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FOREWORD 


This document Is a collection of inte.rnal working 
notes produced by members of the Computer Security Branch, 
Directorate of Information Systems Technolog~,.Deputy for 
Command and Management Systems, during the period of 
~ugust - November 1972. 

Although the preliminary nature of these notes Is 
emphasized, we hope they.will be an aid to understanding
the direction of ongoing computer security efforts, until 
such time as more complete results are available. Three 
efforts now underway have been Influenced by the Ideas 
expressed here, and future products can be anticipated: 

a. ESD-TR-73-51, Computer Security Technology
Planning Study, by James P. Anderson, dated October 1972. 

b. MITRE-MTR-2547, 11 Secure Computer Systems:
Mathematical Foundations", by D. E. ·Be 11 and L. J. 
LaPadula. 

c. Final report from Case Western Reserve University
under the ESD(MCI) Statement of Work, "Abstract Model for 
Secure Computer Systems". 

REVIEW AND APPROVAL 

Publication of this report does not constitute Air 
Force approval of the report's finding or conclusions. It 
Is published only for the exchange and stimulation of 
Ideas. 
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NOTES ON AN APPROACH FOR DESIGN OF SECURE 

MILITARY ADP SYSTEMS 


lntrodyctlon 

The military has a heavy responsibility for 
protection of Information In its shared computer systems. 
The military must insure the security of its computer 
systems before they are put Into operational use. That 
is, the security must be "certified", since once military 
Information is lost it is Irretrievable and there are no 
legal remedies for redress. 

Most contemporary shared computer systems are not 
secure because security was not a mandantory requirement 
of the initial hardware and software design. The military 
has reasonably effective physical, communication, and 
personnel security, so that the nub of our computer 
security proble~ is the information access controls in the 
operating system and supporting hardware. We primarily 
need an effective means for enforcing very simple 
protection relationships, (e.g., user clearance level must 
be greater than or equal to the classification level of 
accessed Information); however, we do not require 
solutions to some of the more complex protection problems 
such as mutually suspicious processes. 

Based on the work of people like Butler Lampson we 
have espoused three design principles as a basis for 
adequate security controls: 

a. Comolete Mediation The system must provide
complete mediation of information references, I.e., must 
interpose itself between any reference to sensitive data 
and accession of that data. All references must be 
validated by those portions of the system hardware and 
software responsible for security. 

b. Isolation These validation operators, a 
"security kernel", must be an isolated, tamper-proof 
component of the system. This kernel must provide a 
unique, protected identity for each user who generates 
references, and must protect the reference-validating 
algorithms. 
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c. Simplicity-- The security kernel must be simple 
enough for effective certification. The demonstrably 
complete logical design should be implemented as a small 
set of simple primitive operations and system data base 
structures that can be shown to be correct. 

These three principles are central to the 
understanding of the deficiencies of present systems and 
provide a basis for critical examination of protection
mechanisms and a method for insuring a system is secure. 
It Is our firm belief that by applying these principles we 
can have secure shared systems in the next few years. 

Deficiencies of Present Systems 

Most current computer systems exhibit a complex, ad 
hoc security design with diffuse implementation that 
violates our third principle of simplicity. Large 
portions of complex operating systems execute in an 
all-powerful supervisor state, so that the entire 
operating system has potential security implications. 
Whatever nominal security controls exist in such bug-prone
monoliths are not effectively isolated (in violation of 
our isolation principle) and so can be tampered with 
through errors or trap doors in other parts of the 
operating system. 

The significance of these inherent security weakness 
has been amply and repeatedly demonstrated by the ease 
with which contemporary systems (such as OS/360 and GCOS) 
have been penetrated. Unfortunately, this lack of an 
underlying design methodology cannot be effectively 
overcome by ad hoc 11 fixes 11 and "security features" built 
on an uncertain foundation. 

Certification 

A naive (but occasionally attempted) approach to 
insuring the security of a complex operating system is to 
have a penetration team of "experts" test the system. It 
is supposed that repeatedly unsuccessful penetration 
attempts demonstrate the absense of security "holes". 
Such a test approach Is primarily 1 imited to penetration 
attacks In areas indicated by the particular background 
and experience of the Individuals involved. A security 

1-2 




evaluation through such attempts may reveal weaknesses of 
a system but provide no Indication of the presence or 
absence of trap doors or errors in areas unnoticed by the 
attack team. The failure of an attack team to notice a 
particular penetration route does not prove or certify 
that an actual penetration attempt will overlook it at a 
later date. The underlying concern Is that an active 
hostile penetrator Is not particularly thwarted by the 
various flaws found and fixed through testing so long as 
there remains lY11 ~vulnerability that he can find and 
effectively exploit. 

On the other hand our three principles lead to a 
simple, well-defined subset of the system totally
responsible for Information protection. We expect that 
the primitive functions of this small, simple kernel can 
be tested by enumeration, and other parts of the system 
are not relevant to security. As a result most system 
changes will not affect the kernel, so routine system 
maintenance will not require repeated recertification. 

Practical Mechanisms 

An abstract security model is needed In order to 
evaluate the adequacy of protection mechanisms. Lampson's
capability (I.e., access matrix) model has proven a useful 
departure point, and we have applied two design techniques 
for developlnj a specific secure design: 

a •. The model Is represented in various levels of 
abstraction. The design process transforms an Initial 
abstract model of all the system's protection 
relationships (derived directly from the system's specific 
definitions of security, thus leading to a model that is 
secure by hypothesis) into subsidiary levels of 
abstraction. As the design progresses from level to level 
the representations of the mode~ become more specific and 
culminate in specific hardware features. The Inter-level 
transformations, chosen for reasons of efficiency as well 
as utility, can ultimately be implemented as primitive 
operations of the kernel, and since the inter-level 
transformations preserve the Initial protection 
relationships, we can prove that the resulting design Is 
secure. 

b. The kernel design is simplified by Including only 
those relevant operations that modify access control data 
bases, but not those that merely read this control 
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information that is not Itself being protected against 
disclosure. Consider as an example a demand paging 
system. At some level of abstraction page table entries 
represent capabilities that must be carefully controlled, 
so the kernel will have a primitive for changing page 
table entries; however, the page replacement selection 
algorithm should not be in the security kernel. 

Using this mode 1,: descrIptor-based addressing 
available In advanced pro'cessor hardware Is seen to offer 
a most promising basis for a security kernel design. In 
terms of our first design principle (comolete mediation), 
this addressing hardware validates ~ memory reference 
by a user's process: it interprets the required access, 
specified in the applicable descriptor. The security 
kernel insures security through its primitive operations,
which are invoked by the remainder of the operating system 
to maintain the descriptors. Because access control is 
vested in the well-defined and bounded descriptor
mechanism, kernel software functions are few enough and 
simple enough to make certification tractable, as required 
by simplicity, our third design principle. 

Descriptor-based Isolation mechanisms (such as 
Schroeder's hardware Implemented rings for Multics) can 
provide effective as well as efficient protection of the 
security kernel. Thus, as Implied by our second design 
principle (Isolation), an antagonist could have complete 
freedom within the remainder of the system without 
compromising the protection provided. 

Prospect f2L ~ Futyre 

In the Air force we are pursuing a development effort 
for providing secure shared systems In the next few years.
In cooperation with the MITRE Corporation, we are already 
applying our three design principles to shared 
communications processors in the laboratory, and we have 
begun to extend these Ideas to a design for a shared, 
general purpose computer system. 

We are confident that from the standpoint of 
technology there is a good chance for secure shared 
systems in the next few years. However, from a practical 
standpoint the security problem will remain as long as 
manufacturers remain committed to current system 
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architectures, produced without a firm requirement for 
security. As long as there is support for ad hoc fixes 
and security packages for these Inadequate designs, and as 
long as the illusory results of penetration teams are 
accepted as a demonstration of computer system security, 
proper security will not be a reality. 
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ON THE DESIGN OF SECURE SYSTEMS 

SECTION 1 PHILOSOPHY 

Our intent is to provide a basis for the design of 
multiuser computer systems in which there exist security 
mechanisms that provide: 1) a useful degree of flexible 
security and 2) a high degree of confidence in the 
Integrity of the mechanisms. 

The problem of computer security is well recognized 
and a number of systems and system designs have been 
proposed. However, it Is often difficult to evaluate 
these efforts without understanding the assumptions 
Implicit In the system design or recognizing what portion
of the security problem the system purports to solve. 

Hence, we briefly state in general terms our 
conception of that part of the current military computer 
security problem that we will consider, and later restate 
this general conception more exactly. The kind of 
security that Is currently desired is not complex In its 
functional capability. We do not demand the ability to 
handle the problems of aggregation, Inference, or mutually 
suspicious subsystems. We do not attack those problems
which seem to require a monitoring and general 
understanding of the~ to which Information will be put, 
excepting rather simplistic controls like read, write and 
execute, and hence are satisfied by a set of simple 
decision rules which operate on Information recorded in 
the system, not unlike the class of facilities that a 
number of timesharing systems provide today. 

The critical requirement is extremely high integrity: 
great confidence that the specified design of the security
facilities of the system are In fact guaranteed. We 
recognize, of course, that the system must provide useful 
capabilities, since otherwise a guaranteed design or 
implementation is vacuous. That Is, the proposed security 
controls must allow the Implementation of a multiuser 
computer system with functional capabilities not unlike a 
number of today's common commercially available time 
sharing systems. 
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In an attempt to fulfill these goals, the following 
strategy is proposed: develop a simple logical design 
whose correctness can be verified, and whose elements are 
both simple enough and close enough to real system 
features so that Implementation of the model is reasonably 
straightforward. 

As the abstract model is developed, we shall be guided 
by the Idea of a kernel. We ihtend to isolate that 
portion of the system responsible for security and place 
It In a protected part of the system, In a manner 
analogous to the way In which current supervisors are 
segregated from user programs. It will be necessary to 
demonstrate that this segregation Is performed In a way
that guarantees the kernel's Integrity and also guarantees 
that the kernel Is always Invoked to arbitrate .attempted 
references. These tasks are eased by the fact that we 
will design our security model so that it can aid In 
protecting itself. 

By segregating the responsibility for security, the 
problem of verifying the system's security mechanisms· 
becomes that of: 1) demonstrating that the kernel Is 
always Invoked, and 2) verifying that the kernel operates
properly. The problem has been greatly reduced from that 
of verifying properties of an entire operating system to 
that of verifying a (presumably) small portion of ft. 

The design model should consist of several levels of 
abstraction. The top level is a logical description of 
security systems; the lowest level closer to a possible 
machine implementation. Higher levels are more machine 
independent than lower levels. The intent ts to prove the 
correctness ot an upper level machine independent model, 
and demonstrate that translations to lower, more specific 
levels preserve the relevant properties of the top level. 
Through the use of this top down informal structure, we 
hope to demonstrate the correctness of an implementable 
design for a secure system. Lest readers labor under any 
misconceptions, it should be pointed out that while the 
uproof" structure Is top down, the system design certainly 
Is not. Fairly well defined ideas of the desired end 
product exist. The top down approach is primarily tor 
purposes of description and proof. 

A remark should be made concerning the meaning of 
"correctness", and "proofs of correctness". A system 
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cannot, in a vacuum, be proved correct. It may, however, 
be possible to demonstrate that a system design agrees 
with, or fulfills, certain external criteria, that Is, 
conditions which are not explicitly part of the design. 
These external criteria specificallY characterize that 
"computer security problem" which we consider. 

