is done. 
It is also possible to abandon the downgrading as well. 

Specification Issues 

There are two issues to be addressed concerning with the 
specification and verification of the downgrader. The first of 
these deals with its security aspect. The downgrader must be 
trusted because it invokes a privileged SAT instruction, 1WO 
when it creates the downgraded object from the draft. The 
power of the SAT's type and domain mechanisms allow us to 
define a lemma 

AuthorizedDowngrader (In, OUt) 
which captures the security aspects of the proof. This lemma 
is formulated and proved as an extension to the SAT base 
proof and states that any downgraded object, out, can only 
be produced by the d~wngrader, operating on the object, In, 
and executed on behalf of a user who is specifically authorized 
to have access to both In and the downgrader. The proof of 
this aspect of the downgrader's operation depends entirely on 
SAT properties and is independent of the functional aspects of 
the downgrader. Because of the use of the 1WO operation to 
perform the actual downgrading operation, AuthorizedDown
grader is shown to be secure with respect to the Meta Policy. 

Proofs of the addenda described above should be suffi
cient to show that the system with the downgrader incor
porated still satisfies the security Meta Policy and is thus 
secure. One could, in fact, envision a much simpler down
grader which would merely do 1WO on its input object and 
leave an audit trail. This too could be shown to satisfy the 
Meta Policy under the proper circumstances. Why then the 
elaborate protocol? 

The answer to this question leads to the second issue 
which involves the specification and verification of the 
downgrader's functionality. Basically, although we trust the 
users who are allowed to downgrade, we do not expect them 
to be infallible. The trivial downgrader mentioned above pro
vides no protection against such human errors as specifying the 
wrong object as input or overlooking a line or two during a 
review. The protocol does not completely obviate mistakes of 
this sort, but it makes them less likely and causes the down
grade process to be spread over a longer time, increasing the 
chances of catching an error before a policy violation occurs. 

At the present time, the functional specification for the 
downgrader is under development. like the SAT, the down
grader is being specified in Gypsy. 6 The functional specifica
tion presents a number of interesting issues. We want to show 
that the output of the downgrader bears a certain relationship 
to its input. This relationship say 

ProperlyDow.ngraded (In, OUt) 

provides the desired traceability between the objects. This is 
not a sufficient condition for our purposes however, since 

ProperlyDowngraded (In, In) 

is necessarily true if only the document contents are con
sidered. Thus, we need some way to link the procedural 
aspects of the downgrading process to the functional relation
ship between its input and output. This is further complicated 
by the interactive nature of the process and the use of a screen 
display to present the user with a window into the current 
state of the draft. 

To support this notion, we start by considering the source 
as a sequence of characters. We map onto this, a syntactic 
index structure which creates a sequence of sentences of lim
ited length as discussed above. This is a sequence of indices 
into the source identifying each sentence. The draft is a simi
lar syntactic structure containing references to the source index 
and recording the modifications made in the downgrading pro
cess. 

The user commands are obtained from a Gypsy buffer 
and are screened for illegal commands by a simple finite state 
recognizer. The display is described as an abstract type with a 
set of appropriate operations and "Hold" specifications. An 

135 



implementation probably requires trusted hardware for the 
display to ensure that the user and software "see" the same 
thing. 

Given this model, the transfer phase is specified in terms 
of a finite state machine which as operations to select from the 
source, mark a source sentence for transfer, position the draft, 
move the marked sentence to the draft in whiteout mode, and 
exit whiteout mode. 

It will be proven that every sentence in the draft is there 
as the result of applying this series of operations. Similar 

specifications and proofs will be supplied for other phases of 

the operation. The successful completion of a phase is 


. recorded in the draft structure so that the definition of proper 

downgrading can be expanded to include the notion of the 

proper application of the sequence of operations required by 


. the protocol. 

The Downgrader and the SAT 

Kernel extensions such as the downgrader play an impor
tant role in the construction of secure, useful systems on the · 
SAT base. Such extensions may require verification either 
because they involve an element of trust as part of the TCSEC 
required reference monitor or because they enforce non-policy 
requirements, such as labeling imposed by the criteria. Verifi
cation may also be indicated when a high level of functional 
assurance is required due to nonsecurity aspects of the 
intended use of the. system. 

The SAT base proof provides support for all aspects of 
kernel extension verification for both trusted and untrusted 
processes by providing the formalisms necessary for 'the specif
ication of process~ calling on.!}le SAT operations. In the case 
of the downgrader, a mixture of base addenda proofs and 
external, purely operational proofs will be performed. The net 
result will be to provide assurance that a SAT based system 
incorporating a downgrader enforcing an elaborate protocol to 
ensure that a downgrading procedure similar to that used in 
the 	pen and paper world conforms to an acceptable security 
Meta Policy. 

It is important to note that satisfying the Meta Policy 
requires extending the notion of the trusted computing base to 
encompass trusted individuals, the authorized users in the case 
of the downgrader. Because the Meta Policy is expressed in 
terms of semantic rather than syntactic information, informa
tion flows such as those occurring during a downgrade do not, 
per se, violate the policy. Ultimately, it is the responsibility of 
the systems owner to defme the level of assurance required 
(and the limitations on the trust to be placed in individuals) to 
show conformance with a given Meta Policy. The strength of 
the SAT approach is that it permits an owner to build on a 
proven· base to extend the capabilities of the system in arbi
trary directions while providing mecliiinisms to control these 
new 	capabilities and contain them within the TCB as neces
sary. 

Conclusions 

The Honeywell SAT and its use as a base for building 
secure systems has been discussed. A downgrader, function
ally similar to the EMACS editor, has been described and its 
place in a secure system based on the SAT discussed. It has 
been demonstrated that this process, combining proofs of secu
rity and functionality, leads fo a technique for implementing 
useful and trustWorthy systems which meet or exceed the 
TCSEC criteria for A1 systems. 

Acknowledgements: The notion to attempt design of the 
'downgrader came from Earl Boebert of Honeywell. Marv 
·Schaefer of the DoD Computer Security Center provided the 
idea of a Meta Policy and many of the details of the protocol 
in the guise of reviewing the initial proposal. Discussions with 
Earl Boebert, Marv Schaefer, Bill Young of the University of 
Texas and Scott Hansohn of Honeywell have been extremely 
useful in refming the ideas presented here. Any omissions 
and errors are, of course, my own. 

Referenc:es 

1. 	 W.E. Boebert, W.O. Young, R.Y. Kain, and S.A. Han
sohn, "Secure Ada Target: Issues, System Design, and 
Verification," Proc~«lings oftM 1985 IEEE Symposium on 
Security and Privacy, (1985). 

2. 	 "Trusted Computer Systems Evaluation Criteria," CSC
S'fD.001-83, Department of Defense (August 15, 1983). 

3. 	 W.O. Young, "Security in an Abstract Setting," Internal 
Note 186, Institute for Comptuing Science, University of 
Texas (July 1985). 

4. 	 O.E. Bell and L.J; LaPadula, "Secure Computer System: 
Unified Exposition and Multics Interpretations," Tech. 
Rept. M'IR-2997, MITRE Corporation, Bedford, MA 
(July 1975). 

. 5. Richard E. Stallman, ''EMACS Manual for Twenex 
Users," AI Memo 556, MIT Artificial Intelligence 
Laboratory (August 1980). 

6. 	 D.I. Good, R.M. Cohen, C.G. Hosch, L.W. Hunter, and 
D.F. Hare, "Report on the Language Gypsy, Version 
2.0," Tech. Rept. ICSCA-CMP-10, Institute for Comput
ing Science, University of Texas, Austin, Texas (Sep
tember 1978). 

136 



MULTILEVEL APPLICATION DEVELOPMENT 


Ronda R. Henning 


Department of Defense Computer Security Evaluation Center 

Fort George G. Meade, Maryland 20755-6000 

DISCLAIMER 

The opinions expressed in this presentation are 
solely those of the author and do not reflect the 
position of the Department of Defense Computer 
Security Evaluation Center or the Department of 
Defense. 

INTRODUCTION 

With the publication of the Trusted Computer 
Systems Evaluation Criteria (the Orange Book) in 
1983, .a renewed emphasis was placed on the 
development of trusted computer systems. Previous 
work done in the early 1970's on various secure 
·computer system projects formed stepping stones that 
are the foundations of the current generations of 
secure computing systems. Considerable effort has 
been expended both by the Center and by various 
vendors to develop systems that meet the criteria 
for B2 class systems and beyond. One major emphasis 
in the infancy of the Criteria was that secure 
operating systems were feasible and existed within 
the scope of current technology. With the 
evaluation of the Honeywell SCOMP and the nearly 
complete evaluation of Honeywell's Multics operating 
system, it has been proven that multilevel operating 
systems can exist within the constraints of the real 
world. But now that the operating systems are 
available, what can be done to make them applicable 
to general purpose computer systems? What 
advantages do multilevel trusted systems have over 
single level trusted systems? 

Multilevel systems are desireable in any 
environment that supports limited data sharing 
between users, complete segregation of groups of 
users on a single machine, or varying views of data 
for a single user or group of users depending upon 
the sensitivity level of the data and the user's 
operating level. Declining hardware costs make it 
less expensive to segregate users on separate 
machines with the sensitivity of the data the basis 
for segregation. However, for large applications 
requiring the incorporation of multiple levels 
(sensitivities) of data, it is less expensive to 
operate one trusted machine to support and segregate 
a large number of users than it is operate multiple 
untrusted machines that support one group of users 
each. Also, if limited communication is available 
between levels (ie, a channel of minimal bandwidth 
not exploitable by a potential penetrator) 
controlled data sharing and user communication is 
possible. Without physical media such as tape or 
hard copy output, such data sharing is not possible 
on separate machines. As local area networks are 
not presently able to segregate data by security 
level, they shall not be considered as a means of 
multilevel data sharing. Manual cut and paste 
techniques must be used to merge data from various 
sensitivities (levels), as opposed to having a 
trusted multilevel system merge needed data 
according to the users authorized access level. 

In the case of the SCOMP and Multics, there are 
a series of routines that form the user interface 
to the security kernel. How the user tailors those 
interfaces to a specific application is his choice. 
However, the availability of common user software 
applications such as database management systems, 

137 


bulletin boards, and other generic software 
applications (those which are used to build/tailor 
the system to a particular user environment) are 
virtually nonexistent in the true multilevel sense. 

What are the implications of this lack of 
generic applications to the multilevel system user? 
In the present environment, the. customer must write 
his own application development primitives as well 
as the application itself. The primitives are 
transparent to the user and other applications 
programmers in the final system design. They reside 
as internal routines within the finished application 
subroutines. For example, a routine 
find node in tree would be an internal routine to a 
retrieve token subroutine called by an application 
developer as a standard database subroutine/utility. 
If multilevel secure systems are to be made usable 
for general purpose computing, they must provide the 
tools for general purpose applications. 

Realizing that there is a dearth of generic 
multilevel applications software, it is possible, 
within the framework of what is presently available, 
to develop software applications that function in a 
multilevel mode on B2 class and above operating 
systems. These present applications, as well as 
necessary and future areas for multilevel generic 
application packages and potential problem areas are 
discussed in this paper. 

DEFINITIONS OF MULTILEVEL SECURITY 

To understand the types of multilevel 
applications available at present and those needed 
for more general purpose multilevel applications, it 
helps to have a common frame of reference for 
multilevel security. The Criteria defines the 
phrase "multilevel secure" as a class of system tl)at 
contains information of different sensitivities 
(classifications) that simultaneously permit access 
by users with different security clearances and 
needs-to-know but prevents users from obtaining 
access to information for which they lack 
authorization. Extending the definition to 
multilevel secure applications, a multilevel secure 
application can be defined as a type of application 
that contains information of various sensitivities 
that simultaneously allow access by users with 
different security clearances and needs-to-know but 
prevents users from gaining access to information 
for which they lack authorization. For the purposes 
of this discussion, multilevel applications are 
addressed as a separate issue as distinguished from 
multilevel operating systems. Generic multilevel 
applications development tools such as database 
management systems would, of course, require 
separate evaluation by the Computer Security Center 
to determine their compliance with the requirements 
of the applicable criteria or guidelines document. 

