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What is NIST?

National Institute of 
Standards and Technology

• The nation’s measurement and testing 
laboratory

• 3,000 scientists, engineers, and 

support staff including

3 Nobel laureates

• Best known for atomic clock, standard 

reference materials (for instrument 

calibration) from aluminum alloy to 

whale blubber

• Basic and applied research in physics, 

chemistry, materials, electronics, 

computer science



Automated Combinatorial Testing

● Project to combine automated test generation with 
combinatorial methods

● Goals – reduce testing cost, improve cost-benefit 

ratio for formal methods



Overview of useful results

● Proof of concept demo integrating combinatorial 
testing with model checking

● (Small) experimental result consistent with 
earlier interpretation of empirical data

● New combinatorial algorithms and tools, 
supporting development tradeoffs



Problem: the usual ...
● Too much to test

● Even with formal specs, we still need to test 

● Take advantage of formal specs to produce tests 
also – better business case for FM

● Testing may exceed 50% of development cost

• Example: 20 variables,   10 
values each

•1020 combinations

• Which ones to test?



• Suppose no failure requires more than a pair of 
settings to trigger

• Then test all pairs – 180 test cases sufficient to 
detect any failure

Solution: Combinatorial Testing

Yes, but aren’t real-world failures

more complicated?



• Mandl, 1985 – very effective for compiler test

• Brownlie, Prowse, Phadke - high coverage

• Cohen, Dalal, Parelius, Patton, 1995 – 90% coverage 
with pairwise, all errors in small modules found

• Dalal, et al.  1999 – effectiveness of pairwise testing, no 
higher degree interactions

• Smith, Feather, Muscetolla, 2000 – 88% and 50% of 
flaws for 2 subsystems, 

What if finding 
~90% of flaws is 
not good enough?

Pairwise testing – what do we know?



• Surprisingly, no one had looked 
at this question when NIST studied 
medical device software in 1999

• Wallace, Kuhn  2001 – medical devices 
– 98% of flaws were pairwise interactions, no failure required > 4 
conditions to trigger

• Kuhn, Reilly  2002 – web server, browser; no failure required > 6 
conditions to trigger

• Kuhn, Wallace, Gallo  2004 – large NASA distributed database; no 
failure required > 4 conditions to trigger

• Max failure triggering fault interaction (FTFI) number of these 
applications was 6

• Much more empirical 
work needed

How many combinations do we need to 
test to find ALL errors?

Maybe the hard to 
find flaws weren’t 

reported.



FTFI numbers for 4 application domains 
– failures triggered by 1 to 6 conditions
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Combinatorial test example: 
5 parameters, 4 values each, 
3-way combinations

Parameters 

Test |    A   B  C  D  E

1  |    1   1   1   1   1

2  |    1   1   2   2   2

3  |    1   1   3   3   3

4  |    1   1   4   4   4

5  |    1   2   1   2   3

6  |    1   2   2   1   4

7  |    1   2   3   4   1

8  |    1   2   4   3   2

9  |    1   3   1   3   4

10  |    1   3   2   4   3

etc.....

All 3-way combinations 
of A,B,C values

But also all 3-way 
combinations of 
A,B,D;
A,B,E;
A,C,D;
...
B,D,E;
...
etc...

This is going to 
take a lot of 

tests!



• Number of tests:  suppose we want all 4-way 
combinations of 30 parameters, 5 values each: 3,800 
tests – too many to create manually

• Test set to do this is a 
covering array

• Time to generate 
covering arrays:  
problem is NP hard

• No. of combinations:

Problem: Combinatorial Testing Requires a 
Lot of Tests
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Solution: Automated Testing

Test data generation – easy

Test oracle generation – hard

Creating test oracles – model checking and other state exploration 
methods

Model-checker test production:  if assertion is not true, then a 
counterexample is generated.  This can be converted to a test 
case.

Black & 
Ammann,
1999



Using model checking to produce tests

The system can never 
get in this state!

Yes it can, 
and here’s 

how …



Model checking example

-- specification for a portion of tcas - altitude separation.

-- The corresponding C code is originally from Siemens Corp. Research

-- Vadim Okun 02/2002

MODULE main

VAR

Cur_Vertical_Sep : { 299, 300, 601 };

High_Confidence : boolean;

...

init(alt_sep) := START_;

next(alt_sep) := case

enabled & (intent_not_known | !tcas_equipped) : case

need_upward_RA & need_downward_RA : UNRESOLVED;

need_upward_RA : UPWARD_RA;

need_downward_RA : DOWNWARD_RA;

1 : UNRESOLVED;

esac;

1 : UNRESOLVED;

esac;

...