We. will demonstrate that In certain cases these 
explicit, external criteria can be made part of the system
design, In such a manner that they are always applied,
reducing the problem of an Informal correctness proot. 

A last constraint Is placed on the design by the need 
for efficiency. The security mechanisms should not 
markedly degrade the price/pertormance characteristics of 
a system. The effect of this constraint is more apparent 
as discussion moves closer to Implementation. 
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SECTION 2 - A SECURITY META-MODEL 


Introduction 

The following approach Is intended as a guide for the 
logical design of computer security systems. The 
description applies to a wide class of security systems, 
Including most of those In practice or proposed today. 

Naturally, then, the meta-model does not provide an 
instance, or Implementation, of a useful secure system. 
Using the meta-model, for example, one can provide
Inappropriate standards for correctness, or one can design 
a system that is not useful. As a case in point, whether 
or not provision Is made for the operation of 
"cooperating, mutually suspicious process", Is irrelevant 
to the meta-model. 

However, the security meta-model allows one to relate 
various specific models, and provides a specific guide to 
those actions necessary to guarantee the correctness of a 
security design. 

Notation 

In the following discussion, some non-standard 
notation Is used to linearize formats. Several 
conventions should be pointed out. Subscripts are 
enclosed In square brackets. Sets are labelled by capital 
letters, and elements of that set are generally labelled 
by the same letter, but In lower case and subscripted.
Hence a(j] refers to the j-th element of the set A. 

It Is occasionally necessary to speak of the names of 
members of a set, rather than the members themselves. The 
set of names which corresponds to a set of elements Is 
denoted by an underline. So, for example, the set A, with 
elements .a(j] is a set whose elements are names, 
corresponding to the set A. 

Last, the power set of a set X Is written P(X). 
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Brief pescrlotlon 

The model is described In set theoretic language, and 
has six major components. First Is the set 0 of securitY 
objects: the elements of the model,~ reflecting those 
physical or logical parts of a computer system that need 
to be controlled, protected, or whose status needs to be 
guaranteed. The objects are partitioned Into disjoint
classes, each containing objects of similar 
characteristics. An Incomplete 11st of examples Includes 
,terminals, communication 1 lnes, processes and files. 

Second, a set A of access types is presented. Each 
access type Is a program which effects a particular
variety of access, such as read, write, or execute. An 
attempted access operation Is then completely specified by 
an access type and some meaningful collection of objects,
i.e. a particular process being directed from a given
terminal attempting to reference a specified .IUti.ft In 
memory. 

Third, a collection of descrlotlye s!.5Lt.a D(kJ, from 
the set of all possible descriptive data collections D Is 
required. D[k] specifies the Information that forms the 
basis by which security decisions will be made. The 
subscript k indicates a time dependency. 

Fourth, an eyalyatlon program, ! decides, for any
meaningful grouping of objects, what operators are to be 
allowed. 

Fifth, an update program ~ Is characterized 
separately. This program Is the means by which the 
descriptive data are changed. Operationally, this Is the 
manner by which access decisions may be altered. 

In many real Implementations, the distinction between 
the evaluation program and update program may not be 
clearcut, since the descrl~tfve data Is likely to be 
stored and protected like any other security object. Both 
programs are treated here so that their similar nature Is 
~pparent. Nevertheless, the distinction will be useful 
since l~plementatlons of the two programs may differ. !, 
while likely to be software implemented, calls upon access 
programs to do its actual work, and these may be at least 
partly If not wholly built In hardware. ~ on the other 
hand in many cases will be almost exclusively software and 
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actually changes the formatted descriptive data. 

Last, external correctness criteria are required. 
These are a set of rules, or standards T, by which the 
system Is to be adjudged correct. These standards must be 
external to the system description up to this point In 
order to be meaningful. 

A security system S Is then specified by the 
six-tuple: 

. S = (0, A, O, ~, ~~ T). 

~ Components £! ~ Model 

Security Objects 

i The first component of the model, the security
objects, Is a finite set 0: 

0 =fo[l], o[2l, •.. , o[z]]. 

These are the ~ objects to which access wt 11 be 
controlled by the model, and by a resulting 
Implementation. 

Acce 1ss Types 
i 

. The second component of the mod~l is a set of access 
types: 

A a { a (o], a [1], a [2], •.• , a(w] J 
Each afil Is a program whose effect will be to provide a 
particular variety of access, read, write, or execute for 
example. The list of arguments for each a(i] must be 
finite and contain names of security objects. In 
addt'tlon, a[ol Is designated as the .D.Y.ll access program.
This program will be Invoked when access Is to be denied. 
It can keep audit trails, set up warnings to 
administrators, etc. 
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Descriptive ~ 

The third component, the descriptive data, is merely 
a set of tuples: 

D(k] • f d[k,l], d[k,2], ••• , d(k,v] ~, 

with some finite upper bound set on v. We depart somewhat 
from our strict set theoretic notation by speaking of the 
structure of a tuple. 

Each tuple Is only assumed to have a bounded number of 
entries, the first of which acts as a "data descriptor" to 
distinguish among tuples of different formats and content. 

For example, one type of tuple might be an encoding 
of a matrix entry In Lampson's model ~4]; the entry 
expressing an access relation between two security
objects. Another might express a property: user x belongs 
to project y, or has clearance z. A property may also be 
val ld only for several users jointly. Such circumstances 
do not fit naturally Into a matrix representation of the 
descriptive data, so tuples are preferred here. 

Explicit use of the structure of the descriptive data 
will not be made . in the following discussion of 
correctness, although It is necessary in the more detailed 
proof. The finiteness of both the length and number of 
tuples will be useful here, however. 

Let X• be the set of all allowed tuples, and 0 = 
PCX•) the power set of X•. Then D(k] is some member of 
P(X•). 

Evaluation program 

The third portion of the model Is an evaluation 
program! which uses descriptive data to make decisions 
concerning access. For any evaluation program, the list 
of arguments Is composed of some fixed number of objects 
from each partition of the security objects 0, and an 
access type; the name of an element In A. For 
convenience, those objects are denoted by 8. 

The task of the evaluation program Is to decide 
whether or not the specified objects may be associated In 
the manner expressed by the access type and to Indicate an 
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appropriate action. That Indication Is done by selecting 
the appropriate access program and specifying Its proper 
arguments. 

The evaluation program l takes a list of object 
names, a particular descriptive data configuration, and 
the .n.wrut of an access type (names of elements are 
underlined); and returns the allowed access program 
together with the argument list for that access program. 

l Is composed from an access rule E. E Is a fairly 
arbitrary program that is assumed only to 1) terminate, 
returning~ or false, and 2) be read only. 

The Intent Is that E describe conditions to be 
fulfilled In order to allow access. It may be an 
arbitrary function of Its arguments, although often such 
programs are fairly simple. 

Then the program E may be written as follows: 

l : ~ .(8, D(k], .A[j]) returns 1 ist; 
1ock; · 

ll E(9, D[k], ,A(j]) 

.t.bJm begIn un 1 oc k; ca 11 Jl [j J ( 9) JWSI.; 

~begin unlock; call ,A(o](9) JWSI.;

.wJ.si; 


The list which is returned specifies an access type
and the argument list for that program. The arguments for 
E are the same as for E Itself. 

The functions l2£K and unloik are understood to act 
on a single semaphore, as Dljkstra s operators P(x), V(x). 
It Is necessary to coordinate the operation of land~ so 
that E Is not reading D[kJ while ~ Is updating D(k].
Otherwise, It would not be possible to prove that l and ~ 
perform In all cases as claimed. 

Uodate Program 

The update program Is the means by which descriptive
data Is changed. Hence It Is the manner by which 
decisions that the evaluate program makes can be affected. 
Let ·a• denote the set of arguments for the update program 
which are security objects, O(y] is the current 
descriptive data, and D[z] is the data to which it Is 
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desired to change. ~ yields either the original data, 
prohibiting the change, or the new data, having allowed 
the change. 

The update program, too, Is composed from some 
effective procedure U, similar In purpose to E, and so the 
update program~ may be written as: 

~ : .l2..tQ.k (9 1 , O(y], D(z]) returns element of D; 
1ock;
11. uce•, DCyJ, orzJ > 
~begin unlock; return D[zJ gng 
~ begin unlock; return O[yJ itD..9, 
.smQ.; 

The arguments for U are the same as for the procedure 
itself. 

!hA Correctness Criteria 

The security objectives of the access control system 
are the qualities that It Is necessary to guarantee. For 
a certain well defined class of criteria, there Is a 
straightforward method of taking a logical description of 
a security system and altering that model to provide a 
derived system model In which the given correctness 
criteria hold. 

The correctness criteria are expressed as a set T of 
predicates: 

T = {t(lJ, t[2], ••• , t(q]J. 

These are the predicates that must be proven true for the 
system. 

In this model, predicates may be expressed In one of 
two forms, and so T Is partitiOned Into two subsets Tl and 
T2 corresponding to the two alternatives. 

If t(il Is In Tl then It may be any predicate
expressible in the following functional form: 

t(iJ : 9 x D x A-> {~, falseJ. 

The interpretation of predicates In Tl Is that the object
list from 9 may be associated with access type a(j] In A 
and a gIven D(k] in D .2D.ll 11. .tiJ1. li .tJ:.wt. 
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If t[IJ Is in T2, then It may be any predicate 
expressible in the following functional form: 

8 1t[IJ : x D!j] X D(kJ -> f..t.J:.wt, false~ 

The Interpretation is that the descriptive data D[j] may 
8 1be changed to D(k] by the objects expressed by only if 

t [I] is true. 

Let 

71 = And (t[i]) for all t(f] in T1 and 

let 

12 = And (t(j]) for all t (j] in T2. 

11 and 72 take the same arguments as the t(i) and t(j],
respectively. 

To demonstrate that a system is correct, it is 
necessary to guarantee the truth of 11 and 12. Below, a 
simple way is shown to take any security system S and 
derive from it a system s• for whl~h the given 71 and 72 
are .t.Lwt. 

oeriyation Qf Correct System 

System Specification 

As described, a security system S Is a tuple: 

S = (0, A, DCoJ, l, ~, T) 

0 Is the object set, A is the set of access types, DCoJ is 
taken as the set of tuples which comprise the initial 
descriptive data, l Is the evaluation program, ~ is the 
update program, and T Is the set of predicates to be 
guaranteed. 

For a particular system S, the entries A, l, ~, and T 
are fixed. The descriptive data D(k] may be varied by use 
of ~. Then the state of a security system S can be 
completely expressed by its descriptive data D(k], for 
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some k. The update program Is the means by which a system 
s may change states and the compound predicate 12 
expresses the constraints on allowed state changes. The 
evaluation program ~ "Interprets" a particular state, and 
11 expresses the constraints on ~. 

Given a security system S • (0, A, D(o], ~, ~, T), 
5 1system = (0, A, D[oJ, ! 1 , ~·, T) Is produced by the 

following Inclusion~. 

~· Is derived from ~ by the follow,Jng change.
Replace 11 E( ••• )" by "E(. •• ) .sm9. 11(9; D, a(jJ)". 

~· Is derived from~ by the following change:
Replace "U<. •• >" by "U(. •• ) .lru! 12(9 1 , D(y], D[z))". 

Correctness Proof 

First It Is helpful to defJne a few terms. 