Using this definition of a multilevel secure 
applications as a point of reference, there are two 
interpretations that represent opposite 
implementations. In the first interpretation, the 
underlying assumption is that the user functions at 
one and only one level and remains there for the 



life of his account, hence his applications should 
function at only one level as well. This approach 
implies totally separate but identical copies of the 
same application at each level, with no shared files 
or data among the levels. This represents total 
data segregation. Multilevel secure applications 
are usually defined by vendors as totally 
segregated applications residing at various levels 
with no communication between levels whatsoever. 
For example, if a user worked a three different 
levels, to read his mail at each level he would be 
required to login and logout of each individual 
level. A user logged in at the Top Secret level 
could only read his Top Secret mail and reply to it. 
He could not read mail at the Unclassified or Secret 
level. The advantage to this approach is that there 
are a minimum number of possible covert channels and 
that multiple isolated users can coexist on a given 
computer system. The disadvantage is that there are 
probably an equal number of cases where controlled 
information sharing between the levels is highly 
desireable. This interpretation is most prevalent 
in the current generation of B2 and beyond systems 
and their application software, such as the Multics 
operating system and the majority of its application 
software. 

A second interpretation of multilevel secure 
applications is one that allows controlled 
communication between levels with the user 
authorized to examine data up to and including his 
current operating level. As long as the 
communication is within the bounds of the Bell
LaPadua security model, it is permissible. For 
example, a user logged in at the Top Secret level 
could read his Secret mail; however, he could not 
reply to it and have the reply sent at the Secret 
level. This approach allows one data repository to 
exist for multiple levels, with data partitioned on 
a per user per level basis. That is, the user has 
his particular view of the data segregated for him 
dependent upon his current operating level. 
However, it does introduce a much higher number of 
potential covert channels. Multilevel users (and 
applications programmers) usually subscribe to this 
interpretation. 

It should be noted that the two interpretations 
are not mutually exclusive. Multilevel applications 
adhering to the second (user) interpretation of the 
definition of multilevel security can be "layered" 
over a multilevel operating system following the 
first (vendor) interpretation of the definition. 
This is usually accomplished via an overseer process 
and multiple files residing at the various levels 
which correspond to the users authorized operating 
levels. The trusted overseer distinguishes among 
the various levels and routes data to the correct 
level file which matches the user's current 
operating level. Of course, this does imply that 
there is some degree of trust in the overseeing 
process, and does not account for potential covert 
channels that may be created during the routing of 
data to the correct level file. The fact remains, 
however, that it can be accomplished. Likewise, it 
would be possible to implement an application 
following interpretation one (vendor definition) on 
a operating system adhering to interpretation two 
(user definition). The data sharing mechanisms 
would have to be hidden from the user and disabled 
in such an application. Once again, there is a 
potential for the existence of covert channels. 
Because of these potential covert channels, it is 
best to implement applications consistent with the 
multilevel security policy/defintion used by the 
operating system. The applications and the 

operating system are separate entities, but the 
application must depend upon the operating sytem for 
its support functions. 

TYPES OF MULTILEVEL APPLICATIONS 

With the above interpretations of multilevel 
implementations in mind, it is worthwhile to discuss 
the types of applications suited to multilevel 
implementations. It should be readily evident that 
generic applications that are involved with data 
management functions are the most applicable to 
multilevel implementations because the great 
majority of applications are data management 
functions. Software such as database management 
systems, electronic mail, and bulletin board 
facilities come to mind almost immediately as 
candidates for controlled data sharing among levels. 
A database management system that would contain 
data from various levels and construct the user's 
current view to limit it to the data he is 
authorized to examine is a prime example of this 
type of generic application. From this example it 
is easy to see the applicability of a multilevel 
mode of operation to electronic mail and bulletin 
boards. A Multics Forum (bulletin board) could have 
transactions (entries) at various levels and 
categories consolidated into an entire view at the 
user-high level and decomposed as needed at the 
other levels. 

Using generic multilevel applications such as 
database management as examples leads to a natural 
extension of multilevel applications to various 
user-written applications. These types of 
applications are principally in the areas of risk 
management and data segregation. For example, if 
the user wished to use highly sensitive corporate 
data in conjunction with widely available corporate 
data such as a list of employees by department, the 
application could avail itself of a multilevel 
database management system to combine the 
appropriate data at the level different from the 
general multipurpose user level into one view of the 
data at the alternate level. In this case, the 
database management system merges data from various 
separate files residing at different levels or 
creates a filtered view from the user high level, 
depending upon the implementation of the multilevel 
database management system. This approach would 
control the appropriate data by using the trusted 
database management system in conjunction with the 
trusted operating system. 

Additionally, multilevel applications can 
function as a risk management tool. Those 
applications with highly sensitive data, for example 
sales projections or corporate revenue information, 
can function on the same computer system with the 
same generic trusted database management sytem 
performing the task of data isolation. This would 
minimize risk of inadvertent spillage of data to 
unauthorized personnel while eliminating any 
potential requirement for separate hardware or 
periods processing of this particular data. That 
is, a computer system would not have to be dedicated 
to any single level of data for its lifetime or a 
specified time period during a standard work day. 

DEVELOPMENT IMPACTS 

After identifYing a particular application as a 
target for multilevel implementation, how does one 
approach the application software development 
process? It is imperative that sufficient time be 
allowed to do a throrough requirements analysis 
study of the project. Beyond the standard 

138 



requirements definition as used in structured design 
techniques, the requirements analysis should contain 
a precise definition of the entire system, with all 
user and external (other software not used 
specifically for this system) interfaces identified 
and detailed. Further, all multilevel data should 
be identified and the levels of application 
operation must be clearly defined. This does not 
preclude dynamic operation at the various levels, 
but does define the boundary levels for a given 
application. As an added precaution, any software 
that has been written for previous applications that 
may prove reusable (such as data format checking 
routines, etc.) in this one should be examined to 
ascertain its applicability and any nonmultilevel 
restrictions it may contain. Such recycled software 
written before a trusted multilevel generic 
application such as a database management system was 
in effect should be closely examined for 
unintentional covert channels and Trojan horses. 

Armed with the completed requirements analysis, 
the developer should make an assessment of what can 
be expected in the way of multilevel support from 
the operating system. A system may be a B2 class or 
better operating system, but often system provided 
subroutines do not account for multilevel modes of 
operation because development is done at only one 
level, user low, and the software is never tested at 
other levels. The same can usually be said for 
vendor provided generic applications software. A 
valid assumption would be that the base system, 
including input/output routines, is about all one 
can guarantee will work with a reasonable degree of 
certainty. Additional features might not function 
in a multilevel manner depending upon the 
particulars of a given implementation, and such 
things are not always covered in the system 
documentation. Any assumptions about the user's 
particular level or default parameters are also 
invalid, as default values are usually based on the 
premise that the user works at a single level and 
remains there for the lifetime of his account. For 
these reasons, it is best for the developer to 
assume little in the way of support from system 
software and provide a application specific set of 
parameters for the application. The user's default 
parameters should be reserved and restored to him 
upon exit from a specific subsystem/application 
environment. The user should not have to worry 
about changing his default values for a particular 
multilevel application, nor should the user have to 
worry about the state his process is returned to 
upon completing use of a multilevel application 
package. 

USER IMPACT 

Once the application development staff has 
completed and tested a multilevel application, what 
can the user expect to encounter? Ideally the user 
will not have worked on the same operating system in 
a nonsecure mode. If this is the case, he will not 
have to relearn or unlearn features that do not 
function in a multilevel implementation and he will 
assume that the system's behavior was always the way 
it is in the multilevel mode of operation. However, 
if the user has worked on the identical operating 
system in a nonsecure mode, he will have some 
adjustments to make. Depending on how acquainted 
the user is with the nonsecure mode of the operating 
system, these adjustments could range from 
inconsequential to highly annoying. When given no 
alternative, however, the user will learn to 
function within the multilevel environment 
effectively in a relatively short time. The 

advantage to the user not having any prior knowledge 
of the operating system is that he does not have any 
way of knowing what features he cannot use as a 
result of multilevel operations. Users that have 
grown accustomed to features that do not work in a 
multilevel environment often have to overcome large 
amounts of frustration during the adaptation period. 

ENHANCEMENTS TO MULTILEVEL SYSTEMS TO FACILITATE 

APPLICATION DEVELOPMENT 


When one considers how few features of the 
operating system can be depended upon to function in 
a multilevel mode, it should be readily evident that 
the application developer on a B2 or beyond class of 
trusted system is working with tools comparable to 
stone knives and clubs in attempting to develop 
applications that are truly multilevel. Once a 
basic operating system has been evaluated, it is 
hoped that a vendor would also begin to make his 
generic applications software function in compliance 
with the same Criteria specifications. Even if the 
generic applications supported the vendor definition 
of multilevel security it would be a distinct 
improvement from the current situation, where 
generic applications can only be relied upon to 
function correctly at the user-low level. 

What enhancements are needed to multilevel 
systems to make them more amenable to multilevel 
application support? If one examines most generic 
subsystems, such as database management systems and 
bulletin boards, they seem to have the same sort of 
operations in common, and perform these operations 
on various types of objects that tend to be.smaller 
than a file. These operations characteristically 
are the same sorts of operations one does against a 
database management system, because the majority of 
applications are exercises in data management and 
manipulation. The general types of operations are 
the reading, modification, deletion, and creation of 
data to a previously defined data template and 
manipulate it according to a.user specific set of 
criteria. 

Since the majority of generic and user written 
applications perform the same varieties of · 
operations, it would be logical to assert that the 
general interfaces to perform these manipulations 
should exist in one location and be accessible to 
any application. To that end, perhaps beyond the 
security kernel (or its equivalent) there should 
exist an applications kernel or applications 
interface to the security kernel. Such an interface 
could contain the primitives necessary for generic 
applications and customer written applications to 
function correctly in a multilevel mode. 
Alternatively, such an interface could be 
incorporated into the security' kernel of the system. 
Placing the "applications kernel" within the 
security kernel would require its verification in 
the case of an A1 system, and would eliminate 
duplication of functionality. The argument for 
developing the applications kernel as a overlay to 
the security kernel proper is that those 
applications/users not requiring its features would 
not be forced to process their requests through this 
added layer of protection. 

What precise functions would be included in 
this applications kernel that are not covered in the 
existing security kernel? The applications kernel 
would serve as a trusted filter to route data to its 
correct level in a multilevel system. It would 
serve as an arbitraitor and keeper of any necessary 

139 



lock tables for generic applications, and as a 
trusted data controller for user applications. With 
the applications kernel, it should be possible for 
the user application to specify the granularity 
level of object labeling. For example, a database 
management system could define the level of 
granularity as a tuple, while a bulletin board could 
define the level of granularity as a single 
transaction. This would be in addition to the 
labeling of the system file structure, which would 
be used by the arbitraitor to determine where to 
store the applications object given the file 
structure known to a particular application. In 
cases of conflict or the security mechanism being 
out of service, the arbitraitor holds onto the data 
and informs the database administrator or the 
systems security officer. Such an applications 
kernel could overlay the basic system security 
kernel and would be accessed only if the application 
required it. As a further precaution, manipulation 
of the applications kernel should reside strictly 
within a subroutine interface; it should not be 
accessible from command level. Embedding access to 
the applications kernel within application software 
keeps inadvertent penetration by casual users to a 
minimum, but retains availability of the features to 
the development staff. 

Another potential problem with the applications 
kernel approach is the area of system performance. 
Mutilevel checking at the file level does not 
necessarily imply a performance penalty. In the 
case of the Multics operating system, the level 
checks are done regardless of whether or not the 
Access Isolation Mechanism is implemented in a 
multilevel mode or not. Whether or not level 
validation at the application object granularity 
would imply a performance penalty remains to be 
seen. 

CONCLUSIONS 

Multilevel application development with 
controlled data sharing between users at different 
levels is possible within the realm of current 
technology, although it is not widely implemented. 
If general purpose trusted systems are to become a 
reality, generic system application software such as 
database management systems must become available 
and function in a multilevel environment at more 
than one level. That is, one copy of the user 
application software and data must be accessible 
from various levels dependent upon the user's 
operating level. An app1ications kernel which would 
permit a finer level of granularity than the 
security kernel and enforce data segregation at this 
level is one method of implementing multilevel 
application software, both generic and customer 
specific. 

