
Automated Combinatorial
Testing for Software

Rick Kuhn and Vadim Okun

National Institute of
Standards and Technology

Gaithersburg, MD

What is NIST?

National Institute of
Standards and Technology

• The nation’s measurement and testing
laboratory

• 3,000 scientists, engineers, and

support staff including

3 Nobel laureates

• Best known for atomic clock, standard

reference materials (for instrument

calibration) from aluminum alloy to

whale blubber

• Basic and applied research in physics,

chemistry, materials, electronics,

computer science

Automated Combinatorial Testing

● Project to combine automated test generation with
combinatorial methods

● Goals – reduce testing cost, improve cost-benefit

ratio for formal methods

Overview of useful results

● Proof of concept demo integrating combinatorial
testing with model checking

● (Small) experimental result consistent with
earlier interpretation of empirical data

● New combinatorial algorithms and tools,
supporting development tradeoffs

Problem: the usual ...
● Too much to test

● Even with formal specs, we still need to test

● Take advantage of formal specs to produce tests
also – better business case for FM

● Testing may exceed 50% of development cost

• Example: 20 variables, 10
values each

•1020 combinations

• Which ones to test?

• Suppose no failure requires more than a pair of
settings to trigger

• Then test all pairs – 180 test cases sufficient to
detect any failure

Solution: Combinatorial Testing

Yes, but aren’t real-world failures

more complicated?

• Mandl, 1985 – very effective for compiler test

• Brownlie, Prowse, Phadke - high coverage

• Cohen, Dalal, Parelius, Patton, 1995 – 90% coverage
with pairwise, all errors in small modules found

• Dalal, et al. 1999 – effectiveness of pairwise testing, no
higher degree interactions

• Smith, Feather, Muscetolla, 2000 – 88% and 50% of
flaws for 2 subsystems,

What if finding
~90% of flaws is
not good enough?

Pairwise testing – what do we know?

• Surprisingly, no one had looked
at this question when NIST studied
medical device software in 1999

• Wallace, Kuhn 2001 – medical devices
– 98% of flaws were pairwise interactions, no failure required > 4
conditions to trigger

• Kuhn, Reilly 2002 – web server, browser; no failure required > 6
conditions to trigger

• Kuhn, Wallace, Gallo 2004 – large NASA distributed database; no
failure required > 4 conditions to trigger

• Max failure triggering fault interaction (FTFI) number of these
applications was 6

• Much more empirical
work needed

How many combinations do we need to
test to find ALL errors?

Maybe the hard to
find flaws weren’t

reported.

FTFI numbers for 4 application domains
– failures triggered by 1 to 6 conditions

0

20

40

60

80

100

120

1 2 3 4 5 6

Medical

Browser

Server

NASA

Combinatorial test example:
5 parameters, 4 values each,
3-way combinations

Parameters

Test | A B C D E

1 | 1 1 1 1 1

2 | 1 1 2 2 2

3 | 1 1 3 3 3

4 | 1 1 4 4 4

5 | 1 2 1 2 3

6 | 1 2 2 1 4

7 | 1 2 3 4 1

8 | 1 2 4 3 2

9 | 1 3 1 3 4

10 | 1 3 2 4 3

etc.....

All 3-way combinations
of A,B,C values

But also all 3-way
combinations of
A,B,D;
A,B,E;
A,C,D;
...
B,D,E;
...
etc...

This is going to
take a lot of

tests!

• Number of tests: suppose we want all 4-way
combinations of 30 parameters, 5 values each: 3,800
tests – too many to create manually

• Test set to do this is a
covering array

• Time to generate
covering arrays:
problem is NP hard

• No. of combinations:

Problem: Combinatorial Testing Requires a
Lot of Tests

()vk
n

k

For n variables with v values, k-way combinations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50

Variables

Tests

Solution: Automated Testing

Test data generation – easy

Test oracle generation – hard

Creating test oracles – model checking and other state exploration
methods

Model-checker test production: if assertion is not true, then a
counterexample is generated. This can be converted to a test
case.

Black &
Ammann,
1999

Using model checking to produce tests

The system can never
get in this state!

Yes it can,
and here’s

how …

Model checking example

-- specification for a portion of tcas - altitude separation.

-- The corresponding C code is originally from Siemens Corp. Research

-- Vadim Okun 02/2002

MODULE main

VAR

Cur_Vertical_Sep : { 299, 300, 601 };

High_Confidence : boolean;

...

init(alt_sep) := START_;

next(alt_sep) := case

enabled & (intent_not_known | !tcas_equipped) : case

need_upward_RA & need_downward_RA : UNRESOLVED;

need_upward_RA : UPWARD_RA;

need_downward_RA : DOWNWARD_RA;

1 : UNRESOLVED;

esac;

1 : UNRESOLVED;

esac;

...