A state DCn] of a system 
S • ( 0, A, DCo], ~, ~, T) 

is yalid If and only if D(nJ can be obtained from D[oJ by 
a finite number of applications of~ and, for each such 
transition from state DCkJ to D(k+1J,

' T2 ("9 I; D(k], D (k+ 1 J) = ..t.r..lal§. 
for some 9'. 

Second, a state DCkJ is accyrately interPreted if and 
only if for any 9 and any j: 

1~(8 , D(k], D[j]) • (8 1 , a(o]) whenever 
11(9, D(k], a(jJ) • false (where a[oJ is the null access 
type). 

Then to say that a system S is correct is meant the 
following: 

1) Every state obtainable from D[o] Is valid, and 

2) Every val ld state Is accurately Interpreted. 
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We now state the following (system correctness) 
theorem;
Glyen a security system 

Sa CO, A, OCoJ, l', ~·, T) with T partitioned 

Into T1 and T2; 


S 1
~ • (0, A, O(oJ, l', ~ 1 , T) derived from S 

by the lnclyslon ~ 

.th.iu1 ~· .U. correct. 

Proof Sketch 

An easy way to prove the theorem Is by contradiction. 
Suppose the theorem false. Then, by definition of 
correct, S' reaches an Invalid state, or a valid state is 
Inaccurately Interpreted. 

~ 1: Assume an Invalid state. Label that Invalid 
state O[kJ. Then there must exist a sequence of states 
O(ol, OC1J, 0(21, ., •• , O[kJ such that ~ (8(1], O(IJ, 
0(1+1]) = OCI+1J for all l<k, since~ makes the transition 
from state to state. 

Now O[o] Is valid by definition. O[kJ Is Invalid by
assumption. Then there must exist a non-negative lnterger 
j , 1e s s than k, such that 0Cj J I s v a 1 I d and 0[j + 1 J ) I s 
Invalid. Hence, by definition of valid, 72(9, OCjJ,
0 [j + 1 1) I s fa 1s e • But ~ ( 9 , 0 [j J , 0 [ j + 1 ] ) a 0 (j + 1 J • By
Inspection of ~, these two conditions cannot hold, and 
hence a contradiction is reached. 

~ .2,: Assume an Inaccurately Interpreted val ld 
state. Call that valid state O[k]. Then by definition of 
an accurate Interpretation, for some 9CIJ and a(jJ, the 
f o 1 1 ow I n g I s true. 

71(9(1], O[kJ, a(j]) • false and 

l C9 t i1 , o c k 1 , a Cj J > ; C9, a ro J> 
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By Inspection of ~~ this Is a contradiction. Hence every 
valid state Is accurately Interpreted. 

Both cases are Impossible. Hence the theorem cannot 
be false. 

qed 

This pro~f Is of course nearly tautologlc In nature. 

Plscysslon 

This security meta-model and the inclusion technique 
are Intended as an aid In the design of secure multiuser 
computer systems. Hence some of the assumptions and 
Implications Inherent In the choice of language, model, 
and technique ought be made explicit. 

The primary Influence In this meta model was the 
realization that Its value Is solely In Its ability to aid 
the fmolementatfon of a demonstrably secure system. Hence 
the model and Its elements must conform to the modules and 
capabilities of computer systems not unlike those In 
existence today. At the same time, a simplicity and 
coherence was desired, reasonably free of Implementation 
questions, that would provide some understanding of the 
contemporary security problem. It Is felt that the basic 
concepts explicated here are a reasonable start toward 
these goals, although It is freely admitted that 
exposition, notation and other details may require
improvement. 

A number of Implementation Implications of this meta 
model can be mentioned. 

First, It should be pointed out that effective 
procedures exist for the update and evaluation programs,
the predicates from which they are composed, and the 
predicates which make up the correctness criteria. This 
fact Is a result of the finiteness of all the sets 
Involved In the meta-model. That effective procedures
exist for all the predicates In the theorem set T makes 
the Inclusion technique actually useful. In certain 
actual Implementations of course, It may be possible to 
demonstrate the truth of some of the correctness criteria 
without dynamically verifying them at run time. 
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No claim of efficiency is made in this model, since 
for any particular system the predicates may be complex 
and the descriptive data specified In a manner that 
requires a great deal of work to check the given 
predicates. On the other hand, as will be demonstrated in 
a companion paper, the correctness criteria predicates for 
certain real problems are rather simple, and careful 
design of the descriptive data can greatly aid efficiency 
while remaining faithful to this meta-model. It is this 
fact which really guarantees the effectiveness of the 
Inclusion step. 

The next abstract level is sketched In a companion 
paper In order to demonstrate that a useful security 
system can be described with the language of the 
meta-model, showing that the meta-model is not vacuous. 

Lt la intended !hAl~ kernel 21 A computer svstem 
Include everything !hal !hlA ~ model contains, AQQ 
nothing~. Hence the meta model defines the boundaries 
of the kernel, and the ability to use the kernel to 
protect parts of Itself will allow one to provide 
carefully controlled access to the kernel itself. 

Summary 

The meta model provides a language for describing a 
useful class of security systems. It easily lends itself 
to the use of a technique which guarantees that the 
objectives of the system are fulfilled by the model. The 
concepts of the model are relatively simple and bear a 
reasonably close relation to the kinds of computer systems 
In existence today, suggesting the possibility of 
providing, with high confidence, a faithful Implementation 
of the model. An accurate Implementation of a desired 
security design is, after all, the primary goal of all of 
this work. 
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MUSINGS CONCERNING A SPECIFIC SECURITY MODEL 


(The following thoughts were sketched under 
significant time constraints and are released in their 
present form only with considerable reluctence. 
Nevertheless, It Is hoped that a useful partial 
e~plication is provided of the applicability of the ideas 
previously presented, specifically the kernel and the meta 
model design approach.) · 

With the general outline of the security meta-model 
in mind, we sketch a model of a particular security 
system. It is not an extremely general one, but rather Is 
intended as a statement of current military needs in a 
context that both provides a basis for a proof of 
correctness and can lead fairly directly to an 
implementation. To make It clear that implementation is 
possible, the flavor of the st(ucture is taken from the 
existing file system of Multlcs. 

A few notes should be made concerning the intended 
environment of this model. An on line multiuser computer 
installation is expected, where the mechanisms proposed In 
this model, directly or indirectly, check every reference 
made to Information contained in the system. · 

The Objects 

The object set 0 might be partitioned into four 
subsets: 

Ot = a set of terminals 

Ou = set of users 
I 

Od = set of data objects 

Os = set of security objects 

Terminals are meant to be representative of the entire 
class of 1/0 devices, and could include teletypes, 
printers, tape drives and the like. For every user 
recognized by the system, there is an object in Ou; the 
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"user process". Data objects include both executable and 
non-executable objects; the items that the system is 
intended to protect. Lastly there are security objects. 
Security objects contain the information upon which 
security decisions will be made. There are two 
distinctions between data objects and security objects. 
First, security objects will have a rigidly. enforced 
intern~l structure necessary for proper operation of the 
secur~ty system, while data objects are format free 
completely free form Internally. Second, security objects 
will be accessed directly only by the decision and update 
programs. 

' ' 

Names of objects will be required distinct, of 
course. 

I 
The Descriptive Data 

As already mentioned, the descriptive data is 
contained In the security objects. This containment 
provides a manner by which access to the descriptive data 
Itself can be controlled by the mechanisms of the model. 

Any security object os(i) Is an ordered· list of 
'descriptors

•._; . 

os( I).= {d(l), d(2), ••• d(n)1 

where a descriptor is an n-tuple, and nLS 

d 0 > = (.Q., m, ~, .o., r <1 >, rC 2> , ••• , r <k >J 

In any descriptor, .Q. is the name of a member of the 
object set 0. 

The second element, m Is a member of the mode set M. 

M =fl, 2, 3, 4, S, 6, 71 

The compartment list Is the third entry. 

It is useful to be able to label an object as a 
member of any number of several areas, or compartments. 
Hence a set of compartments Is defined: 
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C I = fc (1) I C ( 2) I • • • 1 C ( 17)1 

and for convenience we also define 

c = P(c) , the power set of c'. 

Any compartment list is the name of an element .in C. 

The remaining entries except for P are relations; 
there will be an arbitrary number of them. To describe 
relations, define first the access type set A'. 

A' =[copy, write, execute, read, updateJ 

and also A= P(A'). 

Then any relation Is a 2-tuple Cou, aJ whose first entry 
is a user name: of an object from Ou, and whose second 
entry Is the name of an element of the set A 

Each member of the access set can be thought of as a 
program whose effect is to provide a particular variety of 
access. The necessary parameters are specified later, but 
it is assumed in this section that these programs are 
correct. What such programs actually do, of course, 
provides the semantics for their names. 

It is intended that the access types copy, write, and 
execute apply to data objects: write and execute have the 
usual interpretation, while copy is synonomous with the 
usual definition of read. Copy is a better mneumonic for 
the actual ability provided. Read and update are access 
types that refer to security objects, and will have the 
suspected meaning. The last entry In the descriptor not 
yet mentioned is p. This entry Is a specification of the 
actual, machine dependent location of the object whose 
name is the first entry in the descriptor. 

The format of the security objects' internal 
structure has Mow been informally defined. Some additions 
wi 11 be , required like indicatbrs of the number of 
relations In a descriptor and the number of descriptors in 
a security object. Additional restrictions, on the actual 
content of security objects, will be imposed by initial 
conditions and the updating procedures. 
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A Brief Discussion 

Before continuing, it may help to discuss the 
motivation for the format selected, and the intended use 
to which the data will be put by the access and update 
programs. One will be able to represent the total 
descriptive data by a tree, where the nodes are security 
objects, and the edges from father to son are indicates by 
descriptors whose mode entry Is ~' for security object. A 
tree link lies between a securtt~ object named by the 
entry. Descriptors with other modes specify terminal 
leaves: the other objects, terminals, users, and data in 
the model. This tree structure provides the manner by 
which access to descriPtive data can be controlled, since 
each node contains the information relevant to access 
control for each of its sons. Access to the root node is 
treated differently It will be free for read, but not 
possible to change. 

The update program will guarantee that the name 
actually stored In a descriptor is unique: no two 
descriptors will have the same name entry. 

The totality of information about objects that the 
security system will employ to make access decisions is 
contained in the descriptor. 

The Evaluate Program 

The program Is the manne~ by which the descriptive 
data is interpreted to control access to data objects. 

First, we assume the existence and correctness of the 
programs which make up the access set. 

Each such procedure takes as arguments a user name, a 
terminal name, and a data object name. Its action is to 
perform those hardware and/or software operations 
necessary for the access to take place. 

In addition, we assume the existence of two correct 
procedures, ~and terminal, which return the name of 
the user object which has initiated the current access 
request, and the terminal from which the request was 
initiated, respectively. In addition, we assume the 
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existence of a access type program, that returns the kind 
of access requested: the name of an element in A; and a 
referencA program that returns the name of the data object 
to be referenced. (These two programs need not be proven 
correct.) He also assume the existence of a program D..Y..l..l 
which may be a nop, but may also initiate recording of 
certain parameters for later inspection. NYll is only 
guaranteed not to grant any access. 

I 
The evaluate program in its initial state is 

relatively simple. · To keep questions of implementation 
buried for the moment, we assume the existence of another 
correct program. 

Relation (b, c, d) has arguments b=data name, c=user 
name, and d=access type name, the name of a program in A'. 
This program returns ,true iff: 1) there exists a 
descriptor entry specified by b, and 2) there is a 
relation tuple (c, kJ In that descriptor, where k 
specifies a subset of the access types which Includes d. 