SPEC AG ((enabled & (intent_not_known | !tcas_equipped) & 

!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))



Computation Tree Logic
The usual logic operators,plus temporal:

A φ - All: φ holds on all paths starting from the current state.

E φ - Exists: φ holds on some paths starting from the current state.

G φ - Globally: φ has to hold on the entire subsequent path.

F φ - Finally: φ eventually has to hold 

X φ - Next: φ has to hold at the next state

[others not listed]

execution paths

states on the execution paths

SPEC AG ((enabled & (intent_not_known | 

!tcas_equipped) & !need_downward_RA & 

need_upward_RA) 

-> AX (alt_sep = UPWARD_RA))

“FOR ALL executions, 

IF enabled & (intent_not_known .... 

THEN in the next state alt_sep = UPWARD_RA”



How can we integrate combinatorial 
testing with model checking?

1. Given AG(P -> AX(R))“for all paths, in every state, if P then 
in the next state, R holds”

• For k-way variable combinations, v1 & v2 & ... & vk 

• vi abbreviates “var1 = val1”

• Now combine this constraint with assertion to produce 

counterexamples.  Some possibilities:

– AG(v1 & v2 & ... & vk & P -> AX !(R))

– AG(v1 & v2 & ... & vk -> AX !(1))

– AG(v1 & v2 & ... & vk -> AX !(R))



What happens with these assertions?

1. AG(v1 & v2 & ... & vk & P -> AX !(R))

P may have a negation of one of the vi, so we get 
0 -> AX !(R))

always true, so no counterexample, no test.

This is too restrictive

1. AG(v1 & v2 & ... & vk -> AX !(1))

The model checker makes non-deterministic choices for 

variables not in v1..vk, so all R values may not be 

covered by a counterexample.

This is too loose

2. AG(v1 & v2 & ... & vk -> AX !(R))

Forces production of a counterexample for each R.

This is just right



Proof-of-concept experiment 

• Traffic Collision Avoidance System module

– Small, practical example – 2 pages of SMV

– Used in other experiments on testing 
– Siemens testing experiments, Okun dissertation

– Suitable for model checking 

• 12 variables: 7 boolean, two 3-value, one 4-value, two 10-value

• Tests generated w/ Lei “In Parameter Order” (IPO) algorithm 
extended for >2 parameters



Combinations /tests generated

t Comb.
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Results

Detection Rate for TCAS Seeded 
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What do we need
to make this practical?

• This approach would not have been practical 10 
years ago

• Now we have high performance model checkers, 
better covering array algorithms, and cheap 
processors

• Generating ~ 106 – 107 tests can be done

• Proof of concept experiment completed

So what?  Finding covering 
arrays is an NP hard problem!



Solution: new covering array algorithms

• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for 

most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of long run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test 

at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test 

• Paintball – Kuhn –for more variables or larger domains

• Randomized algorithm, generates tests w/ a few tunable parameters; 

computation can be distributed

• Better results than other algorithms for larger problems 



Will automated combinatorial testing 
work in practice?
The usual potential pitfalls:

● Faithfulness of model to actual code

●Always a problem

●Being able to generate tests from specification helps make formal 
modeling more cost effective

● Time cost of generating tests 

● Model checking very costly in run time

● Inherent limits on number of variable values even with ideal covering 
array generation:  need at least C(n,k) * vk  

● Abstraction needed to make this tractable

● Equivalence classes for variable values may miss a lot that matters

● Not all software is suited to this scheme – e.g., good for code with lots 
of decisions, not so good for numerical functions.



Scaling up

• Two real-world trials planned – US Govt Personal 
Identity Verification (PIV) card, machine tool 
specification exchange software

• Plan to experiment with both SMV model checker and 

TVEC

• Generate 105 to 106 tests per module, probably up to 5-

way combinations

How is this going 
to work in the 

real world?



Summary and conclusions
• Proof of concept is promising – integrated w/ model checking

• Appears to be economically practical

• New covering array algorithms help make it more tractable

• Cluster implementation of covering array algorithm 

• Many unanswered questions

• Is it cost-effective?

• What kinds of software does it work best on?

• What kinds of errors does it miss?

• What failure-triggering fault interaction level testing is required?   5-

way?    6-way?    more?

• Large real-world example will help answer these questions

Please contact us if you are interested!

Rick Kuhn              Vadim Okun 
kuhn@nist.gov        vadim.okun@nist.gov

http://csrc.nist.gov/acts