SPEC AG ((enabled & (intent_not_known | !tcas_equipped) &

!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))

Computation Tree Logic
The usual logic operators,plus temporal:

A φ - All: φ holds on all paths starting from the current state.

E φ - Exists: φ holds on some paths starting from the current state.

G φ - Globally: φ has to hold on the entire subsequent path.

F φ - Finally: φ eventually has to hold

X φ - Next: φ has to hold at the next state

[others not listed]

execution paths

states on the execution paths

SPEC AG ((enabled & (intent_not_known |

!tcas_equipped) & !need_downward_RA &

need_upward_RA)

-> AX (alt_sep = UPWARD_RA))

“FOR ALL executions,

IF enabled & (intent_not_known

THEN in the next state alt_sep = UPWARD_RA”

How can we integrate combinatorial
testing with model checking?

1. Given AG(P -> AX(R))“for all paths, in every state, if P then
in the next state, R holds”

• For k-way variable combinations, v1 & v2 & ... & vk

• vi abbreviates “var1 = val1”

• Now combine this constraint with assertion to produce

counterexamples. Some possibilities:

– AG(v1 & v2 & ... & vk & P -> AX !(R))

– AG(v1 & v2 & ... & vk -> AX !(1))

– AG(v1 & v2 & ... & vk -> AX !(R))

What happens with these assertions?

1. AG(v1 & v2 & ... & vk & P -> AX !(R))

P may have a negation of one of the vi, so we get
0 -> AX !(R))

always true, so no counterexample, no test.

This is too restrictive

1. AG(v1 & v2 & ... & vk -> AX !(1))

The model checker makes non-deterministic choices for

variables not in v1..vk, so all R values may not be

covered by a counterexample.

This is too loose

2. AG(v1 & v2 & ... & vk -> AX !(R))

Forces production of a counterexample for each R.

This is just right

Proof-of-concept experiment

• Traffic Collision Avoidance System module

– Small, practical example – 2 pages of SMV

– Used in other experiments on testing
– Siemens testing experiments, Okun dissertation

– Suitable for model checking

• 12 variables: 7 boolean, two 3-value, one 4-value, two 10-value

• Tests generated w/ Lei “In Parameter Order” (IPO) algorithm
extended for >2 parameters

Combinations /tests generated

t Comb.

2-way: 100

3-way: 405

4-way: 1,375

5-way: 4,220

6-way: 10,902

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases

156

461

1,450

4,309

11,094

(more “don’t care” conditions at

lower interaction levels)

Results

Detection Rate for TCAS Seeded

Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

e
s
ts

Tests per error

What do we need
to make this practical?

• This approach would not have been practical 10
years ago

• Now we have high performance model checkers,
better covering array algorithms, and cheap
processors

• Generating ~ 106 – 107 tests can be done

• Proof of concept experiment completed

So what? Finding covering
arrays is an NP hard problem!

Solution: new covering array algorithms

• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for

most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of long run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test

at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• Paintball – Kuhn –for more variables or larger domains

• Randomized algorithm, generates tests w/ a few tunable parameters;

computation can be distributed

• Better results than other algorithms for larger problems

Will automated combinatorial testing
work in practice?
The usual potential pitfalls:

● Faithfulness of model to actual code

●Always a problem

●Being able to generate tests from specification helps make formal
modeling more cost effective

● Time cost of generating tests

● Model checking very costly in run time

● Inherent limits on number of variable values even with ideal covering
array generation: need at least C(n,k) * vk

● Abstraction needed to make this tractable

● Equivalence classes for variable values may miss a lot that matters

● Not all software is suited to this scheme – e.g., good for code with lots
of decisions, not so good for numerical functions.

Scaling up

• Two real-world trials planned – US Govt Personal
Identity Verification (PIV) card, machine tool
specification exchange software

• Plan to experiment with both SMV model checker and

TVEC

• Generate 105 to 106 tests per module, probably up to 5-

way combinations

How is this going
to work in the

real world?

Summary and conclusions
• Proof of concept is promising – integrated w/ model checking

• Appears to be economically practical

• New covering array algorithms help make it more tractable

• Cluster implementation of covering array algorithm

• Many unanswered questions

• Is it cost-effective?

• What kinds of software does it work best on?

• What kinds of errors does it miss?

• What failure-triggering fault interaction level testing is required? 5-

way? 6-way? more?

• Large real-world example will help answer these questions

Please contact us if you are interested!

Rick Kuhn Vadim Okun
kuhn@nist.gov vadim.okun@nist.gov

http://csrc.nist.gov/acts