An initial evaluate program might then be written 
following the outline in the security meta model, but with 
relation (reference, ~, access-type) replacing E in the 
evaluate program E. Note that while the terminal involved 
In this activity has not been Included In the check, It 
would be a simple matter, given the existence of the 
routine terminal. 

The Update Program 

To more easily describe the update program at this 
level we again assume the existence of several programs: 

create (Q, ~) creates the object with name Q 
and adds a descriptor in~ with default sensitivity and 
compartment list. 

delete (Q, ~) destroys the object Q and removes 
Its descriptor from~· 

~ (~, I, j) returns the value of the j-th 
entry In the 1-th descriptor In security object~. 
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write (~, I, j, val) sets the contents of the 
j-th position in the 1-th descriptor in security object QA 
to val, if there exists an i-th descriptor. 

We assume that the above programs are correct. We also 
assume that there is some mechanism, not required correct, 
by which a user program may communicate its wishes to the 
update program. The set of arguments with which the 
update program must be invoked are: 1) the name of the 
object whose descriptive data It Is wished to change, 2) 
the name of the security object to which the object
belongs, 3) the operation that Is desired (which program 
to invoke), and 4) the relevant input parameters to that 
program (the desired new values in a descriptor). 

It should be fairly straightforward to sketch an 

design. These, in reasonably specific 

update program, given the outline 
the above correct routines. 

in the meta model and 

Theorems 

It is now necessary to specify the objectives of the 
system some 
language, are the criteria to which it is desired the 
system conform. We first state the requirements, as 
currently understood, in rather informal English, and then 
begin to formalize them In terms of the specific model at 
hand. These requirements are relatively simple, and do 
not provide some of the guarantees that are currently 
desired by some segments of the computer community. 
However, at this point, it is believed that current and 
short range future military requirements would be 
satisfied. Informally, there are four requirements. 1) 
No user shall have any access to an object if the 
sensitivity rating of the user, at the time that Initial 
access is attempted, is less than the sensitivity rating 
of the object. 2) No user shall have any access to an 
object if the set of compartments associated with the 
object at the time of Initial attempted access is not 
contained by the set of compartments associated with the 
user. 3) No user shall have any access to an object
unless authorized by a "need to know" specification at the 
time of initial attempted access. 

The problem of demonstrating that these criteria are 
always· applied in this model can be approached in the 
following way. First prove that the format, or structure 
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of the data base will have the properties that are 
described In the descusston earlier. This amounts to 
proving a number of assertions about the effect of the 
update program. 

Then state theorems one through three 
algorithmically. Modify the decision process in the 
access program to invoke the above algorithms as part of 
the decision process Itself in such a manner that a) it is 
simple to show that the algorithms are always applied In 
the decision process, b) the parameters they are supplied 
are appropriate, and c) the result of the algorithms has a 
controlling effect on whether or not access is granted. 

As an example, we restate the first two requirements
below, using the notation: sensit_ivity (x) and 
compartment (x) to mean the sensitivity and compartment 
entry in the descriptor for object x, respectively. 

proc label-check (user, object); 
check <- ~; 
if sensitivity (object) > sensitivity (user)

then chetk <- false; 
If compartment (object) ¢ compartment (user) 

then check <- false; 
return check; 
end; 

In the above, the symbol > means the binary 
arithmetic operator "greater than". The symbol ¢ is the 
negation of the set theoretic property of "contained in'1 • 
It is presumably clear that programs for all of the 
operations and checks required for the procedure 
label-check are straightforward in 1 ight of the data base 
provided by the security objects. 

The decision program is then modified by replacing
) 1111 re 1at Ion (. .. by 

"relation (reference, ~, access type) and 
label check (user, object)". 

The truth of the three requirements can be guaranteed 
In this manner, if In addition a consistent data structure 
Is assumed for the security objects. 
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This approach Is equivalent to dynamic checks at run 
time of the state of the system. Certainly it is possible 
that careful construction of the logical structure of the 
system could obviate the ne~d for some run time checks, in 
a fashion analagous to certain programming languages. 
While that approach might be more efficient, these checks 
do not appear particularly costly. Also, the logical 
correctness of the system probably could be more easily
demonstrated under these circumstances, particularly in 
the face of changes to the system. 

The preceding sketch has been intended QOly as a 
resonability argument in support of the viability of the 
security meta model. There is no claim here of the 
accuracy of the ~etail. Rather, It Is only argued that 
the highly modular, tree structured proof structure for a 
security kernel is a viable and effective manner to deal 
with the task of correct security system design. 
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CHAPTER 1 INTRODUCTION 

1.1 Secure Operating Systems - General Goals 

The security aspect of shared computer systems has In 
the past not received preeminent concern. Questions of 
efficiency and flexibility have forced it Into the 
background of the design process~ 

The military, however, is faced with the spectre of 
Irrevocable compromise of classified Information, should a 
flaw exist In the' system's security. A single cunning and 
malicious user may employ a bug to penetrate or degrade an 
essential system, which, once penetrated in secrecy may 
even be cov&rtl~-and continuously tapped for Intelligence. 

As an example, Goheen and Fiske (4) report a 
successful penetration of an IBM System/360 operating In a 
classified environment. At the end of the study, the 
entire system was essentially open to the penetrators in 
complete secrecy. 

In the past the military has Insured protection of a 
~ensftfve computer facility by segregation of the 
equipment, limiting physical access to the equipment, and 
forcing on-site usage. Today the problem Is to insure 
security in a modern time-shared multi-access, 
multiprogrammed system in which remote users with 
different clearance levels can run concurrently with data 
files and programs of varying clearance levels. 

The military will adopt In the near future 
extraordinarily high standards for security certification 
of equipment and software. Some steps have recently been 
taken toward analysts of the military computer security 
problam, and toward articulating methodology for designing
certifiable security systems (8), (9), (10). 

Schell (10) has proposed three design principles for 
security mechanisms: comolete mediation, Isolation and 
slmplfcitx: 

(1) The system must provide Immediate and comolete 
mediation between reference to and retrieval of 
Information, validating all such references using a 
special subsystem. 
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(2) This subsystem, the "security kernel", must 
thwart any attempt at forgery of Identity, and must 
protect Its own validation algorithms. 

(3) The security kernel must be slmole enough for 
effective logical certification, and Implemented In a 
small set of simple primitive operations. 

In addition, Schell stated a robustness crlterton for 
adjudging the effectiveness of kernel operatlon: It must 
be " ••• so designed that even an antagonist could provide
the remainder of the system without compromising the 
protection provided." 

The need for these principles can be seen from the 
findings of the OS/360 penetration study (4), where lack 
of a centralized, simple and certifiable kernel was 
adjudged to be the source of the system's vulnerability. 

In Chapter 2 of this paper we propose a conceptual
model of the kernel's operation and organization, and In 
Chapter 3 we particularize the model to the military
security problem. Our malo objective Is to design a 
logically verifiable kernel subsystem to &uaraotee 
o~erattog security. · 

1.2 Design Methodology 

We Imagine the design process to move from needs to 
Implementation In a series of levels~ abstraction, each 
level moving closer to a concrete machine realization. 
The topmost level, level zero, consists of a mathematical 
model of general protection mechanisms, Independent of 
particular security requirements. The mathematical 
objects to the level zero model are fyocttons which are 
expressed In terms of (virtual) primitives unanalyzed at 
level zero. That Is, at level zero, the security kernel 
Is factored Into a number of components (modules). Some 
components remain to be analyzed further In lower levels 
of abstraction; level zero describes how the components 
syoth~slze to achieve the system goal. At the same time, 
subgoals ·are establIshed for each of the unanalyzed
modules. 

At level 1, the process Is repeated on each of the 
modules unanalyzed at level zero. Level 1 codifies the 
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specific requirements of a military security kernel, and 
IdentIfIes st 111 11 sma 11 er" unana 1yzed primItive components 
to be ~nalyzed and factored at still lower levels. 

The term factorization ts appropriate for this 
process, since at each level the unanalyzed components do 
Indeed compose with other functions in order to realize 
the goal for that level. 

This top-down design approach allows us to make 
design decisions in an orderly manner -- the choice of 
factors or modules at each level, and the scheme of 
synthesis amount to design decisions, and determine 
constrained subgoals., The approach allows us to separate 
Issues germane to: protection from those which are 
particular to a machl~e or system. 

By far the most Important advantage of this approach 
Is that It allows for orderly verification of each level. 

up 11Verification proceeds In a 11 bottom manner at each 
level: assuming that the unanalyzed modules behave as 
hypothesized, then the synthesized function at the level 
does such-and~such. Having verified the level, the 
Inductive subgoal Is now to factor and verify the modules. 

At level 2 we envision describing level 1 In terms of 
a MULTICS-ltke file directory hierarchy. The notions of 
directory, segment descriptor and process descriptor are 
introduced, but 11 paging 11 is Invisible at this level. Our 
task at level 2 will be to show that a file directory 
hierarchy structure realizes the access retrieval function 
defined at level 1. 

Levels zero and one are described In detail in the 
following chapters. We believe that the utll tty of the 
chosen design methodology is Illustrated In these 
chapters. 
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CHAPTER 2. 	 LEVEL ZERO 

2.1 A Kernel Model 

2.1.1 ~Accession Relation Components ~~Model 

We employ a protection model based on the work of 
Lampson (7) and Graham and Denning (6). We have a set of 
security objects 0 (files, programs, devices, etc.) a 
subset S of the set 0 of sybjects (processes) and a set of 
A of aicess attributes ( 1 read 1 , 'write', 'control', 
'owner , etc~>. Access of subjects to objects is 
controlled by an, accessJon.e~;elatlon, R,whlch is a subset of 
S x 0 x A. For example, R (s,o,a) or 11 (s,o,a) In R" is 
Intended to convey that s has attribute a with respect to 
object o. Lampson regards R as represented In the form of 
a matrix. 

m: S x 0 -> P(A) 

with entries In the power set P(A) of A. We wish to 
postpone questions of representation until later. 

In this model we assume that the accession relation 
Involves a single subject and a single object. That Is, 
we allow In our system a relation like 
(1) 	 11 s1 can 'read' o1" 

but not 
(2) "s1 can 'read' o1 only from device o2 11 

which would Involve three objects. 

Associated with each type of object is a monitor, a 
program which actually performs the desired accesston. 
Here we wish to Illustrate the difference between our 
visualization of the security system and that of Graham 
and Denning. 

In their model, depleted In FIGURE 1, when a subject 
s Initiates access a to object o, the system supplies the 
triple (s,o,a) to an appropriate monitor. The monitor 
Interrogates the accession "matrix" to determine whether s 
has a access to o and, If so, the monitor performs the 
requested function. 
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We wish, on the other hand, to propose a picture 
whIch t so 1ates the process of access at t'r Ibute checkIng, 
and which separates this process from the monitor 
functions. This effectively factors out the following 
processes: the Interpretation of a subject request with 
attendant system mediation, the search for and retrieval 
of access attributes (which depends upon the way in which 
the Information of R Js stored), the checking of retrieved 
attributes against the accession request, and finally the 
operation of Individual monitors. The situation Is 
depleted In FIGURE 2. 

Below we address the questions of design and 
certification of the Access Evaluator (E), the Attribute 
Retriever (F), and the Update Montto~ (U). 

We do not Investigate the operation of G, the Access 
Request Generator. It Is the mechanism which guarantees 
system mediation In all requests for protected objects.
As the entryway Into the kernel, G must provide a 
requesting subject with a nonforgeable Identification 
interpreted by the kernel. 

