NIST

Natienal Institute of
Standords and Technology

Automated Combinatorial
Testing for Software

Rick Kuhn and Vadim Okun

National Institute of

Standards and Technology
Gaithersburg, MD

NIST

Mational Institute of

What is NIST? T

National Institute of
Standards and Technology

* The nation’s measurement and testing
laboratory

« 3,000 scientists, engineers, and
support staff including
3 Nobel laureates

» Best known for atomic clock, standard
reference materials (for instrument
calibration) from aluminum alloy to
whale blubber

 Basic and applied research in physics,
chemistry, materials, electronics,
computer science

Automated Combinatorial Testing

. Project to combine automated test generation with
combinatorial methods

. Goals — reduce testing cost, improve cost-benefit
ratio for formal methods

NH The University of Texas
ARLINGTON.

mESnRGE

UNIVERSITY

UNIVERSITY OF NEVADA LAS VEGAS
Howard R. Hughes
2 : :
College of Engineering

NIST

Maotional Institute of
Standards and Technelogy

Overview of useful results

. Proof of concept demo integrating combinatorial
testing with model checking

. (Small) experimental result consistent with
earlier interpretation of empirical data

. New combinatorial algorithms and tools,
supporting development tradeoffs

NIST

Hatienal Institute of
Standards and Technelogy

NIST

Naotienal Institute of
Standards ond Technology

Problem: the usual ...

. 100 much to test

. Even with formal specs, we still need to test

. Take advantage of formal specs to produce tests
also — better business case for FM

. Testing may exceed 50% of development cost

* Example: 20 variables, 10
values each

«1020 combinations

 Which ones to test?

NIST

Natienal Institute of
Standards ond Technology

Solution: Combinatorial Testing

« Suppose no failure requires more than a pair of
settings to trigger

* Then test all pairs — 180 test cases sufficient to
detect any failure

4 N

Yes, but aren’t real-world failures
more complicated?

N &

NIST

Mational Institute of

Pairwise testing — what do we know? ===

« Mandl, 1985 — very effective for compiler test
* Brownlie, Prowse, Phadke - high coverage

* Cohen, Dalal, Parelius, Patton, 1995 — 90% coverage
with pairwise, all errors in small modules found

« Dalal, etal. 1999 — effectiveness of pairwise testing, no
higher degree interactions

 Smith, Feather, Muscetolla, 2000 — 88% and 50% of
flaws for 2 subsystems,

What if finding
~90% of flaws Is
not good enough?

Standards and Technoelogy

How many combinations do we need to
test to find ALL errors? '

Surprisingly, no one had looked
at this question when NIST studied
medical device software in 1999

 Wallace, Kuhn 2001 — medical devices

— 98% of flaws were pairwise interactions, no failure required > 4
conditions to trigger

« Kuhn, Reilly 2002 — web server, browser; no failure required > 6
conditions to trigger

« Kuhn, Wallace, Gallo 2004 — large NASA distributed database; no
failure required > 4 conditions to trigger

Max failure triggering fault interaction (FTFI) number of these
applications was 6

Much more empirical
work needed Maybe the hard 1o
find flaws weren't
reported.

NIST

Mational Institute of

NIST

Natienal Institute of
Standards ond Technology

FTFI numbers for 4 application domains
— failures triggered by 1 to 6 conditions

100 j-lk

80 Medical

1 Browser
60
/ Server

40 / — == NASA
20

0

Combinatorial test example:

NIST

Natienal Institute of
Standards ond Technology

5 parameters, 4 values each,
3-way combinations

All 3-way combinations
Test _ B CD
1' El 1 But also all 3-way
9 112 2 9 combinations of
3] 11333 A,B.D;
4] 114 4 4 AB.E;
51 12123 AC,D;
6| 12 2 1 4 _ This is going to
7 1 2 3 4 1 B,D,E; take a lot of
g 1 2 4 3 2 tests!
9| 131 3 4 etc...
10 1 3 2 4 3

