Published: June 22, 2017
Author(s)
Xiaoyan Sun (Penn State University), Anoop Singhal (NIST), Peng Liu (Penn State University)
Conference
Name: 31st IFIP Conference on Data and Application Security and Privacy (DBSEC 2017)
Dates: 07/19/2017 - 07/21/2017
Location: Philadelphia, Pennsylvania, United States
Citation: Data and Applications Security and Privacy XXXI, vol. 10359, pp. 259-274
Today’s cyber-attacks towards enterprise networks often undermine and even fail the mission assurance of victim networks. Mission cyber resilience (or active cyber defense) is critical to prevent or minimize negative consequences towards missions. Without effective mission impact assessment, mission cyber resilience cannot be really achieved. However, there is an overlooked gap between mission impact assessment and cyber resilience due to the non-mission-centric nature of current research. This gap is even widened in the context of cloud computing. The gap essentially accounts for the weakest link between missions and attack-resilient systems, and also explains why the existing impact analysis is not really actionable. This paper initiates efforts to bridge this gap, by developing a novel graphical model that interconnects the mission dependency graphs and cloud-level attack graphs. Our case study shows that the new cloud-applicable model is able to bridge the gap between mission impact assessment and cyber resilience. As a result, it can significantly improve the effectiveness of cyber resilience analysis of mission critical systems.
Today’s cyber-attacks towards enterprise networks often undermine and even fail the mission assurance of victim networks. Mission cyber resilience (or active cyber defense) is critical to prevent or minimize negative consequences towards missions. Without effective mission impact assessment, mission...
See full abstract
Today’s cyber-attacks towards enterprise networks often undermine and even fail the mission assurance of victim networks. Mission cyber resilience (or active cyber defense) is critical to prevent or minimize negative consequences towards missions. Without effective mission impact assessment, mission cyber resilience cannot be really achieved. However, there is an overlooked gap between mission impact assessment and cyber resilience due to the non-mission-centric nature of current research. This gap is even widened in the context of cloud computing. The gap essentially accounts for the weakest link between missions and attack-resilient systems, and also explains why the existing impact analysis is not really actionable. This paper initiates efforts to bridge this gap, by developing a novel graphical model that interconnects the mission dependency graphs and cloud-level attack graphs. Our case study shows that the new cloud-applicable model is able to bridge the gap between mission impact assessment and cyber resilience. As a result, it can significantly improve the effectiveness of cyber resilience analysis of mission critical systems.
Hide full abstract
Keywords
active cyber defense; attack graphs; cloud computing; mission impact
Control Families
None selected