Neither can we consider the operation of the 
monitors. Being concerned with security, we are 
fundamentally Interested In forbidding unauthorized access 
to any supervisory module. Thus we do not address the 
possibility of faulty operation of the monitors 
themselves. The correct operation of the security
checking mechanism should guarantee that no program can 
access the 111-galned fruits of a monitor bug. 

2.1.2 Accession 

When a program requests an access to a monitor, it 
requests that a service be performed for It by the system.
As such It actually requests an entry to the monitor 
program. 

We Imagine the kernel to Interpose ftseJf between the 
requesting program and involved monitor. The kernel must 
Interpret the type of request, Identify the objects 
Involved, and perform the requested action or a violation 
recovery action. It Is the function of the Access 
Evaluator E to retrieve appropriate data, grant or deny
the request, and transfer to the appropriate monitor (the 
violation handler Is considered a separate monitor). In 
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our description of the function performed by E, we say 
that function e returns a function mx, where mx Is the 
function performed by monitor Mx. We use upper case to 
denote programs (system modules); corresponding lower case 
to denote the actions (functions) which they perform. 

Let e be the function realized by program E, and let 
f be the function accomplI shed by the program F which 
fetches the accession data. Then 

e : S x 0 xA - > [ m ( 0 ) , m ( 1) , •• , m ( x >J 
f: SxOxA -> B (1) 

tells us some information about e and f --their types. 
It does not explain the details of their action, but shows 
at least the nature of their Inputs and outputs. 

Given the required accession relation R, F operates 
correctly if we Can guarantee that 

(1) 	Ys.Vo.Ya. f(s,o,a) =1 
iff R (s,o,a). 

This just states that F has correctly stored and correctly 
retrieves the accession data. 

Suppose h(o,a) retrieves the index of the proper 
~onitor function m(h(o,a)) among m(1), ••• ,m(x). For 
example, if o is a data file and a is 'read', then h(o,a) 
is the index of the file system manager. 

Assuming f,h are verified to operate correctly, then 
e can be correctly realized by 

e(s,o,a) = if f(s,o,a) = 1 ~ 
m(h(o,a)) else m(O). 

llot ice that ,m is a mapping ~1h i ch takes the name of a 
~onitor program and returns the mapping realized by this 
pros;ram. In an implementation this might mean: fault to 
an appropriate location in a protected program. 

(1) B = (1,03 or f~,false3 is the set of bits. 
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Summarizing, we have the maps 

f: SxOxA -> B 

h: OxA -> {1,2, ••• ,xJ 

m: f1,2, ••• ,xj -> fm(l), ••• ,m(x)J 

m(1): unspecified functions 

The arguments and values of the m(i) (their types)
depend upon their respective duties, and clearly involve 
data external to the kernel. For example, the memory 
addressing hardware monitor will need to know where In the 
requesting program to return the contents of an address. 
By leaving these details unspecified, the most we can say
Is that e returns one of a finite set of explicit 
functions. Further analyses may now enumerate, factor and 
describe the Implementation of the m(i). What we have 
done Is to get them out of the access-checking game, 
concentrating on their "natural" roles. 

Returning to the question of certification, what If 
(1) Is violated, I.e., f does not adequately reflect the 
desired accession relation R? Popek (9) has suggested
(the Inclusion technique) that w~ add to the antecedent of 
e 

l! f(s,o,e) • 1 ~ .. . 
all of the extra checks demanded by R, after writing a 
suitable routine d to store and retrieve these checks. We 
will then have another program 

e'(s,o,e) • li f(s,o,e) ~1 ~ d(s,o,e) =1 

..t.b.J:.D. ••• 

which will now operate correctly. But this amounts to 
f 1constructing a retrieval function satisfying 

f'(s,o,e) • f(s,o,e) .struL d(s,o,e). 

What Is evidently needed Is a correct retrieval function f 
satisfying (1). In a practical system, it is the 
structure of f which Is of utmost Importance anyway. 
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In a later section we analyze the function f with 
particular emphasis on a military security model, and 
Introduce the notions of locks and keys in the operation 
of f. 

2.1.3 Updatlon 

As the system evolves over time, the security state, 
represented by the accession relation R, Js modified by
the attentions of the update monitor u. Available for the 
use of subjects are various security state updatlon 
commands (delete, grant, destroy, etc.) which request
changes to attributes, destruction of subjects and 
objects, etc. 

A destroy subject s2 command by subject sl Is, for 
example, Interpreted by G as a request to write to the 
(protected) accession data F. The Information (sl, F, 
'write') Is passed to the Access Evaluator E which 
determines whether sl Is allowed to change any Items at 
all In F. If control Is passed to U, U must now do 
further careful checking to: · 

(a) retrieve the name of the particular subject
s2 which Is to be destroyed; 

(b) determine whether sl Is allowed to destroy
s2; 

(c) perform the desired action, or else refuse, 
with attendant action. 

Operation (a) Is performed with no difficulty, but 
operation (b) requires some explanation. The internal 
logic of U determines the type of access attribute sl 
needs vts-a-vis s2 In order to destroy s2, say 'owner'. U 
then Interrogates F with the request (sl,s2, 1 owner 1 ), and 
If this triple Is part of the current security state, U 
then updates F In the required fashion (deleting s2 from 
the data base) and passes control to further non-kernel 
systems for housekeeping duties. 

The monitor U, being Inside the kernel, Is "trusted11 

by E, and there Is no need for U to go through G or even E 
In order to access F. Hence U may successfully "disguise"
Itself as sl for purposes of reading sl's privileges. 
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Other types of updatlon can be handled In a similar 
fashion. 

Notice that In this model the detailed study of 
F-updatlon privileges Is done by U, which must take Into 
consideration a larger context of Information than E; but 
U has Fat Its disposal. 

The correctness of an Implementation of U depends· 
upon a full description of the circumstances under which 
the system Is to honor a request to alter the security 
state. These circumstances are Imposed on the design from 
without, In the form of a set of uodatlon constraints. It 
must be demonstrated that ,.an.y change whIch U makes results 
In an acceptable security state within the updatlon
constraints. 

Updatlon constraints are described In a logical
language, and codify just those rules which the designer
wishes to place upon U In Its making of updatlon
decisions. 

Associated with each updatlon command Is a oredlcate 
true If and only If the command can legally be executed by 
the requesting process.' 

Example: delete ( 1 read 1 ,s2,o) Is a command uttered by s 
and asking that attribute 1 read 1 be withdrawn from s2 
vis-a-vis o. There Is an associated predicate 

DEL eSxAxSxO. 

DEL(s1, 1 read',s2,o) Is true If and only If s1 Is allowed 
to delete s2's 'read 1 privilege too. 

An example of an updatton constraint Is: 

Y s 1 • Y s 2, [ R ( s 1 , s 2 , 1 con t ro1 ' ) --> 
Yo.Ya DEL (sl,a,s2,o)] 

which says In words 11 For every sl and s2, If s1 has 
'control' access to s2, then for all objects o and 
attributes a, sl can delete s2 1 s a-access to o." Or 
better: "If sl has 'control' of s2, then sl can delete 
any of s2's privileges to any object." 
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Other examples follow which may readily be translated 
by the reader: 

Ys1.Yo.(R(s1,o, 1 owner 1 ) -> 

Ys2.Ya.GRANT(s1,a,s2,o)) 

Ys.Yo(R(s,o, 1 owner 1 ) ->DESTROY (s,o)J 

Within U are a series of programs, called updators, 
W1, ••• ,Wz. These effect the actions requested in the 
commands by users. The actions they perform are denoted 
w1, •• ,wz. U also has as a factor a program V, the 
Constraint Checker, which matches an updatlon request
against the updatlon constraints, suitably Internalized. 
FIGURE 3 Illustrates the situation, and FIGURE 3a shows 
the parallel nature of E and U. 

V employs the retrieval program F to make Its 
decisions. Its internal logic should be designed from the 
(fixed) updatlon constraints as outlined above. Obviously
Its operation cannot be Illustrated without a predefined 
set of constraints to work from. However we can give an 

Example Suppose we have the updatlon constraint 

Ys.Yo.R(s,o, 1 owner 1 ) -> DESTROY(s,o) 

and let W2 be the "destroyer" program. Then the 
description of V will Include In part the line 

... lf f(s,o,'owner 1 ) = 1 

..t.b.§.n w2 • • • 


As In the case of e, v outputs one of a set of functions 
w1, ••• ,wz. 

Now providing that V operates according to the given
constraints and provided that the Individual updators
perform their assigned tasks correctly, U will operate
correctly, and the system will never enter a state which 
compromises security. Why? A correct, satisfactory, or 
secure system Is defined by the set of updatlon
constraints. U merely enforces them. 
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All the above assumes that the constraints form a 
consistent set. For an example of an Inconsistent 
constraint set, Imagine both 

o3 11"s1 may never a-access 
and 

Ys[GRANT(s0,s,a,o3)J. 

Then It Is clear that sO could, quite innocently, grant s1 
access a to o3. 

No kernel or system will ever be able to enforce an 
inconsistency. 

Clearly a design prerequisite Is a complete
description of commands and their logical
Inter-relationships expressed In the updatlon
constraints. This (,requirements" list must first be 
checked for consistency. Provided It Is so, V may be 
encoded to check that each constraint Is satisfied for 
each updatlon request. This provides another example of 
Popek's (9) Inclusion Technique. 

2.2 Modeling Access Data Retrieval 

In this section we focus upon the operation of the 
retrieval program F. We give some attention to the 
possibilities of factoring this program Into (perhaps) 
more simply verifiable components. 

The function of F Is to represent and retrieve the 
Information contained In the accession relation R - the 
security state of the system. Since the numbers of 
subjects S, objects 0, and access attributes A are all 
finite, R Is in principle 11 just a big table" and F "just 
a big table look-up". This might satisfy an automata 
theorist but not a systems designer. 

(1) First, there Is an enormous amount of 
Information contained in R -- the triples (s,o,a) .WU. in R 
are as Important as those ln R. 

(2) Second, R Is soarse as a table, or even as a 
mat r t x 

r: SxO -> P(A), 
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suggesting that In practical cases a great deal of 
structural constraint obtains among the entrleso 

(3) Third, the amount of Information i~ so large
that present-day systems employ both dynamic and static 
storage techniques In its retrieval. For example, in the 
MULTICS segmented memory, with Its dynamic linkage
facility, part of the protection Information Is 'stored in 
the environment of a process; the rest is distributed 
throughout the storage system and available for later 
dynamic recall. In future systems there may well be a 
requirement to segment tnls Information base. 

(4) Fourth, people group and use Information 
according to behavior. patterns and In established 
structures. For example, very few. systems development 
programmers call a linear regressions package, and many 
data files group naturally together with the associated 
project which developed them. 

For all these reasons, we believe in careful 
structuring of the program F with a view toward certifying
Its operation. Below we make a start toward this 
analysis. 

2.2.1 A Model for pata Conflgyratlon 

2.2.1.1 Mathematical Langyage 

In this model we do not discuss issues of 
Implementation, but do wish to develop a theory for the 
structuring of data used In the security kernel. 