Problem: Combinatorial Testing Requires a
Lot of Tests

Number of tests: suppose we want all 4-way
combinations of 30 parameters, 5 values each: 3,800
tests — too many to create manually

Test set to do this Is a
covering array

Time to generate e

. 4000
[] /
covering arrays: s —

problem is NP hard 2500 T

2000 -

No. of combinations:

1000

n 500
K :
V 10 20 30 40 50
k Variables

For n variables with v values, k-way combinations

NIST

Haotienal Institute of
Standards and Technoelogy

Solution: Automated Testing

Test data generation — easy

Test oracle generation — hard
Creating test oracles — model checking and other state exploration

methods

Model-checker test production: if assertion is not true, then a
counterexample is generated. This can be converted to a test

case.

mufavt
pecs

generate
mutants

Complete
: Tests

model

\ checker

conrfer-

examples

Bun
Tests

| combine

sCcenarios

SCENATOS
>

test

" results

generate
test input

fesf cases o~ B | a'C k &

Ammann,
1999

NIST

Naotional Institute of
Stendards and Technology

NIST

Natienal Institute of
Standards ond Technology

Using model checking to produce tests
4 })

The system can never Yes it can,
get in this statel and here's
how ... a

muigfar] CoLmier-

specs emmpie:
System generate : model - | combine |senaios| generate
specs mutants .| checker : gcenarios test input

Complete - TDA B fesf cases -
: Tests

Run fest
System o Tests " results
Source

NIST

Naotienal Institute of

Model checking example e

-—- specification for a portion of tcas - altitude separation.

-—- The corresponding C code is originally from Siemens Corp. Research
-- Vadim Okun 02/2002

MODULE main

VAR
Cur Vertical Sep : { 299, 300, 601 };
High Confidence : boolean;

init(alt_sep) := START ;

next (alt _sep) := case
enabled & (intent not known | !tcas_equipped) : case

need upward RA & need downward RA : UNRESOLVED;
need upward RA : UPWARD RA;

need downward RA : DOWNWARD RA;

1 : UNRESOLVED;

esac;
1 : UNRESOLVED;
esac;
SPEC AG ((enabled & (intent not known | !'tcas_equipped) &

'need downward RA & need upward RA) -> AX (alt _sep = UPWARD RA))

NIST

Mational Institute of

Computation Tree Logic s R

The usual logic operators,plus temporal:

A ¢ -

LR PN o
€ 6 6 6

All: ¢ holds on all paths starting from the current state.
Exists: ¢ holds on some paths starting from the current state.
Globally: ¢ has to hold on the entire subsequent path.
Finally: ¢ eventually has to hold

Next: ¢ has to hold at the next state

[others not listed]

execution paths

//j}ates on the execution paths

SPEC AG ((enabled & (intent not known |

'tcas

_equipped) & 'need downward RA &

need upward RA)

-> AX

(alt sep = UPWARD RA))

“FOR ALL executions,
IF enabled & (intent not known
THEN in the next state alt _sep = UPWARD RA”

How can we integrate combinatorial
testing with model checking?

. Given AG (P -> AX (R)) “for all paths, in every state, if P then
In the next state, R holds”

For k-way variable combinations, vl & v2 & ... & vk

vi abbreviates “var1 = val1”

Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

— AG(vl & v2 & ... & vk & P -> AX !'(R))
— AG(vl & v2 & ... & vk -> AX ' (1))
— AG(vl & v2 & ... & vk -> AX !'(R))

NIST

HNational Institute of
Standords ond Technology

What happens with these assertions?

1. AG(vl & v2 & ... & vk & P -> AX ' (R))

P may have a negation of one of the v,, so we get
0 -> AX !'(R))

always true, so no counterexample, no test.
This Is too restrictive

1.AG(vl & v2 & ... & vk -> AX !(1))

The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be
covered by a counterexample.

