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Abstract 
Formal methods offer the promise of significant improvements in verification and 
validation, and may be the only approach capable of demonstrating the absence of 
undesirable system behavior.  But it is widely recognized that these methods are 
expensive, and their use has been limited largely to high-risk areas such as security and 
safety.  This paper focuses on cost-effective applications of formal techniques in V&V, 
particularly recent developments such as automatic test generation and use of formal 
methods for analyzing requirements and conceptual models without a full-blown formal 
verification.  We also discuss experience with requiring the use of formal techniques in 
standards for commercial software.  
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1 Introduction 
 
According to the Department of Defense Verification, Validation, and Accreditation 
(VV&A) Recommended Practices Guide [DMSO, 2001], formal methods “are based on 
formal mathematical proofs of correctness and are the most thorough means of model 
V&V.”  The Recommended Practices Guide goes on to state that 
  

If attainable, a formal proof of correctness is the most effective means of model 
V&V.  Unfortunately, “if attainable” is the sticking point.  Current formal proof 
of correctness techniques cannot even be applied to a reasonably complex 
simulation; however, formal techniques can serve as the foundation for other 
V&V techniques [DMSO, 2001] 

 
In this paper we describe applications of formal techniques both for software verification 
as well as for other practices useful in V&V, in particular generation of complete system 
tests from specifications Because there is a recognized need for certification and 
accreditation within the field of modeling and simulation (M&S), we discuss historical 
experience with the inclusion of formal methods in government standards.  In all areas, 
our focus is on cost effectiveness, and on using formal techniques as an aid in reasoning 
about systems and software, rather than absolute “proof of correctness”, which may be 
unattainable. From a cost standpoint, formal methods are not always the best methods to 
apply in V&V.  The challenge for both developers and certifiers is to determine when 
formal techniques can be applied effectively, and what processes make their application 
profitable in terms of cost reduction and prevention of failure. 
 
We draw on two fields that have long established experience with the application of 
formal techniques to software requiring government certification:  computer security and 
software safety.  Formal methods have taken hold, although not extensively, in these 
fields partially because the cost of failure can be high, but also because in both fields 
there is a need to prove the absence of undesirable behavior, in addition to the presence 
of designed-in features and behavior.  Modeling and simulation presents unique 
challenges, such as the need to emulate the real world and to extrapolate into unknown 
regions.  But M&S also has much in common with other high-integrity software.  
Notably, M&S systems are often very large, made up of many components whose correct 
interoperation is difficult to predict.  In addition, there is a need to demonstrate the 
absence of undesired behavior, not simply verify the existence of particular features, and 
above all a need to conduct extensive system testing regardless of what other assurance 
techniques have been applied.  Formal techniques have been designed to assist in all of 
these tasks.  If used properly, they can be cost effective.  Engineering judgment is 
required to determine when and how to use formal methods.  This paper surveys the 
available techniques, suggests how they can be used effectively, and provides some 
lessons learned from a wide variety of projects that have applied formal methods. 
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2 Formal Methods and Software Assurance 
 
What are formal methods and how can they be useful for VV&A?  To frame discussion 
of this question, consider the (somewhat idealized) diagram in Figure 1of verification that 
must be done for any software system.  In addition, the requirements, specifications, and 
the completed system must be validated against real world needs, a problem that is 
particularly acute for M&S systems, which must emulate the behavior of physical entities 
rather than interact with them. 
 
In the idealized structure shown in Figure 1, formal techniques can be used in the 
following places: 
 

• Requirements policy – For a secure system, these may be the major security 
properties that must be preserved by the system (called the formal security policy 
model), such as confidentiality or integrity of data; for a system requiring high 
dependability, essential properties may include freedom from deadlock. 

 
• Specifications – The formal specification is typically a mathematically based 

description of system behavior, using state tables or mathematical logic.  It will 
not normally describe lowest level software, such as mathematical subroutine 
packages or data structure manipulation, but will describe the response of the 
system to events and inputs to a degree necessary to establish critical properties.  
Engineering judgment is required to determine the proper level of depth in the 
specification. 

 
• Proof of correspondence between specification and requirements – It must be 

shown that the system, as described by the specification, establishes and preserves 
the properties in the requirements policy.  If both are in a formal notation, 
rigorous proofs can be constructed, either manually or with machine assistance.   

 
• Proof of correspondence between source code and specifications – Although 

many formal techniques were initially created to provide proof of correctness of 
code, this is rarely done because of the time and expense involved, but may be 
done for particularly critical portions of the system. 

 
• Proof of correspondence between machine code and source code – This type of 

proof is rare, both because of the expense involved and because modern compilers 
are very reliable. 