From our point of view, set theory Is not 
an adequate tool for the expression of notions In 
computing. The most primitive semantic notion for 
programming Is that of fynctlon or mapping. A set, as a 
primitive, orderless collection can never be realized on a 
computer, whereas a function, the characteristic function 
of the set, .£iU1 be so Implemented. That is, set S cannot 
be "In" the machine, but a map c: S->B can be realized as 
a bit string If the size of S Is small; as a linked list 
If large, etc. 
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If s~T are finite sets, (S->T) represents 
the set of all possible maps from S toT. The statement 

c: s->B 

means that c Is ln (S->B), a set. Whenever we write 
f: (A->B>->C or say 11 f in ((A->B)-)C) 11 , we are expressing 
the~ of f as a mathematical object. This gives only a 
limited amount of Information about f -- its domain and 
range-- but is frequently useful. 

Another concept used all the time ts that 
of cross-product of two sets SxT. Since this is just a 
set and not representable on a machine, we think of It as 
a function 

p: SxT->B 

defined to give 1 for all pairs in SxT. 

On a machine we cannot really make sense of 
an ordered pair. Pairs must be stored, and in some order. 
We adopt the fact that 

(SxT->U) a (S->CT->U)). 

That is, by convention an S,T matrix of U-values is stored 
as an S-list of T-lfsts of U's. 

2.2.1.2 Examoles 

We give here some examples of the way in 
which F might be arranged as a program. 

Ex. a. A security system using Access Control Lists 
(ACLs). 

The accession relation is stored by object,
then subject, then attribute. The accession function is 

f: O-> (S->(A->B)) 

Giv-en an o tn O, 

f(o): S->CA->B> 
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~an ACL -- the ACL of o -- and is itself a function. 
Given a subjects, f(o) finds an access attribute list 
(function) 

f(o)(s): A->B 

associated with o and s. This list might be represented 
as a bit string. The point is that f(o)(s), given an a, 
returns a bit. ~ it does this is implementation. A 
pictorial diagram of the above might be given for MULTICS 
in FIGURE 4. 

ACU 
Sl 
S2 

• 
• 
•

OBJECTS 

01 

02 
ACL2 

Sl 

• S2 
• •• .. 

• 

• 
• 
• 

• 

FIG. 4 

The bundles of linking arrows represent the functions 
f, f(o), f(o)(s), and may not be simple pointers, but some 
complex hashing scheme. 

Notice that in MULTICS, the object collection itself 
has a further structure, the~ directory hierarchy, not 
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shown here. 

Ex. b. A System with Capability Lists (C-1 ists) 

R Is stored by subject, then object, then 
attribute: 

f: S->(0->(A->B)) 

The C-lfst for subject sl 11 a map 

f(sl): o-><A->B> 

which returns, for an object o2 a map 

f(sl)(o2): A->B 

the attribute list. 

An oversimplified example is given from MULTICS In 
FIGURE 5. 

Multfcs actually consists of a complex of both 
techniques. Initially the system checks the descriptor 
segment for an object. If it is not present, a missing 
segment fault occurs, the file directory hierarchy is 
searched for the object and the descriptor segment is 
updated with the object Identification and access 
information. 

2.2.2 Generalized Locks and Keys 

2.2.2.1 Pefinftlons 

Frequently the sparse structure of R or any 
of its representations discussed above can be exploited to 
fa~tor the retrieval problem. Indeed, both natural 
groupings of subjects (think of projects) and natural 
groupings of objects (think of master files) may exist. 
The idea of key and lock exploits this observation: why 
treat each subject or object as a separate security 
entity, when coarser groupings may be more efficient? 

, Let K be a finite set of keys, L a finite 
set of locks. The only thing we require is that these 
sets consist of distinguishable objects (e.g., bit 
positions In a word). A kev assignment Is a maR 
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FIG. 5 

k: S -> (K->B> 

and a lock assignment a map 

1: 0 -> (L->B). 

A subject may thus be Issued several keys; and an 
object may have several Independent locks. 

We also have an unlocking relation which tells which 
keys are adequate to which locks 

t: Kxl -> (A->B). 

This is not a one-to-one relation, nor even a function; 
for a passkey may open many different locks, and a lock 
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may be opened by a hierarchy of passkeys of varying power. 

Subject s has access a to object o If and only if 
there are k1,12 such that 

k(s) ( kl) =1, 

l(o) ( 12) =1 

and 

t (kl,l2) (a) =1. 


k t 
( 

A 
\ ( 

A. ...., 

SUBJECTS KEYS LOCKS OBJECTS 

FIG 6. 

We may depict an accession relation as in FIGURE 6. 

Notice that any accession relation represented using 
Intermediate locks and keys can of course be realized by 
an accession matrix 
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m: SxO -> (A->B) 

~erely by defining m(s)(o)(a)=l if and only if there are 
kl,12 such that k(s)(kl)=l, 1(o)(l2)=1 and t(kl,12) (a)=l. 
nut this misses the point. Locks and keys, which look 
like a fatuous complication in the abstract, are 
introduced in practice for natural reasons leading to 
g rea t e r e f f i c i en c y • In an a p p 1 I c a t i on i t may p rove mo r e 
efficient to calculate k, 1, and t than to look up entries 
in a tree structure such as those of 2.2.1.2. 

2.2.2.2 Example: A Military Security Model 

In an application, the notions of lock and key may be 
used to store one component of the accession information, 
while other techniques are used for the remainder. 
Possibly complex overlays of various storage 
representations may be used if efficiencies result. The 
problem of a military security data base is a good 
example. 

Three factors govern the control of access to 
protected Information. 

(a) clearance/classification. A document, file 
or program (information) is said to be classified U,C,S or 
T S • A u.s e r o r sub j e c t Is sa i d c 1e a red f o r U , C , S, T S • 
Below we represent these security levels by integers 
0,1,2,3. 

(b) compartmentalization. As a refinement of 
(a), information and users are further assigned one or 
more compartments, reflecting the kinds of classified 
information to which they bebng or have access. The 
military employs Hi compartments P=ll, •• ,l6J, e.g.,
cryptographic, AEC, etc. 

(c) need to know. The finest resolution of the 
security question occurs at this level. For each subject 
sand object o, the military requires that some authority 
grant s an "a-need to know" for o before s can a-access o. 
Examples might be "need to read", 11 need to execute", etc. 
From our point of view, the various "needs to know" are an 
application of the notion of access attribute for a 
subject/object pair. The information is stored in the 
underlying accession relation for the system. 
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Clearance/classification may be modeled by the 
following lock/key arrangement (the key/lock functions are 
denoted by the same symbol In this example). 

c: S->C 
c: O->C 
t: C X C ->B 

where C•f0,1,2,33' and 

t(f,j)•l If and only If 12J. 

Compartmentalization is represented by 

p: S->(P->B) 
p: O->(P->B) 
z: (P->B) x(P->B) ->B 

where z(p(s),p(o))•l If and only If p(s) ~ p(o) • p(s). 
Here~ represents the bit mask of lists. 

Finally, as noted above, need-to-know must be handled 
by explicit retrieval, structured however is convenient. 
We depict the situation In FIGURE 7. 
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CHAPTER 3 A MILITARY SECURITY MODEL 

The purpose of thi~ chapter Is to propose the 
requirements of a military time-sharing system operating 
in multilevel security mode. DOD 5200.28-M defines 
multilevel security mode as: 

"A mode of operation under an operating system 
••• which provides a capability permitting various levels 
and categories or compartments of material to be 
concurrently stored and processed in an ADP system. In a 
remotel,Y accessed resource-sharing system, the material 
can be selectively accessed and manipulated from variously 
controlled terminals by personnel having different 
security clearances and access approvals ••• " 

The model will be independent of implementation in 
the, 1sense that It will be possible to interpret the rules 
of ~he kernel as being enforced by a human security 
officer handling documents, not necessarily by a computing 
system. The model will be formulated using existing
military security requirements for document control (AFM 
205-1), as well as requirements which have been 
established for existing military computer systems (WWMCCS 
GCOS, DOD 5200.28-M). Below, in referring to the 
manual system, we shall mean present military procedures 
for physically handling classified documents, as specified 
i n AH1 2 0 5-1. 

' 

3.1 General Considerations. 

3.1.1 Three Dimensions of Secyrjty 

In the military three factors control access to 
protected information, as discussed in section 2. 

3.1.1.1 Clearance/Classification 

Possible clearances are{c= 0,1,2,3]. ~lith each 
object is associated a clearance or classification via the 
nap. 

c:O->C 
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3.1.1.2 Compartmentalization 

Compartments are P=f1,2, ••• ,16}. Each object is 
assigned to a list of compartments by the map. 

p:O->CP->B) 

Thus if o is in 0, p(o): P->B Is o 1 s compartment 
1 Is t. 

3.1.1.3 Needs-to-Know 

We regard this as equivalent to the notion of 
access attribute. Given an attribute set A. (discussed 
below) the function f:O->(S->CA->B)) assigns to each 
object o:O a list of needs-to-know f(o):S->(A->B)
classified by subject. Notice that we are proposing an 
Access Control List structure for f (Cf. section 
2.2.1.2). 

Evidently clearance and compartment information 
could be stored implicitly In the access retrieval 
function f (Cf section 3.2.3). However, for purposes of 
access checking and updating this would neither be 
efficient nor would it model the existing military manual 
system. As a consequence we factor the accession data as 
indicated. 

3.1.2 Svstem ys. User Responsibility 

In desi&nlng requirements for a military multilevel 
security system, we must decide at the outset the role of 
the kernel In transactions Involving secure data. 

a) The Responsible Kernel 

The kernel itself is responsible for the 
control, classification, declassification and manipulation 
of information within the system. It employs automatic 
rules to assign classifications to newly created files, 
maintains a history of each user's security environment 
and watches each user to maintain operating consistency.
This approach Is illustrated in Weismann's paper (11). 
The kernel from this point of view becomes a super 
bureaucrat. 
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b) The Responsible User 

The assumption Is that an authorized user of 
classified Information has full responslb111ty for its 
control while operating with lt. Thus destruction of 
copies, reclassification of altered files, etc., become 
duties of the user which must be performed before he logs 
off. The kernel, after granting Initial access, makes no 
attempt to monitor the use to which data Is put. 

\'/hlchever role the kernel is designed to 
play, the system of rules which the kernel enforces must 
be simple enough and so clearly stated that each user 
understands the full Implications of each security state 
updation command, and his responsibilities In employing 
It. 

The assumption of~ responsibility is the 
one which agrees most readily with the present manual 
system, and will underlie the design discussed here. 

As a consequence of the "responsible user" 
assumption, certain possible "security compromises" of 
concern to Lapadula and Bell (8) are neither detecte~ nor 
prevented by our proposed system. To use their example, 
suppose s1 is cleared for IS, s2 for S and let file o3 be 
classified S. Suppose s1 writes some top secret 

1information In o3, but fails to explicitly upgrade o3 s~ 
classification. The kernel cannot detect the "violation". 
At some future time, s2 could be granted 1 read 1 access to 
o3, and s2 would be reading "forbidden" information. 

Our feel log Is that any attempt to make the 
kernel responsible for detection and prevention of such 
occurrences would either (I) Involve the kernel in 
deciding complex questions of sensitive data aggregation, 
or would (ii) require the adoption of an arbitrary 
"high-watermark" rule (e.g., s1 operating under a IS 
clearance can only write IS files)~ The l·atter approach 
is adopted by Weissman (11), who does not allow for the 
possibility of declassifying files. 