It should be noted that this approach is not 
without its problems. In particular, there may be a 
severe complication with potential covert channels. 
The issues of data inference and data migration to 
the highest level an application can access do not 
go away either. However, the approach does provide 
the flexibility to facilitate multilevel application 
creation that is presently lacking in most trusted 
systems. 

Only time and research will remove the present 
constraints on multilevel generic applications. 
Eventually, there will be trusted data management 
generic applications available. When such a time 
arrives, they will have to be evaluated in some 
fashion. The straightfoward solution would be to 

incorporate them into the operating system and 
evaluate them as one would evaluate any operating 
system under the Trusted Computer Systems Evaluation 
Criteria. An alternative would be to evaluate them 
as a separate product subject to a trusted 
application evaluation criteria. No doubt such 
questions will be addressed as the trusted criteria 
series evolves. 

In conclusion, as secure operating systems 
evolve, no doubt secure applications software will 
also become available and grow beyond its infancy. 
Having a secure operating system is only the first 
step in a secure system. A series of generic secure 
applications is one step beyond a trusted operating 
system. The ideal trusted computer system 
environment will allow the customer/programmer 
working on a trusted system to develop his own 
trusted applications with no more effort or thought 
to security than would be necessary in the course of 
nonsecure application development. 

BIBLIOGRAPHY 

Air Force Studies Board, Committee on Multilevel 
Data Management Security, "Multilevel Data 
Management Security", National Academy Press, 
Washington, DC, 1983, pp. 1-60. 

Arnold, Terry s., "The Practical Aspects of 
Multilevel Security", Proceedings of the Seventh 
DOD/NBS Computer Security Conference, 1984, pp. 30
37. 

Chamberlain, Gray, and Traiger, "Views, 
Authorization, and Locking in a Relational Data Base 
System", Proceedings of the National Computing 
Conference, Volume 44, AFIPS Press, Montvale, NJ, 
May 1975. 

Claybrook, Billy G., "Using Views in a Multilevel 
Secure Database Management System", Proceedings of 
the 1983 IEEE Security and Privacy Symposium, 1983, 
pp. 4-13. 

Department of Defense, Computer Security Evaluation 
Center, Department of Defense Trusted Computer 
System Evaluation Criteria, 1983, CSC-STD-001-83 

Fraim, Lester J., "Multilevel Security Today", 
Proceedings of the Fifth Seminar on the DOD Computer 
Security Initiative, May 1982, pp. 233-239. 

Friedman, T.D., "The Authorization Problem in Shared 
Files", IBM Systems Journal, Vol. 9:4, 1970, pp. 
258-280. 

Rushby and Randall, "A Distributed Secure System", 
Proceedings of the 1983 IEEE Security and Privacy 
Symposium, 1983, pp. 127-135. 

Schell, R.R., "A Security Kernel for a 
Multiprocessor Microcomputer", Computer, Vol. 16, 
No. 7, July 1983, pp. 47-53. 

Schell, Ames, and Gasser, "An Introduction to the 
Principles of Security Kernel Design and 
Implementation," Computer, Vol. 16, No. 7, July 
1983, pp. 14-22. 

140 



A PARTIAL SOLUTION TO THE DISCRETIONARY TROJAN HORSE PROBLEM 

W.E. Boebert C.T.Ferguson 

Honeywell Secure Computing Technology Center 

Minneapolis MN 


BACKGROUND 

Discretionary access controls are attractive 
for applications in which the adminstrative 
overhead of a mandatory policy would be 
onerous. Such applications arise in 
situations where the responsiblity for 
maintaining the security of individual items 
of information is highly decentralized. The 
attractiveness of discretionary controls is 
counterbalanced by the fact that they are 
inherently vulnerable to Trojan Horse 
attacks. A detailed scenario for a Trojan 
Horse attack is given in Reference 1. 

In this paper we show how the underlying 
mechanisms of the Secure Ada Target (SAT) 
machine we described in Reference 2 can be 
used to reduce the threat posed by 
discretionary Trojan Horse attacks. We call 
our approach a "partial solution" because it 
rests upon deterrence resulting from 
likelihood of exposure. In this regard it 
differs from the complete solution provided 
by enforcement of the simple security 
property and the *-property. 

UNDERLYING MECHANISMS 

Auditability 

The SAT machine embodies the reference 
monitor model of computation at the hardware 
level, with clearly recognizable subjects and 
objects. A hardware register carries at all 
times a universal identifier (UID) of the 
user on whose behalf the current instruction 

is executing. It is not possible in the SAT 
machine to execute an "anonymous" 
instruction, and all operations performed on 
behalf of users are therefore auditable. 

Ownership 

Every SAT object has an owner, who is the 
only individual authorized to perform 
administrative actions such as deletion. 
Ownership may be passed by means of a 
"handshake" protocol, in which one individual 
relinquishes ownership and another accepts 
it. Thus a conceptual "ownership" token for 
a given object may be passed among the user 
community. The initial owner of an object is 
the user on whose behalf the object was 
created. Object creation and transfers of 
ownership are auditable events; it is 
therefore possible to create an audit trail 
which lists all owners an object had since 
its initial creation. 

Type Enforcement 

In Reference 3 we describe the mechanisms the 
SAT hardware provides for the enforcement of 
data typing. In this discussion it is 
sufficient to note that every object in an 
SAT machine is assigned a type and every 
subject has a domain as part of its 
definition. Part of the policy enforcement 
mechanism in SAT is a table by which accesses 
to individual types may be restricted to 
specified domains. _The type enforcement 

141 




mechanism is used to encapsulate type 
managers into domains, and insure that no 
operations may be performed on a type save 
those implemented by its manager. Type 
enforcement is verified to the same level of 
assurance as mandatory security policy. 

An important set of types are the subtypes of 
the general type "procedure." Creation of a 
procedure in the SAT system requires 
authorization and is performed by verified 
programs encapsulated in a specific domain. 
It is not possible for ordinary, unverified 
programs to convert data (such as the output 
of a compiler) into a procedure. Installation 
of a procedure is an auditable event. As 
well as providing a defense against the 
so-called "virus" variant of the Trojan Horse 
attack, this mechanism permits the 
construction of an audit trail in which the 
entire "pedigree" of a procedure may be 
reconstructed: initial creator and subsequent 
owner of the source file, installer, past 
owners and current owner of the procedure 
itself. 

It is further possible in the SAT machine to 
encapsulate the interface to the hardware 
reference monitor in a domain. This domain 
may contain verified programs which audit or 
pass on the acceptability of requests to the 
reference monitor. 

The Global Object Table 

All object attributes are carried in a file 
call the Global Object Table (GOT), which is 
private to the hardware reference monitor. 
Typical attributes are the UID of the object, 
the UID of the procedure which created the 
object, the object's security level, access 
control list, and type, and the UID of the 
owner of the object. In the case of subtypes 
of the general type "procedure," the GOT 
entry contains the UID of the user on whose 
behalf the procedure was installed. The GOT 
is indexed by UID; given a UID, programs 
executing in privileged domai~s may request 
attributes of that object from the reference 
monitor. 

USE OF THE UNDERLYING MECHANISMS 

Approach 

We shall now sketch the design of a type 
manager whose facilities increase the 
likelihood of discovery of a discretionary 
Trojan Horse attack. For purposes of 
example, we will describe the approach in 
terms of the construction of an audit trail. 
In more sensitive applications it is possible 
to have the type manager intercept, instead 
of merely record, actions which indicate that 
a Trojan Horse attack may be underway. 

Our general approach is to encapsulate a 
dynamic linker in a domain, and interpose 
that domain between unverified procedures and 
the reference monitor. All procedures 
running on SAT must go through the reference 
monitor in order to obtain operand addresses; 
we now require that they go through the 
linker as well. 

Dynamic Linking 

Our approach uses the standard dynamic 
linking technique for systems which, like 
SAT, use subject-local addresses in 
instructions. In this technique, procedures 
are kept in "pure" form; one unmodified copy 
of the code is shared among all subjects in 
whose context instances of the procedure may 
be executing. References to global objects 
(i.e., those not "prelinked" as part of the 
procedure) are made indirectly through 
"links" which are collected into "link 
vectors." There is one link vector for each 
procedure instance. For example, consider the 
case in which instances of procedure P1 are 
executing in the context of subjects S1 and 
S2, and instances of procedure P2 are 
executing in the context of subjects S2 and 
S3. Then there will be four link vectors: 
P1.S1, P1.S2, P2.S2, and P2.S3. 

There are two operations which are performed 
on link vectors: "link initialization" and 
"link snapping." A link must be snapped 
before it can be used as an indirect address, 
and it must be initialized before it is 
snapp~d. 

142 




Link initializat1on in SAT requires that the 
symbolic name of a global object be converted 
to a UID; this is done by reference to a 
global directory structure. Link snapping 
requires that the UID be converted to a 
subject-local address; this is done by the 
hardware reference monitor as described in 
Reference 2. Once a link is snapped it 
becomes a conventional indirect address. Link 
initialization occurs when the procedure 
instance is bound to a subject and link 
snapping occurs upon the first attempt to 
indirectly address through the link. 

Operation of the Enhanced Linker 

We now enhance the linker whose operations we 
described above in such a way that it can 
detect a large class of potential Trojan 
Horse attacks. The first enhancement 
involves a per-user table in which each user 
lists the names of other users he or she 
trusts not to mount Trojan Horse attacks. We 
will refer to such users as "fellow citizens" 
of the user in whose table they appear, and 
will call all other users "aliens." This 
data table is given a distinct. type and is 
accesible only by the enhanced linker, all of 
whose code must be verified. Changes to the 
table require authentication of user identity 
and are audited. 

Detecting potential Trojan Horse attacks now 
becomes a straightforward exercise in 
comparing UIDs from various sources. At the 

143 

procedure. If so, the link proceeds 
unaudited; if not, an audit record is 
written. 

PROPERTIES OF THE APPROACH 

Subject Independence 

It should be noted that the series of 
comparisons which are made do not involve any 
element of the subject in whose context the 
linking takes place. The relationship of 
interest is that which exists between between 
the owner of the data and the originator of 
the program: whether or not the programmer is 
known to, and trusted by, the owner. Thus 
the linking, and the tests, may take place 
with equal effectiveness when the program is 
invoked by some (possibly unwitting) third 
party. 

_Proof Requirements 

Assurance in the enhanced linker requires 
proof that the linker cannot be bypassed and 
that it performs its functions correctly. The 
proof that it cannot be bypassed relies on 
lemmas previously proven about the SAT 
hardware, and in outline follows that of the 
labeller described in Reference 3. The proof 
that it works correctly involves 
straightforward application of program proof 
technology. The complex functions of 
extracting owner and originator UIDs, and 
comparing UID values for equal, are performed 
by the SAT hardware and are proven correct as 
part of the certification of that hardware. 
The properties which remain to be proven 
about the linker software itself are then 
simple in the extreme. 

Performance 

The approach described above extracts a 
performance penalty in that domain change 
overhead is incurred each time the linker is 
invoked; if it were not necessary to protect 
the enhanced linker and its tables from 
tampering, the linker could reside in the 
same domain as unverified code. 



Vulnerabilities 

We would like to conclude bx reiterating that 
the above approach provides only a partial 
solution to the problem of discretionary 
Trojan Horse attacks. It is possible to 
devise scenarios in which attacks occur 
undetected. Such scenarios are, however, much 
more elaborate and (from the point of view of 
the attacker) much riskier than the simple 
offering of a subverted "utility" program 
which forms the basis of an attack on 
conventional systems. 

REFERENCES 

1. 	 W.E. Boebert, R.Y. Kain, and W.O. Young, 
"Secure Computing: The Secure Ada Target 
Approach," Scientific Honeyweller, June 
1985. Copies may be obtained from the 
authors at the Honeywell Secure Computing 
Technology Center, 2855 Anthony LaneS., 
St. Anthony MN 55418. 