 
In Figure 1, arrows point upward, intended to convey the property that must be shown:  
an implication from a lower component to a higher component of the diagram.  Formally, 
if S is the specification and R represents requirements, verification means proving 

.  In essence, S is more specific than R.  This is as we would expect, because there 
are multiple ways to implement most requirements.   

RS ⇒
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In addition to defining properties and proving that the properties are preserved, formal 
specifications make it possible to generate test cases that can be used to exercise the 
system and demonstrate correct functions.  In this paper we review the varieties of formal 
techniques and tools that are available for system and software verification, and suggest 
ways that these methods may be useful for M&S systems.  In addition, we consider some 
possibilities for use of formal methods in the validation process, an application of formal 
techniques that is comparatively unexplored.  

 
 

Figure 1.  Software Assurance Processes 
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2.1 Improving Precision in Specifications 
 
One of the most widely recognized problems in software development is the difficulty of 
clearly specifying expected software behavior.  This problem is particularly acute with 
the trend toward component-based development.  Frequently a developer has only a 
textual description of what a callable procedure does, its allowed inputs and expected 
outputs.   
 
Ensuring that component-based software is dependable is a difficult problem, not only 
because of the size and complexity of the software, but also because source code is often 
not available for components that are acquired rather than developed in-house.  The trend 
toward use of acquired components is occurring in all fields of software development, 
and writers have argued that modeling and simulation software could move toward this 
mode of development as well, because of the cost reduction advantages of component 
based software.   
 
But the initial cost of constructing software is only one part of the picture.  Cost effective 
methods of assurance are also essential for complex component-based systems.  The 
fundamental ingredient in providing rigorous assurance is a precise definition of the 
software’s expected behavior.  Formal specifications provide the greatest precision for 
software, and formal methods will be increasingly important as M&S development  
moves toward greater use of standardized, off-the-shelf components. 
 
Many observers have noted that the process of developing a formal specification is often 
as effective for finding errors as the verification effort in which the specification is to be 
used.  Developing a formal specification requires a detailed and precise understanding of 
the system, which helps to expose errors and omissions, so much of the benefit of using 
formal methods comes from the process of developing the specification [Clarke and 
Wing, 1996, Johnson et al., 1999].  In formalizing the system description, ambiguities 
and omissions are detected, and the formal specification can improve communication 
between developers and customers [Brilliant, Knight and Elder, 1996].   
 
 
2.2 Analyzing and Proving Properties of Systems and Specifications 
 
Above all else, the field of formal methods was developed to allow reasoning about 
systems and software.  Once a formal specification has been constructed, it is possible to 
analyze, manipulate, and reason about it just like any other mathematical expression.  A 
significant difference between formal specifications of software and the more familiar 
mathematical expressions of algebra or calculus, however, is that specifications are 
typically much larger  - often hundreds or thousands of lines.  To deal with the size and 
complexity of these expressions, many varieties of software tools have been constructed.  
These tools can be grouped broadly into two categories:  theorem proving tools and 
model checkers.   
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Theorem proving tools assist the user in constructing proofs, generally to show that the 
specification has desired properties such as absence of deadlock or various security 
properties.  These tools require a degree of skill to use, but they can handle very large 
specifications with complex properties.  A more recent development in formal methods 
has been the introduction of model checkers, which explore enormous state spaces that 
cover, to some degree, all possible executions of the specified program.  They can 
demonstrate that the specified program has a desired property by exploring all possible 
executions, or produce counterexamples where the property does not hold.    Although 
these tools can be made fully automatic, they cannot handle problems as large or varied 
as theorem proving tools.  The most sophisticated tools combine aspects of both model 
checkers and theorem provers, doing model checking on some parts of the specification, 
but relying on user guidance to prove difficult properties.  This section surveys the types 
of tools that are available, the tradeoffs involved, and appropriate problem domains for 
the different tools. 
 

2.2.1 Theorem Proving Tools 
 
Since both a computer program and its specification are mathematical entities, it is 
reasonable to ask whether a computer program can be constructed that will decide 
whether a given program meets its specification.  Unfortunately this problem is 
undecidable.  Early in the 20th century Kurt Gödel, Alan Turing, Alonzo Church, and 
other mathematicians demonstrated that it is fundamentally impossible to develop 
algorithms that solve this problem and other similar ones.  In fact, these mathematicians 
showed that any logical system expressive enough for mathematics is inherently 
undecidable as well.1   So we are left with a basic choice: restrict our systems of interest 
to a decidable domain or rely upon human intelligence.   Model checking is an example 
of the former and theorem proving is and example of the latter. 
 
Theorem proving tools have been developed to aid the human in demonstrating that a 
program meets its specification.  There are many theorem proving tools available 
including:  PVS, ACL2, HOL, Isabelle, Nuprl, Z/Eves, SCR, and the B-Tool  (See 
www.afm.sbu.ac.uk for a fuller list.)  Instead of examining these tools in detail, this 
section will seek to answer the question of why there is such a wide variety of tools.  
 