Here we only require the kernel to enforce 
existing manual security regulations which place the onus 
of responsibility upon the user of a document to make 
necessary changes to its classification or compartments. 
Since we demand that the kernel allow reclassification on 

i 
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~authority, compromises of the kind illustrated above 
will always be possible on some level. We have chosen to 
trust completely every authorized user. The kernel is 
non-suspicious -- if a subject is granted access rights by 
the kernel, the subject has the full implications and 
responsibilIties attendant on those rights. 

Another, more technical, way of phrasing this 
is that the kernel uses only subject/object ID's, 
classifications, compartment lists, and access attributes 
in reaching its decision. The kernel does not interpret 
or deduce any implications from an authorized access or 
update request. 

For example, if s1 accesses an object o2 for 
\~hich it has inadequate clearance, a security violation 
occurs. But if sl obtains upward reclassification from an 
11 incompetent" but authorized subject s2, and then accesses 
o2, no violation, from the system standpoint, has 
occurred. · 

3.1.3 Separation of Accession and Updation 

'As discussed in the previous chapter, the processes 
of granting 11 norma1 11 access, and the granting of updates 
must be kept distinct, since the latter action is more 
complex. It follows that the data used and modified by 
the updation procedures, the accession relation R, should 
be kept distinct from ordinary protected data files. For 
one thing, it will have to be maintained in a rigid format 
interpretable by the kernel. For another thing, it is 
part of the kernel itself, since its compromise would 
compromise the entire system. Lastly, it may be stored in 
a radically different manner- perhaps in special 
hardware·~ 

In our model this data is stored in the access data 
retrieval program (F). We see no reason to treat it as an 
object (compare Popek's (9) securitY objects), since it 
deserves such special status. 

3.1.4 'Control' and 'Owner' Access Attributes 

The notions of 'control 1 and 'owner' access 
attributes occur in Lampson (7) and Graham and Denning 
(ti). One subject s1 'controls' another, s2, if s1 can 
read from and Hrite in s2 1 s LQ.!1 of the matrix m:S -> 
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0- > ( A-> B ) , i. e • t f s 1 can read and mod I f y s 2 ' s 
capabilities. If, in addition, sl may destroy s2 or grant 
to other subjects any access to s2, then sl is said to 
have 'owner' access to s2. Thus sl 'owns' s2 when sl may 
read from and write in s2's column of the access matrix. 
Issues immediately arise concerning multiple 'owners' and 
the transferability of 1 contro1 1 , which are surveyed by
Graham (5). · 

We shall not Introduce these attributes. The 
relation of sl 'owning' s2 can be replaced by granting sl 
all possible attributes for s2. Obviously then, multiple 
'owners' are possible. 

If sl can 'control' ~2, this Implies that sl can 
obtain and modify all s2's capabilities- the list of all 
objects .t.Q. which s2 has access. In our model, access 
attributes will be stored i·n ACL form (Section 2.1.2, 
example a). There is no way for sl to conveniently learn 
s2 1 s privileges, short of listing all objects and 
requesting the ACL of each. (This is exactly the 
situation in MULTICS.) We see no apparent reason for 
introducing the 'control' facility. 

Furthermore, in the military manual system,
possession of document Implies "control" of It and 
responsibility for it. A possessing subject can give It 
away, garble It, etc. 

We choose to introduce the simple attribute 'update'. 
Subject sl with 'update' attribute for o2 (subject or 
not), may modify the security data concerning o2 (access 
attributes .t.Q. o2, clearance, compartments). There will be 
no facility for one subject sl to affect a second 
subject's attributes vis-a-vis an object o2, unless sl has 
'update' permission fo~ o2. When sl has 'update'
permission. for s2, sl can only limit accesses by other 
subjects .tQ. s2. 

Update permission may be passed to other subjects 
like any oth~r attribute. 
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3.2 Elements of the Model 

3.2.1 Access Attributes (A) 

The set A consists of five attributes 

A=[r,e,w,u, lS 

with the following meanings: 

Attribute a if f(o)(s)(a)=1 then 

r 	 s can ~ the contents of object o, 
implying that s can copy o. 

e 	 s can execute the (executable) object 
o~ s must know the calling sequence 
for o, since s cannot read o. 

w 	 scan write too, altering it, adding 
to it, even zeroing it out. 

u 	 s can update (write on) the descriptor 
(see section 3.2.4 below) of o, adding 
to it or deleting from it. 

s can .lQ.Q.k at the contents of the 
descriptor (see section 3.2.4 below) 
of o, without affecting its contents. 

3.2.2 Modes (K) 

The mode (1) of an object is an Indicator of the kind 
of object it Is -- terminal, process, data file, 
directory, &tc. Depending on the characteristics of the 
computer system, there may be different modes, each 
usually associated with a special subsystem or monitor for 
handling objects of the same mode. We choose a mode set 

(1) Called by Burke (2) a~. We have used type in a 
more technical sense, so we employ Popek's (9) term mode. 
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K={t,p,f,dj 

and a function k:O->K assigning to each object an unique 
mode, with the following meanings: 

t1ode Kl If K(o)=Kl then o Is 

t 	 a terminal 

p 	 a process, I.e., a subject 

f 	 a file, I.e., a protected block of 
data not Interpretable by the 
system. 

d 	 a directory, a specially formatted 
file which may be Interpretable by
the system. 

Other modes may be introduced depending upon the 
particular system. 

3.2.3 Access Data Retrieval (F) 

In the military security model, the data used by the 
ke r n e 1 to de t e rm I n e p r i v I 1 eg e s I s s to red in a factored 
accession matrix, as In section 2.2.2.2. We represent it 
by the three functions 

f:O->(S->(A-)8)) 

c:O->C 

p:O->(P->B) 

where C=f0,1,2,3J 

P={l, ••• I 16I 

A= fr, e , w, u , 15 

There are three different relations, all devoted by~, 
which will be useful below: 

<t> ~= c x c->s 
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denotes the usual inequality on Integers. 

(il) ~:(P->B) X (P->B) -> B 

denotes the subset relation on the compartment lists; 
object r is a member of (P->B). (1) 

(iii)~: (A->B) x (A->B) -> B 

denotes the subset relation on access lists; object 
a is a member of (~->B). 

A convenient abuse of notation will allow us to 
identify sets In P(A) with functions in (A->B). For 
example, [uj, which usually denotes the singleton~ fuJ 
in P(A), will mean for us the function fuj:A->B given by 

fu](x)•l if x•u 

0 If xplau 


Either point of view is seen to be equivalent, but we 
believe that the 11 llst 11 notation (A->B) is more 
suggestive. 

3.2.4 Descriptors 

A useful auxiliary notion is that of descriptor of an 
object, as used by Popek (9). For each o in O, d(o), the 
descriptor~ Q, Is a quadruple of functions 

d(o)=(c(o), p(o), f(o), k(o)) 

or, equivalently 

d(o)(l)=c(o) 

d(o)(2)=p(o) 

d(o)(3)•f(o) 

d(o)(4)•k(o) 

(1) The notations P(A), 2 exp A, and (A->B) may all be 
considered equivalent. We use (A->B) because it reminds 
us we are dealing with functions. 
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Thus d has type 

d:O->C X (P->B) X (S-)(A->B)) X K 

This is one way to model the storage of access data. A 
descriptor is a sort of generalized Access Control List 
(ACL), and is particularly appropriate when a MUlTICS-llke 
file directory hierarchy is contemplated. Descriptors are 
then naturally stored as elements of directory segments. 

While at this stage nothing forces us to introduce 
the notion of descriptor, it will be convenient. 

3.2.5 The Access Evaluator (E) 

Normal accession requests, not involving updation, 
pass through E, whose function is easily described. In 
our informal programming language, we shall be sure to 
declare the types of all functions mentioned In the 
program. Let M=fm(O), m(l), ••• m(x)j be the set of 
monitors, m(O) the violation handler, m(l)=V the access 
checker. Let h:O x A->f1,2, ••• xJ be such that h(o,u)=l 
for a 11 o In 0. 

e(sl,ol,b) 
e: S x 0 x A->M 

sl: S 
cl: 0 

b: A 
f: 0->(S->(A->B)) 
c: O->C 
p: 0->(P->B> 
h: 0 x A->(1,2, .•. i 
m: f0,1,2, ••. j->M
2.:C x C->B 
>:(A->B) X (A->B> ->B 
2.:(P->B) X (P->B) ->B 
if c(s1)2.c(ol) and p(s1)2.p(ol) 

and f(ol)(s1)2.lbS
then m(h(ol,b)) 
else m(O) 

end e 

3.2.6 Updation Commands 

A user program desiring to effect changes to the 
descriptors requests the kernel to perform the service for 
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him by issuing an updation command. The updation proy,ram 
verifies the. user's authority to make the change, and 
performs the service for him using its updators. 

The commands and their intents are: 

Command !nten~ 

write (o,s,a) sets the access list f(o)(s) 
to a:A->B, destroying the previous 
list. 

read (o,w) writes 
access 

clearance, compartment, 
list and mode of o in w. 

clear (o,n) sets the clearance of o to n, 
destroying the previous value. 

compt (o,r) sets the compartment list of o to 
the list r:P->B, destroying the old 
list. 

create (o,z) creates an unique ID for o and 
associated de~criptor with C(o)=O, 
p(o)=~ full access privileges for 
creating subject and K(o)=z. 

destroy (o) nullifies the descriptor of o, 
erases the ID and the object 
contents. 

3.2.7 Updators (Wi) 

These are the kernel programs which actually perform 
operations on the descriptors, and which. call any further 
system monitors needed for allocation, garbage collection, 
etc. There will be an updator corresponding to each 
command: 

· wr, rd, cl, cp, cr, and ds 

The constraint checker V calls the updators, as 
illustrated in the next section. 
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3.2.8 The Update Monitor (U) 

In the programs below we shall not again declare 
c,p,f,~,m(O). Two functions mentioned below make(o) and 
break(o) are left undefined. They are responsible for 
housekeeping duties associated with creation and 
destruction of objects 

V(sl,reque~t,ol,s2,a1,w,n,z,r) 
sl:S 

s2:S 

ol:O 


request:(write,read,clear,compt,create,destroyJ
a1:A->B 
w:c x CP~>n> x cs->CA~>B)) x K 
n:C 

r:P->B 

z:K 


if request= 1write 1 then 

begin

If c(sl)~c(ol) and p(sl)~p(ol) and 
f(ol)(sl)~fu} and c(s2)~c(o1) and 
p(s2)~p(ol) and not (ol=s2 and al~fu]) 

then wr(s2,o1,a1)

else m(O) 


end 

else If request = 'read' then 


begin ' 

If c(s1)~c(o1) and p(s1)~p(o1) 


and f ( o 1 )( s 1 ) ~ fl J 
then rd(ol,w) 
else m(O) 

end 

else if request = 'clear' then 


begin 

if c(s1)~n and c(s1)~c(ol) 

and p(s1)~p(o1) 
and f(o1)(s1)~fuJ 

then cl (o1,n) 

else m(O) 


end 

else if request = 1 compt 1 then 


begin 
If p(s1)~r and c(sl)~c(o1) and f(o1)(sl)~luJ
then cp (ol,r) 
else m(O)

end 
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else if request = 1 create 1 then cr(ol,sl,z) 

else if request = 'destroy' then 
begin

if c(sl)lc(ol) and p(sl)lp(ol) 
and f(ol)(sl)lfuJ 
then ds(ol) 

end 
else m(O) 

end V 

wr (s2,ol,al) 
s2:S 
ol:O 
al:A->B 
f(ol)(s2)<-al 

end wr 

rd (ol,w) 
ol:O 

w: C x (P->B) x (S-)(A->B)) x K 
w <- (c(ol),p(ol),f(ol),m(ol)) 

end rd 

cl (ol,n) 
ol: 0 

n: C 
c(ol)<-n 

end c 1. 

cp (ol,r) 
ol: 0 

r: P- >B 
p(ol)<-r 

end cp 

cr (ol,sl,z) 
o1: 0 
sl: S 

z: K 
make (ol) 
f(ol)(sl) <- [r,e,w,u,lJ 
c(ol) <- 0 
p(ol) <- t' 
k(ol) <- z 

end cr 
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ds (o1) 

o1: 0 

f(o1)<-0 

c(o1)<-0 

p(o1)<-0 

break(o1) 


end ds 

3.3 Requirements of Military Security 

3.3.1 Proofs of Correctness 

The securitY state (1) of the system at any time is 
described by the classifications, compartments and 
attributes of all the objects 

q(i) = (c,p,f) 

The system is initialized in some state q(o), (2) and by 
servicing updation commands evolves to security states 
q(1),q(2), •.•• etc. 