2. 	 W.E. Bo,ebert, R.Y .• Kain, W.O. Young, and 
S.A. Hansohn, "Secure Ada Target: Issues, 
System Design, and Verification," 
Symposium on Security and Privacy, IEEE, 
1985, 176-183. 

3. 	 W.E. Boebert and R.Y. Kain, "A Practical 
Alternative to Integrity Policies," these 
proceedings. 

ACKNOWLEDGEMENTS 

This effort has been supported by US 
Government Contracts MDA904-82-C-0444 and 
MDA904-84-C-6011. 

144 



A STATUS REPORT ON THE DEVELOPMENT OF NETWORK CRITERIA 

by 

Sheila Brand 

DoD Computer Security Center 

Ft. George G. Meade, Maryland 20755-6000 

1.0 Introduction 

The purpose of this paper is 
to describe the steps that have 
been taken by the DoD Computer 
Security Center (the Center) to 
develop guidance in the area of 
security of computer networks. The 
Center's Invitational Workshop on 
Network Security will be discussed 
along with how results of this 
meeting are being used to prepare 
draft Trusted Network Evaluation 
Criteria. The paper will close 
with a brief overview of the 
emerging network criteria and the 
major differences between this 
document and the DoD Trusted 
Computer System Evaluation 
Criteria. (4) 

2.0 Background 

In August of 1983, the 
Department of Defense Computer 
Security Center published the 
Department of Defense Trusted 
Computer System Evaluation 
Criteria, CSC-STD-001-83. (4) (To 
be referred to as the Orange Book) 
That document provided a basis for 
the evaluation of the effectiveness 
of security controls built into 
automatic data processing system
products. Though the Criteria 
defined in the Orange Book are 
application-independent, it w~s. 
recognized early-on that spec1f1c
security feature requirements in 
that document would have to be 
interpreted when applying them to 
applications and 9ther special 
processing environments. 

Soon after publication the 
question arose as to whether or not 
guidance in the Orange Book was 
sufficient for the evaluation of 
computer networks and network 
components. Debate has raged over 
this issue for the past two years
with both points of view being 
strongly adhered to. In order to 
provide definitive guidance on 
network security it was necessary 
for the Center to address this 

issue head-o.n. The strategy was to 
examine security related issues 
involved in the evaluation of 
computer networks with the 
objective of publishing network 
guidance in one of two ways: (a) 
by developing a totally new set of 
criteria, or (b) by extending 
and/or revising the Orange Book so 
that it can be used unequivocably 
for the evaluation of computer
networks. 

In January of this year the 
Center's Division of Standards 
identified a series of issues whose 
resolution would bring the process 
one step closer to the development
of network security criteria. It 
was recognized that for these 
issues to get a fair "airing,"
pooling of the Nation's scarce 
resources in this area would be 
necessary. It was therefore 
decided to organize a workshop, 
invite the Country's computer and 
network security experts to it, and 
use the Center's issues as the 
focal point for the workshop. 

2.1 The Issues 

The issues requiring
resolution covered eight areas: 

* Policy and Models 

* Access Control 

* Accountability 

* Network Architecture 

* 	 Configuration Management
and Testing 

* 	 Verification and Covert 
Channel Analysis 

* Network Components 

* Denial-of-Service 

The complete list of issues are 
presented in the Proceedings of the 
workshop. (1) 

145 




To address the issues in 
advance of the workshop the Center 
invited a number of the Nation's 
network and computer security 
experts to write issue papers. 
Twenty-nine papers were written 
with an approximate distribution of 
three papers per issue area. 

2.2 The Workshop 

The DoD Computer Security 
Center Invitational Workshop on 
Network Security was held in New 
Orleans, Louisiana, 19-22 March 
1985, with the stated objective of 
providing the Center with input 
necessary for the development of 
Trusted Network Evaluation 
Criteria. In addition to the issue 
paper authors approximately 50 more 
experts in network and computer 
security representing both the 
public and private sectors were 
invited to participate. 

Each of the invitees was 
assigned to one of eight specific 
working groups organized around the 
eight issue areas and remained with 
that group throughout the Workshop. 
Each group was asked to read and 
discuss pertinent issue papers and 
provide criteria recommendations 
based on group findings. Each 
Working Group leader was asked to 
prepare a group report and provide 
that report to the Workshop 
organizer before leaving New 
Orleans. 

3.0 Workshop Results 

With a few exceptions the 
overwhelming consensus was that the 
Orange Book is alive and well andi 
yes, useful for the evaluation of 
the effectiveness of security 
controls in networks. However, 
extensions, interpretations and 
some additional criteria are 
necessary. The prevailing 
reasoning was that the distributed 
nature of a network allows it to be 
analyzed as a special case of a 
distributed system. As the Orange 
Book does not preclude, but also 
does not specifically include, 
distributed systems much 
interpretation is needed when 
applying Orange Book criteria. 

Some of the conclusions 
reached by the working groups (and 
summarized by issue area) include 
the following: 

3.1 Policy and Models 

Security policies must be 
stated for: protection against 
compromise, for integrity, and 
against denial-of-service. 
Furthermore, these policies must be 
implemented at both the network 
level and at the component level. 
In the area of compromise the 
network mandatory policy should be 
enforced by a set of 
interconnection rules that provide 
the conditions under which two 
components can communicate. These 
rules are expressed in terms of the 
security level of the information 
being transmitted and the 
accreditation range of the sending 
and receiving network components. 
(7) 

3.2 Access Controls 

In this author's opinion one 
of the most important findings of 
the access control group was their 
recognition and emphasis on the 
need for standardization of labels 
within a network. They concluded 
that if a network is expected to 
make access control decisions based 
on the sensitivity level of the 
data for which transmission service 
is being requested, (i.e., 
mandatory access control decisions) 
then all subscribers of the net had 
better use the same representation 
for a specific sensitivity level. 
They went one step further and 
suggested that not only must 
internal representations be exactly 
the same but external label 
representations also. Their fall 
back position was that mutually 
communicating systems be required 
to maintain a mapping of each other 
system's labels to the other. 

In addition to their 
recognition that mandatory access 
control can be implemented in a 
network, the access control group 
also suggests that some form of 
discretionary access control 
internal to the network is crucial 
for correct network functioning as 
well as for security. This is 
because it is closely tied to the 
problem of correctness of received 
identity. (8) 

3.3 Accountability 

The Accountability group 
recommends that the basic principle 
of individual user accountability 
must be supported by the network 
just as it is in hosts. They 

146 



IJ 

recognize that to accomplish this 
task networks will require the 
cooperation of hosts to trace 
network activity back to individual 
users. 

This group's report also 
discusses the nature of a network 
reference monitor. That portion of 
the network that is responsible for 
enforcing the network security 
policy is referred to as the 
Trusted Network Base (TNB). The 
TNB, which a network will have only 
one of, will include a network 
reference monitor. The TNB will be 
distributed over the network with 
parts of it residing in hosts which 
are attached to the network, other 
par~s may reside in cryptographic 
dev1ces, front ends, packet
switches, etc. (3) 

3.4 Network Architecture 

This group's consensus was 
that the Orange Book is not 
adequate for evaluation of networks 
and that additional criteria are 
needed. The new Criteria must 
allow incremental evaluations which 
would allow an evaluator to examine 
the parts of a network that are 
used as building blocks as well as 
allow for evaluations of network in 
their entirety. 

Some notion of formal 
decomposition of a network is 
necessary. This decomposition 
would require that when a system is 
parti~ioned ~nto subsystems a 
secur1ty pol1cy must be derived for 
each subsystem. The derived 
subsystem policy may not be the 
same as the containing system's
security policy or adjacent 
subsystems policies. However the 
security policies of all subs;stems 
within the containing systems must 
be shown to completely satisfy the 
system security policy of the 
containing system. (10) 

3.5 Configuration Management 
and Testing 

The group recommended use of 
configuration management from the 
onset of network design if 
possible, but at the earliest stage
possible. This should be 
instituted for networks of all 
evaluation classes from the lowest 
class on upwards. Support must be 
a global responsibility. That is 
it is crucial that all security- ' 
relevant components of a network be 
integrated under configuration 

management so that a global
authority can evaluate how proposed 
components changes would effect 
network security. (5) 

3.6 Verifications and Covert 
Channel Analysis 

As was the case with the 
network architecture group this 
group's findings emphasized 
decomposition. They viewed the 
network as a special case of a 
distributed system. From this 
perspective system-level
requirements should be decomposed 
to yield component-level
"constraints" (read: component 
security requirements). 

The report emphasized the greater 
potential for exploitation of 
covert channels in a distributed 
system and recommends that all 
hosts connected to multi-level 
networks should be subjected to 
covert channel analysis, not just 
those at the B2 or above evaluation 
class. This group recommends that 
the definition for covert storage
channel be expanded from that in 
the Orange Book. (9) 

3.7 Network Components 

This group believes that only 
with respect to or in the context 
of a specific network environment 
should components be evaluated with 
re~pect to system level security 
requirements. This will allow a 
network architect the latitude to 
meet system level security 
requirements in a varity of ways. 
A specific security requirement may 
be satisfied by one component, a 
homogeneous ensemble of components 
or by a heterogeneous collection 
from a variety of vendors. (6) 

3.8 Denial-of-Service 

Their major findings: (a) 
Integrity and authenticity of 
control are of utmost importance 
in coping with denial-of-servie 
problems. (b) The Orange Book is of 
little help in this area. (c) No 
generic denial-of-service 
conditions could be identified 
which were independent of mission 
objectives. (d) No increasingly 
comprehensive subsets of denial-of
service were identified but some 
categorizations in terms of 
detection~ recovery, and resistance 
was done. (2) 

147 




Though the group was unable to 
recommend generic criteria they did 
provide mission oriented criteria 
starting with a general policy 
which is: "Denial-of-service 
requirements will be considered for 
all networks relative to the user 
mission being supported by that 
network. Each network provider, in 
cooperation with the user, will 
define what conditions constitute 
network denial-of-service." 

4.0 Network Criteria 

Following the workshop, the 
Center asked a number of people to 
assist in analyzing workshop 
results. The objective was to 
identify emerging trends and themes 
and to provide an assessment of the 
direct applicability of workshop 
products to the development of 
network criteria. As a result of 
this activity the basic outline for 
the criteria was laid out. The 
remainder of this paper will 
provide an overview of major 
features of the draft document, 
titled: Department of Defense 
Trusted Network Evaluation 
Criteria. (TNEC) 

4.1 Definition 

The draft TNEC uses the 
following definition to describe a 
network: a network is composed of 
a communications medium and all 
components attached to that medium 
whose responsibility is the 
transference of information. Such 
components may include, but are not 
limited to, hosts, packet switches, 
telecommunications controllers, key 
distribution center, access control 
centers, technical control devices, 
and other components used by the 
network. 

As the definition implies, 
though we recognize that networks 
can be viewed as distributed 
systems and therefore be evaluated 
at a high service level of 
abstraction, we chose not to. 
Basically we believe that though 
implementation detail does not 
belong in a set of criteria, 
viewing the network at too high a 
level of abstraction would lead the 
evaluator to ignoring too many 
details and security problem areas. 

4.2 Structure 

The TNEC is divided into two 
major parts. Part I provides 
network-wide level criteria and is 
meant to be used for evaluating the 

security behavior of the network as 
a whole. Part II provides network 
components criteria and is meant to 
be used to evaluate components in 
isolation just as the Orange Book 
is used today to evaluate ADP 
products in isolation. Both Part I 
and Part II are closely linked to 
and derived from the Orange Book. 