Cause 1: There are a lot of different logics out there.  Probably the most basic of divisions 
is whether the theorem prover is based upon a set theory such as ZFC or higher-order 
logic.  Both of these provide a foundation rich enough to support all of mathematics. 
Z/Eves is an example of a theorem prover based upon set theory, whereas PVS is an 
example of a theorem prover based upon type theory.  Within these broad categories are 

                                                 
1 At first this is puzzling since mathematicians prove theorems every day.  But unless one is a naturalist 
who assumes that man is 100% machine, this is not really a problem.  If man is assumed to be spiritual in 
addition to bio-chemistry, the problem disappears.  As Gödel himself put it, “Either mathematics is too big 
for the human mind, or the human mind is more than a machine.”  See Roger Penrose’s excellent book, 
Shadows of the Mind for a full discussion of this issue. 
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many subdivisions arising from fundamental difficulties: such as (1) how does one handle 
division by zero or other undefined results or (2) how are you going to deal with time. 
 
Cause 2: Degree of Customization to problem domain.   The ultimate goal of the theorem 
prover developers is to provide a proof environment that is powerful and easy to use.  
There are different ideas about how to make a theorem prover powerful and at the same 
time cost-effective with respect to a user’s time.   Some developers believe that the key is 
to provide a tool tailored to a particular problem domain.  In this approach the developers 
deliberately restrict the problem domain so that notations and proof commands can be 
tailored to that particular problem domain.  A good example of this is the Naval Research 
Lab’s SCR (Software Cost Reduction) toolkit.  The SCR tool provides a table-oriented 
specification language tailored to the needs of a designer of safety-critical applications 
rich in mode logic.  On the other end of the spectrum are the developers of fully general-
purpose tools that make no assumptions about the problem domain. 
 
Cause 3: Degree of automation.  Even though a theorem prover is working in an 
undecidable domain, subgoals often fall completely into a fragment of mathematics that 
is fully automatible such as linear arithmetic, pure propositional formulas, extensional 
arrays, bit-vectors and many others.  Fully automated decision procedures have been 
developed for these fragments.  But what about formulas that involve constructs from 
more than one of these fragments at the same time?   The integration of multiple decision 
procedures in an efficient and useful way has been one of the fundamental pursuits of 
many of the theorem prover developers for many years.  Without decision procedures the 
user of a theorem prover is forced to carry out even the most trivial of proof steps in a 
manual way.   The integration of decision procedures with the other capabilities of a 
theorem prover such as automatic rewriting is an enormously challenging endeavor yet 
can lead to a much more powerful theorem prover.  The PVS theorem prover is an 
excellent example of a theorem prover where the tight integration of decision procedures 
into a general-purpose proof environment has resulted in a powerful proof tool but with a 
complex user interface. 
 
Cause 4: Use of heuristic search.  Given an undecidable domain another option is 
available, namely heuristic search.  Although not guaranteed to terminate or find a 
solution, a heuristic search can sometimes find a deduction, and save the user a lot of 
time.  Of course there is a trade off between how long one is willing to wait around for 
heuristic search and the probability of success.  Theorem provers can supply commands 
that perform such searches or provide mechanisms such as tactics that enable the user to 
create his own search methods. 
 
Cause 5:  Degree of certainty in the soundness of the theorem prover.  The integration of 
decision procedures, automatic rewriting, heuristic search, and other techniques in a 
theorem prover can lead to an extremely complex piece of software.   If there is a bug in 
the theorem prover, the soundness of the prover may be compromised.  A soundness bug 
(if not discovered) could deceive a user into thinking he has a legitimate proof when the 
proposition is actually false.  Needless to say, this is a primary concern of all  theorem 
prover developers.  However, they differ greatly on their approaches to solving this 
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problem.  Some have sought to develop small deduction kernels on which the soundness 
depends.   The tool is engineered in a manner so that software external to that kernel 
cannot compromise soundness.  The ACL2 and HOL theorem provers were developed 
this way.  Unfortunately this approach makes the integration of decision procedures into 
the tool much more difficult. 
 