Given certain security criteria to be discussed 
below, our problem is to show that the system maintains 
these criteria. This entails two demonstrations 

(i) Accession. Between changes in security 
state, i.e., while the system occupies security state 
q(i), the kernel enforces seCl.lrity requirements based upon 
privileges (and prohibitions) implied in q(i). (e.g., "no 
s can read o unless f(s)(o) 2. frJ">. 

( ii) Updat ion. In honoring a command and 
updating from q(i) to q(i+l), the kernel observes any 
updation constraints required by the performance criteria 
(e.g., "no subject may alter its own security 
classification".) 

(1) This is identical to Lapadula and Bell's (8) notion of 
security state (p. 18) except for their component b. 

(2) A typical q(O) would have one subject sO the system 
administrator with full privileges to all system objects. 
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If (i) and (II) can be demonstrated, then by 
induction on i, the system remains secure over time no 
sequence of access requests and updation commands can 
induce the kernel into a "security compromise." (1) 

Before we can demonstrate (I) or (if), we must 
delimit the criteria or rules which the kernel must 
enforce. Another way to say this is that we must_define 
"security compromise". 

It is here that debate will occur over what 
requirements to properly put upon the kernel. Based upon 
the tenet of "user res pons f b ill ty" discussed above, we 
will list a reasonable set of rules demanded by mil ltary 
users. In section 3.3.2 we discuss the implications of 
our rules, and in section 3.3.3 we discuss possible 
alternatives. 

The dichotomy (i),(ii) shown above breaks the 
criteria naturally into two parts- those regarding normal 
accession, and those regarding updation. 

3.3.1.1 Accession. 

Let q = (c,p,f) be a security state of the 
kernel. The rules are 

(a) Nos shall have any access toano 
unless when access is requested 

c(s)Lc(o) and p(s)Lp(o) 

(b) Nos shall be able to read, write on, 
execute, update the descriptor of or look 
at the descriptor of an object o unless 

f(o)(s)Lfr~, fwJ, (eJ, 

lul or {11, respectively. 

(1) The notion of compromise, and the picture of the 
system as an automation evolving over time with command 
inputs, is due to Lapadula and Bell (8). 
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Proposition Provided 

(I) all requests for access by subjects to 
1 objects are directed to the kernel 

(ii) the kernel correctly retrieves and 
interprets the arguments of a request . 

1 (It i) the kernel correctly identifies the 
subjects and objects involved In a request 

then 

the system satisfies rules (a) and (b). 

proof. Consider· the Access Evaluator program e. Subject 
s cannot access object o unless a system monitor performs 
the function for it. But e is interposed between all 
calls by sand the monitor. If (i), (if) and (iii) hold, 
e blocks access of any kind unless c(s)~c(o) and 
p(s)~p(o), showing (a) holds. Given a request b e 
fr,w,e,u, 11, access to m(h(o,b)) is blocked unless 
f(o)(s)2.lbJ, so (b) holds. 

Q.E.D. 

3.3.1.2 Updation 

We list the updation con~traints which 
should operate in a military environment 

I 

(c) No s may alter the descriptor of an object 
o u n 1e s s f (o ) ( s ) ~ f u l . 

(d) No s may alter or read the descriptor of an 
object o unless c(s)~c(o) and p(s)~p(o). 

(e) No access attributes may be granted by sl 
to s2 for o unless 

c(s2)2.c(o) and p(s2)~p(o) 

(f) No s may alter its own descriptor. 

Proposition. Under the provisos (I) (ii) (iii) above and 
provided that in the initial security state q(O) we do not 
have f(s)(s)2_{uJ for any s, then the system satisfies 
rules (c), (d), (e), and (f). 
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Proof. Consider the Update Constraint Checker program V. 
We take each rule in turn: 

(c). Descriptors may only be altered via the 
updators wr, cl, cp, ds~ The only calls to these 
functions occur from clauses preceded by an expl left check 
for f(o)(s)2.fu1. 

(d). Descriptors may only be altered or read by wr, 
cl, cp, ds, rd. Each is called from a clause which 
explicitly checks for c(s)2_c(o) and p(s)2_p(o). 

(e). sl can grant s2 attributes foro only by a call 
to wr(o,s2,-). This call occurs only in a clause preceded 
by the ex p1 i c It check c ( s 2 ) 2.c ( o ) and p ( s 2 ) 2.P ( o ) • 

(f). s could alter its own descriptor only by 
calling 111r, cl, cp, or ds on o=s, but each such call is 
preceded by an explicit check for f(s)(s)2.fuJ. Therefore 
if we can show that it is never possible to enter a 
sec u r i t y s t a t e w i t h f ( s ) ( s ) 2. [uJ f o r any s , \'Ie a r e done • 
By hypothesis in q(O) we have no s with f(s)(s)2.{uJ. 
Suppose it were to occur in some q(i), and let i be the 
first such i. Then in q(i-1), not f(s)(s)2. fuJ. Hence V 
must have serviced a command at i resulting in wr(s,s,al) 
~lith a12.fuJ. !Jut the call to wr(s2,ol,al) is preceded by 
an e~'plicit check not (ol=s2 and al2.fu1) which is 
violated by ol=s2=s and al2.fu1. Thus we cannot have 
f(s)(s)2.fuJ in q(i) or in any successor state of q(O). 

(f) follows. 
Q.E.D. 

3.3.2 Implications. External Breaches. 

In stating requirements (a) to (f) we have in 
effect defined the notion of internal security compromise 
-a compromise caused by the system's failure to meet 
responsibilities. Certain compromises of security in a 
larger sense can still occur through actions not under the 
control or scrutiny of the kernel. Examples of such 
external breaches are: 

(1) A 3-cleared user sl with r access to 
3-classified file ol copies ol to o2, classifies o2 at 0 
level, and grants read access to s2. User s2 is cleared 
only to 0. Even If the system could prevent direct 
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"moving" of files in such circumstances, sl could still 
bypass the system by processing ol into an altered form 
before copying to o2, could aggregate sensitive totals 
from ol and copy them in o2, etc. No system could 
Interpret all such possible evasions. Even If it could, 
sl could still act by collusion as the direct agent of s2. 
Evidently, if sl has privileged access to ol, no kernel 
can keep him from abuse of his trust. 

An alternative to this approach is to force created 
files to be classified at the high watermark level of the 
environment of sl. Then either explicit declassification 
is prohibited, or, if not, this precaution is vacuous and 
at best a default convenience. 

We choose to accept the axioms of complete trust in a 
priviliged user \Jithin the limits of his privileges and 
complete respdnsibility of the user in assigning 
classifications, compartments and attributes to files to 
Hhich he has fuj privilege. 

(2) A user sl with clearance, compartments 
and [wl access for ol can, even ~;Ji thou t [ u l access, a 1te r 
ol beyond repair, in effect destroying it. There is 
therefore a good case for identifying the fwl and fuj' 
attributes, merging them into a single f'-'~J attribute. The 
design of e and V could be easily altered to accomodate 
this design decision, with essentially no changes In the 
arguments of section 3.1. 

Another argument in favor of w=u is from user 
responsibility. If sl can write in ol, sl ought to be 
able to reclassify ol, since sl may well have appended 
sensitive information to ol. 

(3) A user sl with u to o3 can provide 
another (suitably cleared) user s2 with any privileges to 
o3 he himself possesses, except sl cannot grant [u/ for s2 
to s2. Prodigal use of this facility by sl may result in 
an external breach, but the system cannot be responsible 
for making such distinctions. 

3.3.3 Alternative Kernel Resigns. 

Certain other design possibilities can be 
hand 1ed vJi th case in our framework. In each case they 
entail. slight alterations of thee and V programs. 
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(1) Identifying fwJ with fuJ. This was 
discussed in section 3.3.2. 

(2) Allowing any subject sl with [b1 
attribute for ol, but without ful attribute, to pass {bj 
to other subjects. This is similar to the 'transfer' 
abll ity of Graham and Denning (6). First we declare the 
function 

u : CA->B) X (A->B> -> (A->B) 

as the bitwise "or" of attribute lists. Then we alter the 
first conditional of V to read 

If request=' wr t te' then 

begin


if c(sl)LC(ol) and p(sl)Lp(ol) 
and f(ol)(s1)2.(u}' and 
c(s2)LC(ol) and p(s2)2.p(ol) 
and not (ol=s2 and alLfuJ)

then wr (s2,ol,al) 
else if c(sl)Lc(ol) and p(sl)Lp(ol)

and f(ol)(sl)2.al and c(s2)2.c(ol) 
and p(s2)Lp(ol) 

then 
begin 

al<-al U f(ol)(s2) 
wr(s2,ol,al) 

end 
else m(O) 

end 
e 1s e i f r e que s t = ' rea d' then ••• 

(3) Allowing more limited updation 
privileges than those implied by fuj". Thus f(ol)(sl)Lfn/ 
might allow sl to change only access attributes to, but 
not clearance or classification of, object ol while 
f(ol)(s1)2.fjj would be needed to reclassify. 

(4) Enforcing a requirement that each 
object ol have an unique 'owner' (Graham and Denning (6), 
p. 420.). We can capture this idea by allowing only one 
sl to have {ul to ol. Assuming this is the case in the 
initial security state q(O), we build into V the check 

if 	request = 'write' then 

begin 


IV-45 


http:f(ol)(sl)2.al


if c(s1)2.c(ol) and p(sl)Lp(ol) 
and f ( ol) ( s 1)2_[uj and 
c(s2)2.c(ol) and p(s2)2.p(ol) 
and not a12.1ul 

then wr (s2,ol,al) 
else m( 0) 

end 

Then an inductive argument shows that, since fuJ can never 
be 11 passed 11 

, no ol ever has more than one s with 
f(ol)(s)2.[uJ. Since every created object has a default 
11 owner 11 (its creator), the uniqueness requirement is 
proved. 

(5) In the view of Burke (2) access 
pri.vileges granted to sl for ol should depend upon the 
mode m(ol). For example it is meaningless to grant lc] 
access to a data file. Thus he proposes that the kernel 
at update time check m(ol) and grant only the appropriate 
attributes. 

By adding further conditionals to the updators we can 
accomodate this constraint. For example wr may be altered 
to 

wr 	 (s2,ol,al) 
if 	m(ol)=p 

then f(ol)(s2)<- al n {e,u, 1J 
else if m(ol)=f 

then f(ol)(s2)<-~ln lr,w,u, 13 
• • • etc 
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