The TNEC classifies networks 
into four hierarchical divisions of 
protection. However, as of this 
writing, the TNEC does not contain 
"subdivisions" (i.e., classes) as 
does the Orange Book. This was 
done for a number of reasons--none 
of which are sacred. First, it is 
simpler to do initial analysis if 
fewer categories of protection need 
identification. Second, it is not 
at all clear that even if 
simplicity was not an objective we 
could at the early stages of TNEC 
development, identify additional 
significant gradations in network 
security requirements. The 
divisions are referred to as: 

* ND: Minimal Protection 

NC: Controlled Access* 
Protection 

NB: Mandatory Protection* 

* NA: Verified Design 

4.3 Policy 

One of the conclusions reached 
by many of the groups in New 
Orleans was that a major deficiency 
of the Orange Book for network 
evaluations was the lack of policy
requirements for transmission 
integrity and denial-of-service. 
Though some individuals have been 
heard to say that integrity is 
addressable within the context of 
an Orange Book evaluation, no 
explicit requirements are stated 
for integrity in that document. 
The overall scope of the TNEC is 
broader than the Orange Book, as 
the TNEC not only addresses the 
compromise problem but also 
addressed transmission integrity 
and denial-of-service. However, 
because we recognize that different 
parts of the network and even 
different portions of a component 
within a network will probably be 
used to meet the three separate 
sets of requirements, separate 
evaluation and separate ratings are 
suggested for each. It is quite 
possible that a network may meet 
the NA requirements for compromise 

148 




but only achieve an NC fo~ deni~l
of-service and an ND for 1ntegr1ty. 
However if these sets of ratings 
satisy the network design 
requirements, so be it. The point
is, that unlike the Orange Book 
which only requires one kind of 
policy implementation, the draft 
TNEC is meant to meet a number of 
difference types of security
requirements which may and probably 
will vary in importance to mission 
objectives. 

4.4 The Divisions 

As the TNEC is in a state of 
flux as of this writing, a detailed 
description of individual criteria 
may serve only historical purpose. 
However the following short 
description of the overall 
character of each network division 
may prove useful. 

4.4.1 Division ND: Minimal 

Protection 


This devision provides minimal 
security. There are no security 
features which are trusted to 
protect against compromise, 
integrity, or denial-of-service. 
This division is reserved for those 
networks that have been evaluated 
but that fail to meet the 
requirements for a higher 
evaluation division. 

4.4.2 Division NC: Controlled 
Access Protection 

This division provides for 
minimal data compromise, integrity, 
and denial-of-service protection.
Networks within this division are 
not required to make security
decisions based on the level of 
sensitivity of information being 
transmitted. Security decisions 
based on the classification of 
information are handled 
administratively. 

Instead of the discretionary 
access control as required in the 
Orange Book the draft TNEC requires 
a "Network Discretionary Access 
control". At the NC level the 
network knows nothing about the 
sensitivity level of data being 
transmitted, only that hosts and 
other network components are 
attempting to communicate with each 
other or to use functions or 
services of the network. This 
criteria requires that the network 
be able to limit communication 
between components based on their 

149 


identity. At the NC level this is 
the only policy requirement for 
limiting a subscriber's 
capabilities on the network. 

In the accountability area, 
the draft TNEC requires all network 
components to identify themselves 
to the TNB before service can 
commence. Identity however will 
not require authentication for NC 
networks. There is also a 
requirement for audit trail 
maintenance. 

4.4.3 Division NB: Mandatory 
Protection 

In this division, the portion 
of the Trusted Network Base (TNB) 
that deals with compromise is based 
on a clearly defined and documented 
formal security policy model. It 
requires mandatory access control 
enforcement over all network 
resources. This policy is stated 
in terms of a set of 
interconnection rules that take 
into account that all network 
components must be accredited over 
some security range, where the 
range may be as small as a single 
security level. The rules only 
allow components to communicate in 
the range where they share common 
security levels, and only allows 
data flow between components 
communicating at the same security 
level. 

Covert channels are addrressed 
for NB networks and there are 
requirements for careful 
structuring of the TNB into 
protection-critical and non
protection-critical elements. The 
TNB interfaces must be well defined 
and its design and implementation 
should enable more thorough testing 
and review. The TNEC at this level 
also requires Trusted Facility 
Management and Configuration 
Management. 

4.4.4 Division NA: Verified 
Design 

A network in Division NA must 
satisfy the reference monitor 
requirements that it mediate all 
accesses of subject to objects, be 
tamperproof, and the distributed 
portions of the TNB shall be small 
enough to be subjected to analysis
and tests. To this end, the 
distributed TNB is structured to 
exclude code not essential to 
security policy enforcement, with 
significant systems engineering 



during TNB design and 
implementation towards minimizing
its complexity. A distinguishing 
feature of networks in this 
division is the analysis derived 
from formal design specification 
and verification techniques and the 
resulting high degree of assurance 
that the TNB is correctly 
implemented. This assurance is 
developmental in nature, starting
with a formal model of the security 
policy and formal top-level
specification (FTLS) of the design. 
Independent of the particular 
specification language or 
verification system used, there are 
five important criteria for 
Division NA design verification: 

* A formal model of the 
security policy must be clearly 
indentified and documented, 
including a mathematical proof that 
the model is consistant with its 
axioms and is sufficient to support 
the security policy. 

- * An FTLS must be produced
that includes abstract definitions 
of the functions the TNB performs 
and of the hardware and/or firmware 
mechanisms that are used to support 
separate execution domains. 

* The FTLS of the TNB must be 
shown to be consistent with the 
model by formal techniques where 
possible (i.e., where verification 
tools exists) and informal ones 
otherwise. 

* The TNB implementation 
(i.e., in hardware, firmw.are, and 
software) must be informally shown 
to be consistent with the FTLS. 
The elements of the FTLS must be 
shown, using informal techniques, 
to correspond to the elements of 
the TNB. The FTLS must express the 
unified protection mechanism 
required to satisfy the security 
policy, and it is the elements of 
this protection mechanism that are 
mapped to the elements of the TNB. 

* Formal analysis techniques 
must be used to identify and 
analyze covert channels. Informal 
techniques may be used to identify 
covert timing channels. The 
continued existence of identified 
covert channels in the system must 
be justified. 

In keeping with the extensive 
design and development analysis of 
the TNB required of networks in 
Division NA, more stringent 

configuration management is 
required and a network security 
administrator is supported. 

s.o Summary 

As of this writing the Center 
has put a significant effort into 
the development of Trusted Network 
Evaluation Criteria. A National 
forum was organized and held at the 
DoD Computer Security Center 
Invitational Workshop on Network 
Security. Products of that 
workshop have been used by the 
Center to formulate draft criteria. 
The Criteria fall into two types: 
(a) global criteria, to be used for 
evaluating the network as a whole~ 
and (b) component criteria to be 
used for evaluation of individual 
elements that are to be 
incorporated in a network and are 
to play a part in the enforcement 
of a security policy. In terms of 
policy this document differs from 
the Orange Book in that it includes 
requirements to insure integrity of 
data transmission as well as 
requirements to assist in 
protecting against denial-of
service. 

The draft TNEC is about to go 
out for review by a large divergent 
group of experts. After receiving 
their comments we will revise the 
document and reiterate the process.
We expect this process to finally 
result in the Center's being able 
to provide guidance in this complex 
area. 

150 




REFERENCES 


1. Brand, s. and Arsenault, A. 
"Network Security Issues " in 
Proceedings of the Department of 
Defense Computer Security Center 
Invitation Workshop on Network 
Security, DoD Computer Security 
Center, March 1985. 

2. Cerf, V. "Report of the Denial
of-Service Group" in Proceedings of 
the Department of Defense Computer 
Security Center Invitational 
Workshop on Network Security, DoD 
Computer Security Center, March 
1985. 

3. Denning, D.E. "Report of the 
Accountability Group" in 
Proceedings of the Department of 
Defense Computer Security Center 
Invitational Workshop on Network 
Security, DoD Computer Security 
Center, March 1985. 

4. DoD Computer Security Center, 
Department of Defense Trusted 
Computer System Evaluation 
Criteria, CSC-STD-001-83, 15 August 
1983. 

5. Downs, D. "Report of the 
Configuration Management and 
Testing Group (Assurance II)" in 
Proceedings of the Department of 
Defense Computer Security Center 
Invitational Workshop on Network 
Security, DoD Computer Security 
Center, March 1985. 

6. Kent, s. "Security for Network 
Components" in Proceedings of the 
Department of Defense Computer
Security Center Invitational 
Workshop on Network Security, DoD 
Computer Security Center, March 
1985. 

fl 

7. Lane, J. "Report of the Policy 
and Models Group or Plato 
Agonistes" in Proceedings of the 
Department of Defense Computer 
Security Center Invitational 
Workshop on Network Security, DoD 
Computer Security Center, March 
1985. 

8. Lipner, s. And Bailey, D. 

"Repo~t of the Access Controls 

Group" in Proceedings of the 

Department of Defense Computer 

Security Center Invitational 

Workshop on Network Security, DoD 

Computer Security Center, March 

1985. 


9. Rushby, J. "Report of the 
Working Group on Verification and 
Covert Channels (Assurance III)" in 
Proceedings of the Department of 
Defense Computer Security Center 
Invitational Workshop on Network 
Security, DoD Computer Security
Center, March 1985. 

10. Snow, B. "Report of the 
Network Architecture Group of the 
Invitational Workshop on Computer 
Security" in Proceedings of the 
Department of Defense Computer
Security Center Invitational 
Workshop on Network Security, DoD 
Computer Security Center, March 
1985. 

151 




AN APPROACH TO MULTI-LEVEL SECURE NETWORKS REVISION 1 


Leslee L. O'Dell* 

Department of Defense 


Computer Security Center 

Ft. Meade, MD 20755 

Introduction 

This paper presents an approach to 
developing a multi-level secure network and 
the security mechanisms necessary to 
achieve this. The design will convert an 
existing network into a multi-level secure 
network by placing a Front End Unit (FEU) 
on all hosts and by creating a Central 
Access Control Center (CACC) which is 
responsible for mediating accesses between 
hosts. The design approach influences the 
philosophy which supports the necessary
security requirements. Therefore, this 
design requires that the needed security
requirements be addressed at two levels: 
the "Network System Level" and the 
"Component Level." 

Presently, network requirements do not 
exist. In order for this network design to 
provide multi-level assurances, network 
requirements need to be defined. The best 
approach to achieving multi-level security 
is to identify two distinct sets of 
security requirements. The first set of 
security requirements applies to the 
"Network System Level." On this level, the 
concern is in guaranteeing secure 
communications between network subscribers 
at the appropriate security levels. The 
second set of security requirements applies 
to the "Component Level." On this level, 
the concern is to identify the distributed 
set of network requirements each component 
is responsible for enforcing and to 
identify the security mechanisms the 
components must provide to ensure secure 
implementation of the network requirements. 

Definitions 

The following definitions are a 
necessity in order to fully understand the 
network structure and requirements 
discussed within this pape%. 

a. The "Network System Level" is 
defined as all components in the "Component 
Level" working together as one system to 
satisfy a defined set of network system 
security requirements. In order for this 
to be properly implemented, the 
requirements for the "Network System Level" 
are distributed or duplicated among the 
components. 

*The ideas and conclusions presented in 
this paper are those of the author. 
However, nothing in this paper should be 
interpretted as representing an official 
endorsed Government Network Security
policy. 

b. The "Component Level" is defined as 
the actual physical devices which implement 
the "Network System Level" security
requirements. In this case, the physical 
devices are the FEUs and the CACC. Each 
functionally separate component in the 
"Component Level" enforces its own security 
properties as well as all, or a subset of, 
the network system's security properties. 

c. A Trusted Network Base (TNB) is 
defined as the totality of protection 
mechanisms which are distributed among the 
network components and which support and 
enforce the network security policy. These 
distributed network protection mechanisms 
are supported and protected by the TCB 
within each network component. 

d. A Security Range includes both the 
maximal element and the minimal element 
between two sets of security levels and all 
security levels falling between the maximal 
and the minimal. Where the maximal element 
of a range is the least upper bound of the 
set of levels in the range and the minimal 
element of the range is the greatest lower 
bound of the set of levels in the range.
Dominates means the following: 
classification(a) is greater than or equal 
to classification(b) and compartments(b) is 
a subset of compartments(a). Therefore, (a) 
dominates (b). 