2.2.2 Model Checkers 
 
One of the challenges faced by formal methods researchers is the need to make formal 
techniques available to the broadest possible audience of developers.  Model checkers 
attempt to make formal techniques easier to use by providing a high degree of automation 
at the expense of generality.   Inputs to a model checker are typically a finite state model 
of a system, along with a set of properties that are expected to be maintained by the 
system.  Properties to be verified can usually be categorized as one of the following 
[Janssen et al., 1999]: 
 

1. Correct sequences of events 
2. Proper consequences of activities 
3. Simultaneous occurrence of particular events 
4. Mutual exclusion of particular events 
5. Required precedence of activities 

 
The model checker effectively explores all possible event sequences of the finite state 
model to determine if properties, typically expressed in temporal logic, always hold.  
Because the model is finite, the state space search is guaranteed to terminate.  If 
properties hold, the model checker outputs a confirmation.  If a property fails to hold for 
some possible event sequences, the tool produces counterexamples, i.e., traces of event 
sequences that lead to failure of the property in question.  A useful trick that can be 
applied in model checking is to specify that the negation of a desired property that should 
hold.  In this case, the model checker produces an event trace that results in a failure of 
the negated property.  This event sequence, therefore, is actually a valid trace of the 
system, which can be postprocessed to generate complete test cases (i.e., both test input 
and expected system result) [Ammann, Black, Majurski, 1998].   
 
The two greatest advantages of model checkers are their fully automatic analysis and 
their ability to produce counterexamples that can be used in testing or other analysis.  
Their disadvantage results from the tradeoffs made to make automation possible.  
Because they effectively explore a complete state space, the complexity of analysis 
normally grows exponentially with the size of the model.  To reduce the size of the finite 
model, abstractions must be used, such as reducing the range of discrete variables, or 
using a simple predicate to represent a more complex condition.  As a result, model 
checkers can only be used to analyze an abstraction of the system, rather than a complete 
model, so they are sometimes regarded as debugging tools (for specifications) rather than 
verification tools [Merz,  2001].   Despite their limitations, model checkers have been 
applied to significant real-world systems, particularly integrated circuit design and 
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cryptographic protocols.  Abstraction techniques make it possible to model systems with 
200 variables, and up to 10120 reachable states [Burch et al., 1994].  Table 1 summarizes 
differences between model checkers and theorem proving tools. 
 
 Model checkers Theorem provers 
Typical notation  FSMs, temporal logic First order, higher order logics 
Method of operation Automatic Semi-automatic 
Output Confirmation or counterexample Proof (if successful) 
Range of applicability Bounded, finite models Essentially unlimited 

Table 1.  Summary of model checker and theorem prover properties 
 
 
2.3 Generating Test Cases from Formal Specifications 
 
Formal verification techniques depend on mathematically precise specifications.  But 
developing rigorous system tests also requires a precise, complete description of system 
functions, and practical system assurance always requires testing, even when formal 
methods are used.  One of the most interesting applications of formal methods has been 
the development of tools that can generate complete test cases from formal specifications.  
Although a large number of “automated testing” tools are available on the market, most 
of these tools automate the more mundane aspects of software testing:  generating test 
data, passing input data to the system under test, and recording results.  Defining the 
correct system response for a given set of input data is the hard task that most tools 
cannot accomplish when system behavior is defined only with natural language 
specifications.  Because the expected system response can only be determined by reading 
the specification, programmers are expected to provide this critical missing link in most 
automated testing systems.  The great advantage of test generation tools based on formal 
methods is that a formal specification describes system behavior mathematically, so 
expected system responses for particular inputs can be generated; i.e., the tool can 
generate complete test cases, not just test data input or test scaffolding.   
 
From a cost-benefit standpoint, generating tests from specifications can be one of the 
most productive uses of formal methods.  Approximately half the staff time in a typical 
commercial software development effort is spent on testing.  As computer users have 
recognized, even this level of effort only removes the most obvious flaws.  Much of the 
software industry operates under a marketing strategy that gives feature richness and time 
to market a higher priority than quality, because users have demonstrated a willingness to 
accept bugs in return for more features.  Some of the newer test generation tools hold the 
promise of improving quality while simultaneously reducing time to market, because less 
developer time is spent on programming test cases.  These tools can also provide benefits 
for custom software, such as most M&S systems, by reducing the time spent on test 
development and thus allowing more time for other tasks.  Some empirical measurements 
have shown that tests generated by these tools provide test coverage as good or better 
than that achieved by manually generated tests, so developers can choose between 
producing more tests in the same number of staff hours, or reducing the number of hours 
required for testing. 
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2.4 Using Formal Techniques in Validation 
 
While the verifications shown in Figure 1 can be conducted semi-automatically, and 
proofs checked mechanically, validation is a different problem.  A succinct distinction 
between verification and validation is that verification is “building the system right”, 
while validation is “building the right system”.  If we have a set of requirements, we can 
verify, formally or informally, that the system implements the requirements.  But 
validation is necessarily an informal process.  Only human judgment can determine if the 
system that was specified and built is the right one for the job.   
 
Despite the necessity of using human judgment in the validation process, formal methods 
do have a place in validation, particularly in large complex applications such as M&S.  
One of the most promising applications of formal techniques is the “lightweight” 
application of formal methods for requirements modeling.    By stating requirements 
formally, theorem proving tools can be used to explore properties, often detecting 
conflicts between different requirements or missing assumptions.  This approach does not 
replace human judgment, but can aid in determining if the “right system” has been 
specified by making it easier to determine if desired properties hold.   
 