This Is too loose

2. AG(vl & v2 & ... & vk -> AX ' (R))

Forces production of a counterexample for each R.
This is just right
NIST

Motienal Institute of
Standords and Technelogy

NIST

Naotienal Institute of

Proof-of-concept experiment R

Traffic Collision Avoidance System module
- Small, practical example — 2 pages of SMV

- Used in other experiments on testing
— Siemens testing experiments, Okun dissertation

— Suitable for model checking
12 variables: 7 boolean, two 3-value, one 4-value, two 10-value

Tests generated w/ Lei “In Parameter Order” (IPO) algorithm
extended for >2 parameters

Combinations /tests generated

t Comb. Test cases
2-way:. 100 156
3-way: 405 461
4-way: 1,375 1,450
S5-way: 4,220 4,309
6-way: 10,902 11,094

(more “don’t care” conditions at
lower interaction levels)

NIST

Naotienal Institute of

Standards ond Technology

Tests

12000

10000

8000

6000

4000

2000

1 1

2-way

3-way

4-way

5-way

6-way

Results

* Roughly consistent with data on large systems

 But errors harder to detect than real-world examples

NIST

Naotienal Institute of
Standards ond Technology

100%
80%
60%
40%
20%

0%

Detection Rate for TCAS Seeded

Errors

¢

/

ad

v

—e— Detection
rate

Fault Interaction level

2way 3way 4way 5way 6 way

Tests

350.0
300.0
250.0

200.0
150.0

100.0
50.0
0.0

Tests per error

/
/

J4
e

»/?/

2way 3way 4way S5way 6way

Fault Interaction level

—e— Tests per error

NIST
What do we need —ml

to make this practical?

This approach would not have been practical 10
years ago

Now we have high performance model checkers,

better covering array algorithms, and cheap
Processors

Generating ~ 10° — 10’ tests can be done
Proof of concept experiment completed

So what? Finding covering
arrays is an NP hard problem!

Solution: new covering array algorithms

* Tradeoffs to minimize calendar/staff time:

 FireEye (extended IPO) — Leil — roughly optimal, can be used for
most cases under 40 or 50 parameters

* Produces minimal number of tests at cost of long run time

 Currently integrating algebraic methods

- Adaptive distance-based strategies — Bryce — dispensing one test
at a time w/ metrics to increase probability of finding flaws

 Highly optimized covering array algorithm
« Variety of distance metrics for selecting next test

 Paintball — Kuhn —for more variables or larger domains

« Randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

» Better results than other algorithms for larger problems
J J9er P NIST

Hatienal Institute of
Standards and Technelogy

- . . _ NIST
Will automated combinatorial testing - T

work In practice?
The usual potential pitfalls:
. Faithfulness of model to actual code

Always a problem

.Being able to generate tests from specification helps make formal
modeling more cost effective

. Time cost of generating tests

. Model checking very costly in run time

. Inherent limits on number of variable values even with ideal covering
array generation: need at least C(n,k) * vX

. Abstraction needed to make this tractable

. Equivalence classes for variable values may miss a lot that matters

. Not all software is suited to this scheme — e.g., good for code with lots
of decisions, not so good for numerical functions.

: How is this going
Scaling up to work in the ‘
real world?

- Two real-world trials planned — US Govt Personal
|dentity Verification (PIV) card, machine tool
specification exchange software

* Plan to experiment with both SMV model checker and
TVEC

« Generate 10° to 10° tests per module, probably up to 5-
way combinations

NIST

Motional Institute of
Standards and Technology

NIST

Mational Institute of

Summary and conclusions S i

 Proof of concept is promising — integrated w/ model checking
« Appears to be economically practical

* New covering array algorithms help make it more tractable
 Cluster implementation of covering array algorithm
« Many unanswered questions
* IS It cost-effective?
» What kinds of software does it work best on?
« What kinds of errors does it miss?
« What failure-triggering fault interaction level testing is required? 5-
way? 6-way? more?
 Large real-world example will help answer these questions
Please contact us if you are interested!

Rick Kuhn Vadim Okun
kuhn@nist.gov vadim.okun@nist.gov

http://csrc.nist.gov/acts