Security Requirements 

Because ·the "Network System Level" 
bears a relationship to an Automatic Data 
Processing (ADP) system, the "DoD Trusted 
Computer System Evaluation Criteria" 
(Criteria), CSC-STD-001-83, forms a 
reasonable basis from which to develop 
network system security requirements. The 
specific network security requirements were 
developed by extending and tailoring the 
multi-level security requirements stated in 
the Criteria. Although the Criteria is the 
backbone on which the network security 
requirements were developed, only the 
extensions made to the Criteria will be 
discussed in this paper. The following 
areas had to be extended: Formalisms, 
Mandatory Access Control (MAC), 
Discretionary Access Control (DAC), 
Identification/Authentication (I/A), Trusted 
Path, Architecture, Labelling and Auditing. 

In addition, each network component is 
concerned with securely supporting its set 
of multi-level network requirements. In 
order for the component's operating system 
to securely manage its set of network 
security requirements, direction from the 
component's TCB is necessary. Since the 
network security mechanisms manipulate 

152 




multi-level objects and these mechanisms 
receive direction from the component's TCB, 
the components are required to provide 
multi-level assurances. But not all of the 
multi-level requirements are applicable on 
the "Component Level" because the 
components major role is to satisfy the 
network security and functional 
requirements. Thus, some of the 
requirements stated in the Criteria are 
interpreted for the "Component Level" 
because components are ~eing adapted to 
conform to the network environment. These 
changes are also discussed in the following
paragraphs. 

Extensions to the DoD Trusted Computer 
System Evaluation Criteria 

The following sections discuss the 
necessary extentions made to the multi
level requirements stated in the Criteria. 
These extentions were made to the Criteria 
to establish multi-level network security 
requirements. 

Formalisms 

The extension starts with the 
Formalisms required for a multi-level 
secure network system. As stated 
previously, a secure network is broken into 
two levels. Because of this philosophical 
viewpoint, the formalisms must be divided 
into three specific divisions. There is a 
division for the "Network System Level," 
one for the "Component Level" and one which 
assures that the "Component Level" 
formalisms combine to satisfy all "Network 
System Level" requirements (better known as 
the aggregate demonstration). The 
following explains these three divisions. 

a. The first level of formalisms is 
the "Network System Level." The "Network 
System Level" must have a Security Policy, 
a Formal Security Policy Model (FSPM), and 
a Formal Top Level Specification (FTLS). 
These formalisms are needed to adequately 
define the system's multi-level security 
properties for secure communications 
between components. 

b. On the component level, formalisms 
are needed for each functionally different 
component. Each component has a Security 
Policy, FSPM, FTLS, and Source Code. The 
reason for the component having formalisms 
is two fold: 

1. In order for the component to 
maintain the assurance level of the multi
level network, the component itself must 
also support multi-level properties. 
Therefore, each component formally defines 
its security properties which are needed 
for that component to maintain the multi
level assurance of the network. 

2. Each component is an integral 
part of an overall secure network system 
and therefore, supports the overall 
system's security policy. Because the 
security of the Network System is 
distributed among several component, each 
component reflects 

in its formalisms its set of network 
distributed security properties. 

c. The third level of formalisms is 
the· aggregate demonstration. This is a 
convincing argument demonstrating that the 
combination of the component's FTLSs make up 
the totality of the Network System's FTLS. 

Also, as part of the formal 
verification process, correspondence between 
source code and FTLS for each component is 
shown. This correspondence serves two 
purposes. First, it satisfies the 
requirement for correspondence between 
component FTLS and code. Second, it also 
satisfies the extended requirement for 
correspondence between system FTLS and code. 
The reason for the extension is the "Network 
System Level" does not have actual code. 
But the "Network System Level" does have 
formalisms which are correctly reflected 
within the components' FTLSs. Therefore, 
when coding a component to reflect its FTLS, 
code for the system is also being developed
and the need for correspondence between 
system FTLS and code is established. Then, 
with the argument that the combination of 
the components' FTLSs correctly reflects the 
system's FTLS, a correspondence between the 
components' FTLSs and code implies a 
correspondence between the system's FTLS and 
code. 

Mandatory Access Control 

The rules governing Mandatory Access 
Control (MAC) decisions for both the 
"Network System Level" and the "Component 
Level" are unchanged. However, there is an 
area which deserves some explanation. This 
area is to define what "Subjects" and 
"Objects" are within the "Network System
Level." 

In order for MAC decisions to be made 
on the "Network System Level," network 
"Subjects" and network "Objects" must be 
defined. According to the paper "Random 
Thoughts on Network Security Assurance 
Issues" by D. Elliot Bell and Marvin 
Schaefer, "Subjects" are the network 
subscribers behind the FEUs and "Objects" 
are the communications channels or 
"Liaisons." The CACC is responsible for 
enforcing the accesses of network subjects 
to network objects. In order for the CACC 
to make MAC decisions, the CACC must 
determine what the intersection of the 
security ranges are between the source 
network subject and the destination network 
subject. A Security Range is everyting 
between, and including, the minimum and 
maximum security levels a network subject is 
authorized to handle. This intersection of 
network source and destination subjects'
security ranges identifies the range of 
security level(s) of network objects(s) 
which both the source and destination 
subjects are authorized access to when 
communicating with each other. However, it 
is the FEUs responsibility for implementing 
the network MAC decisions made by the CACC. 
This is simply a MAC check on each datagram 
when it is received from either the attached 

153 



host or another FEU. 

Discretionary Access Control (DAC) 

. The Discretionary Access Control (DAC) 
requirement for the "Network System Level" 
was not extended but in fact rewritten as a 
System Access Control (SAC) requirement. 
SAC's responsibility is to define and 
control communications accesses between 
"Network System Level" subjects. For 
instance, SAC mediates accesses between 
FEUs in the network (e.g., what destination 
FEUs can the source FEU talk to). It was 
reasoned that implementing a "Network 
System Level" DAC would be futile. The 
difference between DAC and SAC is the DAC. 
controls accesses between subjects and 
objects whereas SAC controls communication 
between network subjects. 

On the "Component Level," DAC is only 
required in those components which support 
a "user." Since FEUs do not support a 
"user," the FEUs do not have to implement 
this requirement. However, the CACC 
supports a System Security Officer (SSO) 
and a System Administrator (SA) as "users" 
and therefore must implement the DAC 
requirement. 

Identification and Authentication (I/A) 

The identification and authentication 
(I/A) requirement does not apply to every 
component level component in a network 
because not every component has the 
capability or the need to support a "user." 
Therefore, only those components on the 
"Component Level" which support a "user" 
need to enforce the I/A requirement as 
stated in the Criteria. In the case of 
this network approach only the ACC supports 
a "user." These "users" have been 
identified to be the sso and the SA. Thus, 
the CACC must satisfy the I/A requirement
for these "users.~ However, attached hosts 
are also considered "users" in this system
and the I/A requirement is handled 
implicitly through hard wired connections. 
Individual "users" in the Criteria sense 
are not visible to the FEU. 

However, the I/A requirement must be 
extended within a network system. This 
extension states that each network datagram 
must be uniquely identified and 
authenticated by the TNB. Because the TNB 
is distributed among the "Component Level," 
every network datagram is required to be 
identified and authenticated when it is 
processed by a component which supports the 
TNB. Because datagrams are processed by 
devices that do not support the TNB, it is 
necessary to protect the integrity of each 
datagram's I/A information. By enforcing 
certain key management approaches on each 
datagram's I/A information, a component's 
TNB is able to trust received I/A 
information. 

Trusted Path 

Trusted Computing Base (TCB) apply for the 
standard SSO and SA interface. However, it 
only applies to those components which 
support the TNB and have a "user" 
requirement. Again, in this design approach 
only the ACC needs to support this 
requirement. 

Also, the Trusted Path requirement had 
to be extended to include the "Network 
System Level." A Network Trusted Path is a 
secure and unambiguous communications path 
between TNB components. To implement a 
Network Trusted Path, both source/
destination TNB components need to enforce a 
key management strategy. By having a keying 
strategy in place in all TNB components, a 
TNB component upon receipt of data is able 
to determine if the path the data traveled 
was secure and is able to unmistakably 
identify the communication path. This is a 
good example of a "Network System Level" 
distributed requirement that must be 
implemented by two separate components in 
order for the requirement to be satisfied. 

Architecture 

The architecture requirement for both 
the "Network System Level" TNB and the 
"Component Level" TCB must be extended 
because the "Network System Level" 
requirements are distributed among all 
"Component Level" components. Because the 
"Network System Level" TNB is distributed, 
the architecture of the component's TCB must 
be modified to include the necessary 
"Network System Level" TNB functions. 
Therefore, there will be functions within 
the component's TCB which operate strictly 
for the "Network System Level" TNB but are 
under the control of the component's TCB. 

Labels 

The labelling requirement is extended 
on the "Network System Level" to require 
that each datagram accurately indicate the 
level of the data. This.requirement can be 
satisfied by using a labelling field within 
the protocols to indicate the level of the 
data. However, in a network environment a 
problem arises in labelling each datagram. 
This problem, called the granularity of 
compartments problem, is trying to provide 
enough positions in the protocol to indicate 
all the possible compartments available. 
The point is, a network cannot be expected 
to support the intersection of all the 
compartments supported by all the attached 
hosts. Therefore, it is necessary to define 
a subset of compartments which were 
supported and understood by all attached 
hosts so they could communicate at a more 
granular compartment le.vel. Another 
extended labelling requirement is that FEUs 
in front of untrusted hosts must attach a 
trusted label which indicates the highest 
security level that FEU is authorized to 
process. The reason for this is to have a 
Trusted label on every datagram. 

Auditing 
The Trusted Path requirement stated in 

the Criteria between the "users" and the Auditing is an extended requirement 

154 




which applies for both the "Network System Issues" by M. Schaefer and D. Bell, "much is 
Level" and the "Component Level." All yet to be learnt about network security 
auditing data is controlled by the "Network 
System Level" but is a distributed effort 
among each component in the "Component 
Level." Hence, each component audits the 
necessary events for the system and those 
security relevant events which occur 
internal to it. Each component is 
responsible for collecting and protecting
the necessary auditing data until the CACC 
can collect it. It is the responsibility 
of the CACC to collect, maintain, and 
protect the aggregation of each component's 
auditing data as described in the Criteria. 
It is each component's responsibility to 
collect and protect the auditing data until 
it is requested by the CACC. One of the 
basic reasons for extending this 
requirement is to have a centralized 
location where all component and network 
auditing data can be collected and 
examined. Some of the things which need to 
be auditable are the opening and closing of 
network connections, all security relevant 
events within each FEU or CACC exploitation 
of covert channels, and the success or 
failure of access request. 

Conclusion 

Again, this paper only presents the 
requirement extensions which further 
enhance network security by using the 
stated design approach. Unless otherwise 
stated, it is assumed that all other multi 
level requirements stated in the Criteria 
will be satisfied by both the "Component 
Level" and the "Network System Level." It 
is presumed that these requirements may not 
be sufficient for a different design 
approach. 

Other areas of interest are: 

a. Data Base Management - There needs 
to be a data base model which enforces the 
security policy while retrieving 
information from the data base. 

b. Formal Verification - In the area 
of formal verification, there needs to be 
developed an automated method which can 
assure that the combination of individual 
component's FTLSs completely reflects the 
system's FTLS. Also, in the area of formal 
verification, system level requirements
when reflected in components' FTLSs may 
manifest themselves within the components' 
FTLSs in terms of different requirements. 
Because of this possibility, other areas of 
formal verification are necessary to show 
correct performance in areas which do not 
deal with compromise. 

c. Protocols - There are several 
protocol areas which need to be expanded. 
(e.g., for example, unforeseen potential 
interactions between protocols which leave 
the system in a deadlocked or undefined 
state. Also, tools are needed to help 
analyze protocols.) 

d. Testing - As stated in "Random 
Thoughts on Network Security Assurance 

testing." 

e. Some of the same areas of concern 
for standard operating systems are concerns 
also for networks and need to be examined. 
These areas of concern include ways of 
dealing with denial of service and ensuring 
data integrity. 

Acknowledgements 

This paper would not have been possible 
if it had not been for Dr. David Bell's 
foresight and help when the network 
requirements for this particular project 
were being developed and tailored. I would 
personally like to thank Dr. David Bell, 
Daniel Edwards, Dave Solo, Marvin Schaefer, 
Steven LaFountain, and Tom Parenty for the 
many different ideas, and technical 
discussions which greatly influenced this 
paper. Finally, a special thanks goes to 
Janet Swain for her contribution and 
support. 