A significant difference between the validation problem for M&S systems and for 
software designed for control or calculation is that M&S systems have two types of 
validation requirements.  By definition, the M&S system must model and predict 
behavior of some real world entity.  This problem has been called “operational 
validation”.  A second aspect to the validation problem for M&S systems is “conceptual 
model validation”, which is concerned with ensuring that the assumptions underlying the 
conceptual model are correct and that the logic and structure of the model are suitable for 
the model’s intended purpose [Sargent, 1999].  Where formal methods have been applied 
to validation, their use corresponds most closely to the problem of conceptual model 
validation.  Figure 2 shows a view of the modeling process [Sargent, 1999; Stevenson, 
2002], annotated to illustrate the applicability of formal techniques. 
 
Because the conceptual model describes what is to be represented by the simulation, it 
must include assumptions about the system and its environment, equations and 
algorithms, data, and relationships between model entities.  Although algorithms and 
equations are necessarily formal statements, the assumptions and relationships are most 
often described using natural language, which introduces the potential for ambiguities 
and misunderstandings between developers, users, and subject matter experts.  A 
relatively recent trend in formal techniques, often called “lightweight formal methods” 
[Jackson, 2001], has shown a potential for detecting major errors in requirements 
statements, without the expense of a formal design verification, by applying formal 
analysis to earlier products of the system design process.   
 
The basic premise of this approach is to use formal techniques in analyzing the 
assumptions, relationships, and properties of requirements stated in a requirements 
statement or conceptual model.  An advantage of this approach is that it can be applied to 
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formal modeling to a NASA extravehicular activity system.  Using the PVS theorem 
proving tool, the authors were able to model the EVA system and study its properties 
using a model that is essentially executable. Lutz [1997] describes requirements 
validation of onboard fault monitors for a spacecraft.  An interesting aspect of this project 
is that developers were able to reuse the requirements model for a second project that 
evolved from the first in a series of builds.   Janssen et al. [1999] describe the application 
of model checking to the analysis of automated business processes, such as insurance 
claim processing.  The formal model is used to ensure that processes maintain desired 
properties, such as ensuring that the proper sequence of processing is maintained, that 
two mutually exclusive outcomes are prevented by the system, or that particular events 
always lead to the correct outcome.  The formal analysis helps to prevent unexpected 
failures that can occur in large distributed systems where processes occur with partial 
human intervention. By modeling processes at the requirements stage, developers can 
identify problems that might require major rework if not detected until the system is built 
and tested. 
 
 
3 Formal Methods in Real World V&V 
 
To provide a better understanding of the use of formal methods in practice, this section 
surveys the use of formal techniques across a wide range of applications.   Two excellent 
surveys of industrial applications of formal methods are Craigen, Gerhart and Ralston 
[1993], and Clarke and Wing [1996].   This section presents primarily recent work not 
described in these earlier surveys. 
 
 
3.1 Examples From Aerospace Software Safety 
 
As one of the few ways to attack the problem of ensuring that software does not produce 
undesirable results, formal methods have a natural application in safety-critical areas such 
as commercial aviation.  This section describes the current work being pursued by the 
formal methods team at NASA Langley Research Center, which leads NASA initiatives 
in aviation safety. These project descriptions highlight participants, basic objectives of 
the work, and difficulties and challenges associated with this work.   
 
Aviation Safety Program (AvSP) 

(http://www.aero-space.nasa.gov/goals/safety.htm) 
 
The Aviation Safety Program supports the practical application of formal methods to 
improve safety in commercial aviation.  Among these are cooperative agreements with: 
 

• Rockwell Collins Advanced Technology Center - to develop extensions to 
existing methods and commercial off-the-shelf tools that enable (1) requirements 
modeling and analysis, (2) safety analysis and partitioning, (3) mode confusion 
detection, and (4) auto-generation of code.   The project is seeking to develop an 
automatic translator from RSML-e to PVS that can be used to verify safety 
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properties and absence of features that have historically lead to mode confusion in 
flight guidance systems and flight management systems. 
 

• Honeywell Engines and Systems - to develop a fault-tolerant integrated modular 
avionics architecture for a Full Authority Digital Engine Control (FADEC).  This 
architecture is based on the Time Triggered Architecture (TTA) that has been 
developed over the past fifteen years at Vienna University of Technology.  The 
challenge of this work is to develop formal proofs of the TTA architecture and to 
establish a basis for certification based on formal proof. 
 

• Barron Associates/Goodrich - to develop formal verification methods that can 
serve as a basis for certifying non-adaptive neural nets. The goal is to develop 
methods and tools to guarantee that the neural net output will be bounded 
throughout its operating regime (with respect to look-up tables that they replace.)  
Barron/Goodrich are working with the FAA to get their tools and methods 
qualified as a method for certifying neural nets.  This work is not addressing 
closed-loop behavior/stability of a NN within a controller 
 

• Grant with the University of Virginia to develop tools that facilitate the 
integration of formal verification methods into the software development lifecycle 
within an aerospace company using a combination of natural language and formal 
languages.  

 
Information Technology Strategic Research Program (ITSR) 

(http://www.nas.nasa.gov/IT/) 
 

This project supports both external and in-house research, including:  
• Cooperative agreement with Honeywell Technology Center (Minneapolis) 

and SRI International to develop and apply formal methods technology to DEOS, 
a partitioning real-time operating system used in the Honeywell’s Primus Epic 
Flight deck that is being developed to DO-178B Level A certification standards.  
The Digital Engine Operating System™ supports time & space partitioning, 
dynamic thread creation, and slack reclamation.  The task execution budgets are 
managed using rate monotonic scheduling.   Earlier versions of DEOS did not 
support slack-time reclamation (i.e. when a task completes before its deadline, the 
re-allocation of this time to other tasks).  The SPIN model checker was used to 
successfully analyze the system.  However, the slack-time reclamation led to an 
enormous increase in the size of the state-space, far beyond the reaches of SPIN.  
Current work is focusing on the use of theorem proving to attack the large state 
space. 
 

• Inhouse work to develop efficient means for reasoning about non-linear algebraic 
formulas in the PVS theorem prover.  Previously when the PVS user encountered 
propositions that contained non-linear algebraic terms, he was forced to directly 
invoke the field axioms of the reals or related lemmas.  The PVS strategy 
mechanism is being exploited to develop commands the mimic the way reasoning 
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was actually done in high-school algebra.  Commands include DIV-BY, MULT-
BY, FACTOR, CROSS-MULT, and others. 

 
Aerospace Vehicle Systems Technology Program (AVST)  

(http://www.aero-space.nasa.gov/programs/vst.htm) 
 

This project is investigating the use of formal methods in certification, including: 
 

• SPIDER: Scalable Processor-Independent Design for Electromagnetic Resilience.  
Inhouse project to  (1) Develop fault-tolerant computer architecture in accordance 
with RTCA SC-180 (DO-254) guidelines, (2) demonstrate the feasibility of 
formal methods as means of certification, (3) develop training materials for FAA, 
and (4) provide advanced fault-tolerant computer architecture platform for 
inhouse analysis and experimentation.  The SPIDER architecture provides a fault-
tolerance middleware for critical applications.  It is based upon three key 
protocols: fault-tolerant clock synchronization, group membership, and interactive 
consistency.  These protocols are mutually dependent and pose difficult 
challenges to the formal analyst.  A working prototype is resident at NASA 
Langley.  The formal verification of the key protocols in PVS is near completion.  
Future work will focus on the design and verification of a real-time operating 
system for SPIDER. 
 

• Contract with Odyssey Research Associates to develop model checking 
approaches to real-time system analysis.   The work centers around a subset of 
Ada called the Ravenscar profile.  The goal is to develop rigorous methods for 
assuring that Ada programs written in this Ada subset meet all of its timing 
requirements. 

 
Engineering of Complex Systems (ECS) Program  
 
Within this program, SafeWare is extending capabilities of SpecTRM-RL with expanded 
visualizations (both static and dynamic) of SpecTRM models and increase the analysis 
capabilities of SpecTRM with model checking and theorem proving.  The enhanced tools 
will be demonstrate by application to Space Station rendezvous and docking 
 
SRI International is applying formal methods to Mathworks tools. In principle one would 
like to model check the Stateflow diagrams which are at the heart of a Simulink design, 
but it is impossible establish anything useful without some knowledge of the constraints 
imposed by the differential equations in the other blocks.  The SRI approach is to 
automatically construct sound discrete abstractions of the differential equations using 
automated theorem proving over the reals.  A new decision procedure called QEPCAD, 
which performs quantifier elimination using cylindrical algebraic decomposition is used 
to find the sign-invariant regions.  The end result is a completely discrete system you can 
model check.  
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Advanced Air Transportation Technologies Program (AATT) 
   (http://www.asc.nasa.gov/aatt/)   
 
This is a project to develop formal methods to analyze conflict detection algorithms used 
for future free flight concepts and self-spacing and merging algorithms needed in the 
terminal area.  Air Traffic Management algorithms are difficult to analyze because they 
are inherently hybrid, i.e. discrete logic is used to control the trajectories of aircraft in 
3D-space.  Automatic methods such as model checking cannot directly handle the 
continuous trajectories, and discretization leads to unacceptable errors.   
 