155 




Determining Security Requirements for Complex Systems with the Orange Book• 

Carl E. Landwehr 

Computer Science and Systems Branch, Code 7593 

Information Technology Division 


Naval Research Laboratory 

Washington, D.C. 20375 


H. 0. Lubbes 

Computer Resources Division, Code 814T 

Space and Naval Warfare Systems Command 


Washington, D.C. 


1. Introduction 

This paper presents a method for determining the 
hardware and software security requirements of a system, 
based on 

{1) the local processing capability available to a system user; 

{2) the kind of communication path between the user's local 
device and the primary system components; 

{3) the flexibility of the processing capability the system pro
vides to the user; 

{4) 	 the environment in which the system was developed; and 

{5) 	 the difference between the clearance held by the least 
cleared user of the system and the classification of the 
most sensitive data processed by the system. 

This method can be understood as a risk evaluation of a 
system that can be conducted at a very early stage in the life 
cycle of a system and repeated as the structure and functions 
of the system change during its development and operation. 
De~ndin~ on the. inherent risk that a system {or system 
des~gn) dJSp~ays, different levels of security requirements may 
be Imposed m order to reduce the operational risk of the sys
tem to an acceptable level. Applications of this method to 
several environments are provided as examples. Although 
developed based on consideration of DoD environments the 
method seems applicable to other environments to the e~tent 
that the Orange Book requirements apply to them. 

The technique described here does not consider require
ments for degaussing of removable storage, TEMPEST require
ments, protection from physical hazards, emergency destruc
tion, or other security requirements not related to the 
hardware and software architecture of the system. 

2. Structure of the Orange Book 

The DoD Trusted Computer System Evaluation Criteria 
{the "Orange Book" [1] provides a set of security requirements 
of two kinds: specific security feature requirements, which call 
for particular system functions in order to provide data secu
rity, and assurance requirements, which call for testing, docu
mentation, and verification to assure that the security features 
are correctly implemented. A system that satisfies all require
ments listed in the Orange Book would be designated AI. Sys
tems that satisfy specified, nested subsets of the requirements 
are designated B3, B2, B1, C2, C1, D, in order of decreasing 
requirements. 

* The technique presented here represents the .technical judgment of the au
t~ors and.doe:' not necessarily represent the views or policy of their respec
tive organizations or of the U.S. Nayy. 

The Orange Book does not provide guidance as to what 
level of system is appropriate for a particular operational 
environment. A draft application doctrine [2] has been 
developed, however, that defines the level of system required 
for a particular environment based only on the classification of 
the data processed by the system, the clearances of its users, 
and the environment in which it was developed. This simple 
scheme is inadequate for use in assessing security requirements 
of many complex systems; a more comprehensive method is 
proposed below. 

3. Applying Technical Computer Security Guidance 
Effectively 

Although it is imperfect in many respects, as a technical 
basis for specifying computer security requirements, the 
Orange Book is the most comprehensive and current document 
available. A method is needed for applying the Orange Book 
to the components of large scale, geographically dispersed sys
tems, so that the appropriate requirements from the Orange 
Book book can be identified for each host system. Such a 
method is defined below. As shown in Figure 1, it involves: 

(1) 	 extracting from each system (or system design) the fac
tors that affect the risk that its operation may lead to the 
unauthorized disclosure of sensitive information, 

{2) 	 quantifying these factors, and 

(3) 	 determining system security requirements {in terms of the 
levels defined in the Orange Book) that reduce the system 
risk to an acceptable level. 

This method can be understood as a risk evaluation based on 
the threat of unauthorized disclosure of sensitive information. 
The asset of the system is sensitive information, defined m • 
terms of its classification level, and the vulnerabilities of the 
system depend on the degree of control it exerts on its users. 
The system risk combines the value of the assets, the vulnera
bilities of the system, and the clearance of the users. 

Identifying the Risk Factors 

To determine a system's security requirements it is neces
sary to consider the environment in which that system 
operates. The Orange Book specifies levels of requirements 
independent of system environment; the draft application doc
trine [2] characterizes a system's environment in terms of three 
parameters: the maximum clearance of the least cleared user 
the maximum classification of data processed by the system: 
and the environment in which the system is developed and 
maintained {open or closed). While simple to evaluate, these 
parameters omit important factors that affect actual system 
risk. 

The following paragraphs explain the factors that should 
be taken into account. For each factor, different levels of risk 

156 




System 
Description 

Risk Factors 
Local Processing

'----Extract ---4j) Capability 
- Communication Path 

User Capability 
Data Exposure 

user clearance 
data class1ficat1on 

.-QuantifY---~ 
Deve1opment/ 

maintenance 
environment 

Risk 

Eva1uation 


~--Afa)1---------~> 

.-----Specify--~ 

Security Design 
Requirements 

A 1. A6, 
631. 638 
C12 

"Orange Book .. Criteria 

A A 1.A2r..•An . 

83 B31,B32•...,63n 

82 
81 
C2 
C1 C11.C12,... ,C1n 

Figure 1. Steps in applying guidance. 

are defined so that the difference between two adjacent levels 
in each factor represents a roughly comparable increase (or 
decrease) in risk. Factors are defined so that they are roughly 
independent -- a change in one factor does not imply a change 
in another factor. These properties allow numbering the risk 
levels and combining them in most cases using simple addition. 

Something as abstract as risk cannot be quantified pre
cisely. Recognizing this, we have not attempted to make fine 
distinctions, and no doubt some systems will still fall near the 
boundaries of the proposed classes. Nevertheless, the scheme 
described below, coarse as it is, captures the intuition and 
experience of computer security practitioners and is preferable 
to simply setting these considerations aside because they can
not be made precise. 

Local Processing Capability. Some systems have 
receive-only terminals (e.g., stock transaction displays, airline 
terminal monitors); users of such terminals have no way to 

enter system commands directly. Such terminals represent a 
lower level of risk than typical interactive terminals that per
mit both sending and receiving information. Replacing a 
fixed-function interactive terminal with a programmable termi
nal, personal computer, or other programmable device would 
introduce a still higher level of risk, since the user can now 
program his terminal to enter commands for him. A user who 
accesses a system from a fixed-function terminal but via a pro
grammable host computer would be considered to have the 
same local processing capability as one who uses a personal 
computer as a terminal. The identified risk levels for local pro
cessing capability are: 

Levell: receive-only terminal 
Level2: fixed-function interactive terminal 

Level 3: programmable device (access via personal com
puter or programmable host) 

157 



Communication Path. The communication path 
between a terminal and host can also affect system risk. A 
terminal that has a simplex receive-only link to its host via a 
store-and-forward network (e.g., via radio broadcast) poses less 
risk than one that is connected via a duplex store-and-forward 
link, since the simplex path prevents the user from submitting 
requests to the system. Terminals that are connected to a 
host either directly, through a local-area network, or long-haul 
packet network (e.g., Telnet, DDN) offer increased possibilities 
for penetration and misuse (inadvertant or otherwise) over 
those connected only through a store-and-forward net because 
of the increased bandwidth and closer host-terminal interac
tion they permit. The identified risk levels for communication 
path are: 

Levell: store/forward, receive-only 

Level2: store/forward, send/receive 

Level 3: interactive, via direct connection, local-area net, 
or long-haul packet net 

User Capability. Regardless of the local processing 
available to a user or the communication path he uses to 
access a host, if that host is programmed only to provide 
predefined outputs regardless of the inputs the user presents, 
it is less risky than a system that responds to user transac
tions. In this sense, the system that generates the ticker tape 
for a stock exchange is less at risk to the terminals that 
display the tape than an interactive electronic banking system 
is to automated teller machines. Finally, a transaction-based 
system is less at risk from its users than a system that permits 
its users full programming capabilities. The identified risk lev
els for user capability are: 

Levell: output only 

Level2: transaction processing 

Level3: full programming 

Development/Maintenance Environment. A system 
that has been developed and is maintained by cleared indivi
duals under close configuration control (closed environment) 
should pose less risk than one that is not developed and main
tained in this way (open environment). This distinction has 
been proposed in the draft application doctrine [2]. It seems a 
reasonable one, but relatively few examples of systems 
developed and maintained according to the proposed definition 
of "closed environment" have been identified outside of the 
intelligence community. For simplicity, we assume that 
systems are developed and operated in an open environment. 
Systems. that are developed and maintained in a closed 
environment may therefore be subject to slightly less stringent 
requirements than will result from our approach. 

Data Exposure. A system that has a greater disparity 
between the clearance of its least cleared user and the 
clasSification of the most sensitive data it processes is more at 
risk than one that has a lesser disparity. The draft applica
tion doctrine proposes a scheme for numbering and classifying 
"risk range" we adopt this scheme but call it "data exposure" 
to distinguish it from other risk factors. Although clearance 
and classification levels used are based on the DoD system, 
they do include levels for sensitive but unclassified data and 
users authorized access for such data. For non-DoD environ
ments, it seems likely that analogous clearance/classification 
levels could be defined. Clearance levels are identified as: 

Level 0: uncleared 

Level 1: uncleared, but authorized access to sensitive 
unclassified information 

Level2: confidential clearance 

Level3: secret clearance 

Level4: top secret/background investigation 

LevelS: top secret/special background investigation 

Level 6: top secret/special background investigation, with 
authorization for one compartment 

Level 7: top secret/special background investigation, with 
authorization for more than one compartment 

Classification levels are numbered: 

Level 0: unclassified 

Levell: sensitive unclassified information 
Level2: confidential 

Level3: secret 

Level4: secret with one category 

LevelS: top secret with no categories or secret with two or 
more categories 

Level6: top secret with one category 

Level 7: top secret with two or more categories 

Data exposure is computed as the difference between the level 
of the least cleared user of a system and the' maximum level of 
data processed by the system. It thus ranges from a value of 0 
(all users cleared for all data) to 7 (system processes top secret 
data with two or more categories and some users are 
uncleared). 

Applying the Risk Factors 

For a particular system, each of the risk factors needs to 
be evaluated in order to assess the overall ("system") risk. 
With minor exceptions, the system risk is simply the sum of 
the risks of the individual risk factors. Based on system risk 
and data exposure, security requirements can be determined. 
These requirements are characterized here in terms of the lev
els defined in the Orange Book because they have been pub
lished and reviewed widely. If a different subsetting of the 
Orange Book requirements later proves more appropriate than 
the current set of levels, the new subsets can be substituted. 
Tables 1-3 provide the necessary mappings between factor 
values, risk factor levels, and security requirements. The first 
two tables are only needed because of the exceptions men
tioned above; usually, Table 3 can be used directly with the 
sum of the individual risk factors. 

Note that in a given system, different terminals may pro
vide different functions, lead to different levels of risk and 
impose different security requirements. Security requirex'nents 
for the system as a whole must be determined on the basis of 
the most risky part. As noted previously, the tables below 
assume all systems are developed/maintained under conditions 
of an open environment. 

Table 1. Together, local processing capability and com
munication path characterize what computer security litera
ture refers to as the "process coupling" risk. This term is 
intended to cover how well a process in one .computer can 
maintain its integrity in the face of attempts to subvert it 
from outside. A high degree of coupling represents a close 
degree of interaction between two processes, and hence a 
greater vulnerability of one to the other. If there is a very lim
ited, well-defined set of requests one process can make of the 
other, then the degree of process coupling will be low. Process 
coupling risk in a system, as shown in Table 1, is the sum of 
the local processing capability and communication path risks 
with one exception. A fixed function interactive terminai 
attached to a one-way store-and-forward communication path 
does not increase risk over a receive-only terminal on the same 
link. A programmable device increases risk over the interac
tive terminal, since, if improperly programmed, it might cor
rupt labels transmitted with data. 