Small Aircraft Transportation System (SATS) (http://sats.nasa.gov/) 
 
This is a project to develop and formally verify algorithms that can generate arrival 
trajectories for SATS-configured small aircraft for regional airports that do not have 
towered ATC services. 
 
 
3.2 Examples from Computer Security and Electronic Commerce 
 
The earliest uses of formal methods were in computer security.  One of the best-known 
examples was the 1973 Provably Secure Operating System (PSOS) [Neumann et al., 
1980] project, which used a layered architecture with formal proofs of the properties of 
each layer and the relationship between layers.  Tools, methods, and even sophisticated 
logics have been designed specifically for security applications.  This section describes 
some of the more recent uses of formal methods in computer security. 
 
Model based intrusion detection.  One of the most challenging problems in computer 
security is intrusion detection in networks.  Most commercial intrusion detection systems 
use a “signature based” approach, which scans network traffic for recognizable segments 
or hashes of known malicious software (e.g., viruses).  The inherent limitation of this 
approach is that it cannot detect novel attacks for which no signature exists.  A number of 
experimental intrusion detection systems attempt to solve this problem by defining a 
formal model of expected system behavior, then checking network traffic for message 
sequences that deviate from normal.   
 
Access control policy composition.  Although formal methods have been applied to 
analyzing access control policies for more than 30 years, early efforts assumed a single, 
monolithic system.  During the past two decades, a need for analyzing compositions of 
security policies has been recognized, due to the demands of distributed systems, “virtual 
enterprise” joint ventures in commerce, and coalition security in military systems.  
Bonatti, Vimercati, and Samarati [Bonatti et al, 2000] describe an approach to analyzing 
compositions of complex, independent access control policies.  Security policy 
statements are translated into logic programs, which can then be executed to analyze the 
effects of policy composition. 
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Mondex electronic cash system.  In the early 1990s, the National Westminster Bank in 
the United Kingdom initiated development of a smartcard based electronic cash system 
[Stepney, 2001].  With this system, customers would be able to store monetary amounts 
on smartcards, and spend the stored electronic cash without any third-party approval or 
authentication.  Because of the risk involved in this design, the company committed to 
having the system evaluated to the ITSEC E6 level, the highest level included in the 
European ITSEC standard.  E6 certification requires proof of correspondence between a 
high level abstract security policy and lower level design.   The Z notation was used to 
develop 80 pages of formal specifications, with machine assisted proofs of approximately 
200 pages.  Mondex became the first product to achieve the E6 level certification, and is 
being successfully marketed. 
 
Secure Electronic Transaction Protocols – SET [Visa, 1997] is a very large collection 
of protocols designed by Visa and MasterCard to protect the confidentiality and 
authenticity of electronic commerce transactions.   Many parts, though not all, of the SET 
specification have been subjected to formal verification, revealing several vulnerabilities 
[Meadows and Syverson, 1998], [Bella et al., 2000], [Bella, Massaci, Paulson, 2001].  
 
Multimedia Messaging System on a Private Branch Exchange – Formal description 
techniques were used to specify the system and derive test cases for the operations, 
Administration and Maintenance software of the messaging system [Wong and Chechik, 
2001].  Errors were detected in the requirements, the development cycle was shortened, 
and software quality improved.  The authors recorded time spent on formal techniques, 
concluding that the application of these methods is cost effective if a “light-weight” 
approach is used, i.e., formalizing specifications with some automated support, but not 
necessarily proving properties of the system.  
 
Universal Electronic Payment System – The UEPS was designed to be implemented 
using smart cards to store funds, for use in developing countries without significant 
banking infrastructure.  The formal verification showed the protocol to be sound, and no 
losses due to fraud were encountered in operation [Anderson, 1997]. 
 
ANSI X9.17 Message Authentication Protocol – The X9.17 standard was designed to 
provide authentication of the origin of financial transactions.  The formal verification 
revealed a specification ambiguity that could lead to a vulnerability, depending on how it 
was interpreted by developers [Kuhn and Dray, 1990]. 
 
 
4 Formal Techniques from Specification through Testing Phases  
 
Formal methods can be used effectively at all stages of software development, from 
initial design and specification through testing and assurance.  This section describes a 
well-known methodology for formally specifying and analyzing real-time and control 
software, the SCR model [Faulk & Clements, 1987].  The name “SCR” is an acronym for 
“Software Cost Reduction”, which was the US Naval Research Laboratory project under 
which the methodology was first developed.  SCR uses a state machine formalism, with 
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tables defining the state transitions and outputs for all possible inputs and events.  It is 
particularly useful for embedded software such as that used in largely event-driven 
devices such as computer peripherals, various weapons systems, or automated teller 
machines.  SCR also lends itself well to automated generation of test cases, thus spanning 
the software development process.  In this section we describe the methodology, how it 
can be used in verification, and how tests can be generated from SCR specifications. 
 