Table 2. The process coupling value from Table 1, com
bined with the appropriate user capability factor value yields 
an overall system risk independent of the data exposure. As in 
Table 1, the entries of Table 2 have been obtained by sum
ming the risk factor values from each axis.· The entries for a 
process coupling of 2 (receive-only or interactive terminal on a 

158 



Table 1. Process Coupling Risk 

Local Processing 

Capability 1. S/F Net 
(one-way) 

Communication Path 

2. SfF Net 3. 1/ A Net or Direct 
(two-way) Connection (LAN DDN) 

1. Receive-only Terminal 2 3 4 

2. Interactive Terminal 
(fixed function) 2 4 5 

3. Programmable Device 
(Access via personal 
computer or programmable 
host) 

4 5 6 

Table 2. System Risk 

User Capability 
Process Coupling Risk 

2 3 4 5 6 
1. Output-only (Subscriber) 3 4 5 6 7 

2. Transaction Processing - 5 6 7 8 

3. Full Programming -· 6 7 8 9 

Table 3. Mapping System Risk and Data Exposure to Orange Book Levels 

Data Exposure 
System Risk 

3 4 5 6 7 8 9 

0 Cl Cl Cl Cl/C2 C2 C2 C2 
1 Cl/C2 C2 C2 C2 c2/B1 Bl Bl 
2 C2 C2/Bl Bl Bl Bl Bl/B2 B2 
3 Bl Bl Bl/B2 B2 B2/B3 B3 B3/Al 
4 B2 B2/B3 B3 B3/Al A1 Al Al 
5 B3/Al A1 Al - - - ' -
6 - - - - - - -
7 - - - - - - -

receive-only link} have been omitted for user capabilities of 
transaction processing and full programming, since a receive
only link cannot support either of these capabilities. 

Table 3. This table relates the system risk with the 
data exposure to yield a level from the Orange Book that 
defines the security requirements for the system. As ~noted 
above, the Orange Book levels may later be replaced by 
related, but distinct, sets of features and assurances. The 
entries in this table were generated by working through exam
ples and considering the guidance provided by the draft appli
cation doctrine [2] and current DoD directives governing com
partmented mode. Blank entries indicate that, for the 
specified data exposure level and system risk, it appears techn
ically infeasible to meet the appropriate security requirements 
at the time. 
4. Examples 

A Sea Surface Surveillance System (S4) 

Consider the application of the technique outlined above 
to a hypothetical system that keeps track of objects on the 
surface of the seas (see Figure 2). The system collects informa
tion from a variety of open and secret sources and distributes 
it to a variety of customers. The system maintains a data 
base of sighting information that is both automatically and 
manually updated. There are two major classes of users: 
analysts and subscribers. 

S4 analysts are the direct operators of the system: they 
are called on to resolve ambiguities when the system cannot 

associate a particular sighting with a particular platform, they 
can cause messages to be sent to subscribers automatically on 
a regular basis, and they can update the data base. They 
operate interactive terminals that are located in S4 spaces and 
connected directly to the S4 computers. 

S4 subscribers, are the recipients of reports generated by 
S4. They are located outside the S4 spaces and receive reports 
over a variety of different communication networks on 
receive-only terminals. They cannot directly enter data into 
the S4 system, but they can issue requests (via normal message 
channels} for regular updates on the location of particular 
objects, for example. These requests are received by S4 
analysts who cause filters to be set up that automatically 
channel relevant re,ports to the subscriber. Once the appropri
ate filter is set up, no further human intervention is required. 

Since analysts and subscribers are permitted different 
kinds of functions, have different clearances, and communicate 
with the S4 system over different paths, it is necessary to 
apply this technique to each class of user separately. 

Local Processing Capability. Analysts operate fixed 
function interactive terminals, so they represent a risk level of 
2. Subscribers operate receive-only terminals, yielding a risk 
level of 1. 

Communication Path. Analysts communicate with S4 
machines directly, so their risk level is 3. Subscribers com
municate over a one-way store-and-forward network, so their 
risk level is 1. 

159 




5s ss 
Host + Receive-Only Users 

Remote 
Subscribers 

=2 
=3 
=2-

Central site 
Host 
Processors 

••• 
•
i 

System 
Oper-
Dtors 

Open~tor Risk: Fixed Function Terminal 
Direct comm. path 
TransDction proc. 

System Risk =7 
Datll Exposure = 7-7 = 0 

Host security level required: C2 

Subscriber Risk: 	Output Only Terminal = I 
Receive Only comm. = 1 
Output Only capability .::J.. 

System Risk · = 3 
Data Exposure= 7-3 = 4 · 

Host security level required: 82 

Figure 2. 

User Capability. Analysts are permitted to issue tran
sactions directly to S4, but they d~ not have full programming 
capability, so the risk level is 2. Subscribers have output-only 
capability, so the risk level is 1. 

Data Exposure. S4 processes data at the TS level with 
multiple compartments, so the classification level is 7. S4 
analysts hold TS clearances with SBI and are authorized access 
for all compartments that S4 processes. Consequently, their 
clearance level is also 7 and the data exposure for analysts is 0. 

.. -~·. 
Some S4 subscribers hold only Secret clearances with no com
partment authorizations, so their clearance level is 3, yielding 
a data exposure for subscribers of 4. 

Using the Tables. First, for analysts, Table 1 shows 
that a local processing capability risk of 2 and communication 
path risk of 3 yields a process coupling risk of 5. Table 2 com
bines a user capability risk of 2 with a process coupling risk of 

Original 84 system. 

5 to yield a system risk of 7. Table 3 maps a data exposure of 
0 and a system risk of 7 to a 02 level system requirement. 

For subscribers, Table 1 combines a local processing capa
bility risk of 1 with a communication path risk of 1 to yield a 
process coupling risk of 2. Table 2 combines a user capability 
risk of 1 with a process coupling risk of 2 to give a system risk 
of 3. Finally, Table 3 maps a data exposure of 4 and a system 
risk of 3 to a B2 level system requirement. 

Since S4 includes both kinds of users, the more stringent 
of the two requirements (i.e., B2) would apply. Changes to the · 
environments of either subscribers or analysts· (such as the 
introduction of personal computers in place of fixed function 
terminals) would require the risk evaluation to be repeated, 
and could lead to a change in the level of security requirement. 

160 



Host + Interact1ve Users 

System 
Oper
ators 

·central site 
Remote 
Users 

Host 
Processors 

.
•• 

• 
.. 
I FQ-· 

Operator Risk: Flxed Function Terminal 
Direct comm. path 
Transaction proc. 

= 2 
=3 

-=2 
System Risk =7 
Data Exposure = 7-7 = 0 

Host security level required: C2 

User Risk: Programmable terminal =3 
Interactive network comm. =3 
Transaction processing =2 

System Risk =8 
Data Exposure = 7-3 =4 

Host security level required: A 1 

Figure 3. Evolved 84 system. 

Evolution of the 84 System "Orange Book Environment" 

Suppose that after initial deployment of. S4, its sub
 The Orange Book does not explicitly define an environ

scribers clamor for terminals more up-to-date than the original ment. However, the predecessors of the Orange Book criteria 
. receive-only ones. The system sponsor proposes to replace were first developed in the context of an interactive computer
them with personal computers (see Figure 3). What are the system that provided users with directly connected, fixed
effects on the security that the host system needs to provide? function terminals and full programming capability. The 
The local processing capability risk factor changes from 1 to 3, corresponding entries in Tables 1 and 2 yield a system risk of 
and the system risk becomes a 5; the data exposure for sub 8. Since no data exposure is defined for the Orange Book 
scribers is unchanged. Table 3 shows that the host should environment, it is appropriate to consider the result for the Air 
security should be upgraded from B2 to B3. If, in addition to Force Data Services Center (AFDSC) Multics environment, 
the personal computers the sponsor permits subscribers to which provides full programming to users at fixed function, 
communicate with the system over a real-time network and to directly connected terminals. AFDSC Multics includes non
initiate transactions, the system risk becomes 8, and an A1 compartmented data classified up to top secret and some users 
host would be indicated. By estimating the additional cost of have only secret clearances, so the data exposure is 2, and the 
replacing or upgrading the S4 host to the B3 or Al level, the resulting security requirement from Table 3 is for a Bl/B2 sys
sponsor can quantify the cost of providing new functions while tem. Multics is currently under evaluation by the DoD Com
maintaining an acceptable level of risk for the system. puter Security Evaluation Center and is expected to achieve a 

161 



B2 rating. 

5. 	Discussion 

Here we address some possible objections to the approach 
described above. 

Objection: the proposed scheme imposes different 
requirements on a host computer based on characteristics of 
the user's terminal and the communication path between the 
terminal and the host. These are outside the security perime
ter of the host and therefore should not affect the security 
required of it. 

Response: security considerations include not only pro
tecting data up to the point that it leaves the system but also 
resisting attacks on the system mounted by external users. 
Users with personal computers and direct connections to sys
tems have proven a greater threat (e.g. in terms of their ability 
to defeat password schemes) than those who have only fixed
function terminals at their disposal. Each higher Orange Book 
level adds assurance requirements as well as security feature 
requirements. While the security features added at a particu
lar level may or may not improve protection against threats 
posed by terminals and networks connectea to a host the 
increased assurance provided by each incremental level should 
decrease the likelihood of flaws that could be exploited from 
outside the security perimeter. It is thus appropriate to 
increase the Orange Book level required of a host based on the 
risk factors assigned to the user capability and communication 
path. 

Objection: the proposed approach in some cases permits 
hosts to meet lower security requirements than would the 
draft application doctrine[2]. 

Response: the approach proposed here distinguishes 
aspects of application system structure that reduce its vulnera
bility to outside attacks. The draft application doctrine 
determines the level of system required based primarily on the 
clearances of system users and the classification of data stored 
in the system. There is no distinction, for example, between a 
system in which users can only view output and one in which 
users can construct and execute their own programs. Conse
quently, the proposed requirements must be based on the 
worst case assumption (user programming). By providing a 
more detailed model of the environment, the approach pro
posed here permits a more accurate assessment of the security 
actually required. 

Objection: previous attempts to distinguish rigorously 
between a system that can be programmed and one to which 
only transactions can be submitted have failed. 

Response: while a formal mathematical distinction 
between systems that users can program and those that per
form a fixed set of functions in response to user requests may 
never be defined, it does not seem to be a difficult distinction 
to make in practice. In cases that are difficult to decide (e.g., 

- :~I 

a "transaction-processing" database system that permits a 
complex query and update capability) it is safe to assign the 
system the higher risk factor. 

Objection: because the proposed approach determines 
host security requirements partly based on system architec
ture, changes to the architecture may lead to different security 
requirements. 

Response: this is actually a benefit of the approach. As 
a system changes during its design, development, and opera
tion, the effects of those changes on host security requirements 
can be easily assessed, providing a practical way to use the 
Orange Book requirements throughout the system life cycle. 
If, for example, a B2 host will not be available to support an 
application as originally planned and a B1 host must be used 
instead, the approach proposed here can help determine how 
system functions, user capabilities, or communication paths 
could be restricted to compensate for the less secure host. 

Conversely, if new functions or terminals are added to a sys
tem already under development, this approach can indicate 
whether host security will need to be upgraded as a result. 
The only tradeoff that would be recognized under the draft 
application doctrine would be to limit the classification of the 
data to be processed by the system or increase the clearance of 
its users. 

6. 	Conclusion 

We have presented a scheme for determining an appropri
ate set of host security requirements using the requirements 
and levels identified in the Orange Book. The scheme takes 
into account the functions available to a user locally, the com
munication path used to gain access to the host, and the func
tions the host provides, as well as the user's clearance and the 
classification of data processed by the host. By including 
these system characteristics, this technique makes it possible 
to assess trade-offs among system function, system architec
ture, and system costs while maintaining an acceptable level of 
system risk. 

References 

1. 	 Department of Defense Trusted Computer System 
Evaluation Criteria, DoD Computer Security Evaluation 
Center, CSC-STD-001-83, 15 August 1983. 

2. 	 Brand, S. Environmental Guidelines for Using the DoD 
Trusted Computer System Evaluation Criteria. Proc. 
Seventh DoD/NBS Computer Security Initiative Confer
ence, Sept., 1984, Gaithersburg, MD, pp. 17-23. 

-trU.S. GOVERNMENT PRINTING OFFICE: 1 9 8 5 52 9 16 5 3 0 g 3 9 

162 