4.1 SCR Modeling, Consistency Checking & Simulation 
 
In the SCR formal model, the behavior of a software system is modeled by first 
identifying all outputs that the software must produce, and then expressing the value of 
each output as a mathematical function of state and history of the environment. SCR uses 
a special tabular notation to represent these functions precisely and compactly. A 
function is made up of variables and a particular type of functional construct. SCR uses 
two main types of variables – output or controlled variables and input or monitored 
variables.  Since a specification for a complex real-world system may involve many 
monitored and controlled variables, the SCR uses two other additional types of variables 
– the terms and mode classes to facilitate ease of modeling and representation. A term is 
an auxiliary variable (that may be a combination of monitored variables or other terms 
used for simplifying the model or for representing some intermediate concepts). A term 
thus helps keep the specification concise. A mode class is a special case of a term whose 
values are modes. A mode stands for an equivalence class of system states useful in 
specifying the required system behavior. 

 
As regards functional constructs, the two most important constructs used in SCR are 
conditions and events. A condition is defined as a predicate defined on one or more state 
variables (a state variable is a monitored or controlled variable, a mode class or a term). 
A condition in SCR is thus a predicate on a single system state. An event is said to occur 
when a state variable changes value. An event in SCR is thus a predicate on two system 
states that is true if the states differ in the value of at least one state variable. Since a 
condition represents a predicate using state variables in a given state, an event is most 
often represented using conditions (instead of state variables directly), and represent 
situations where the value of conditions change from true to false or vice versa. The 
tables that are used in SCR to represent conditions, events and mode transitions are called 
Condition Function Tables, Event Function Tables and Mode Transition Tables 
respectively. More specifically mode transition tables provide a list of valid states 
(modes) and the events that result in transition from one given state to another. 
After an SCR specification is developed it has to be first checked for model-related (as 
opposed to domain or application-related) errors. Hence the SCR modeling tool 
[Heitmeyer et al, 1998] provides a consistency checker that exposes syntax and type 
errors, variable name discrepancies (or duplicates), missing cases, disjointness (which 
may result in nondeterminism), ambiguity and circular definitions. 
 
Next an SCR specification has to be checked for domain or application-related errors. For 
this purpose the SCR modeling tool provides a simulator to symbolically execute the 
specification to validate it using the following approaches: 
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(a) The specification verifier may run scenarios (a scenario is a list of monitored or 
input variable name and value pairs which describes a sequence of input events) 
and let the simulator describe the outcome of the specification by displaying the 
values of dependent variables (e.g. controlled variables, mode classes, and terms). 
The outcome can then be analyzed to ensure that the specification captures the 
intended behavior. 

(b) In addition, the specification verifier can define application properties believed to 
be true of the required behavior and, using simulation, execute a series of 
scenarios to determine if any violate the properties. More specifically the SCR 
tool provides a mechanism to define statements (called assertions) describing 
what must be true of any state, or what must be true of any two consecutive states. 
These assertions are stored by the SCR tool in an Assertion Dictionary. During 
execution, the Simulator will determine whether assertions in the Assertion 
Dictionary are violated and report the violations through log files. 

 
4.2 Detailed Case Study 
 
Independent Security Functional Testing on a commercial software product is very rarely 
performed in traditional security evaluations except in cases of high-assurance products 
used in mission-critical applications. The reasons for this scenario are the high cost (not 
sufficient number of evaluations to recover the initial investment) and technical 
complexity (development of proper specifications and satisfaction of test coverage 
requirements). In this case study we outline an approach and an associated toolkit that 
NIST has funded to develop, that has the potential to improve the economics of security 
functional testing as well as meet the technical requirements. 
 
We have organized our presentation of the case study as follows. In section 4.2.1 we 
discuss the characteristics of security functional testing and contrast this type of testing 
with the other type of security testing – i.e. the security vulnerability testing.  Section 
4.2.2 provides a road map of the approach we have used for security functional testing 
and the tools used in the various phases of the approach. Sections X.44.2.3 through 4.2.7 
describe in detail each of the processing steps in our approach with particular emphasis 
on the security function modeling and test vector generation aspects. The processing 
steps are explained with respect to an application involving security functional testing of 
a commercial DBMS product (Oracle 8.0.5). Section 4.2.8 outlines the major lessons 
learnt. 
 

4.2.1 Characteristics of Security Functional Testing 
 
There are subtle differences between traditional software conformance testing and 
security testing in general, in terms of purpose, scope, emphasis, error implications and 
strategy [Jansen, 1998].  The main purpose of software conformance testing is 
verification of correctness of implementation with respect to specifications. The market 
largely determines the effectiveness of the implementation. However security testing is 
concerned with both correctness and effectiveness since measures of effectiveness like 
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strength of functions and robustness are very much an integral part of any security 
specifications. In traditional conformance testing, the emphasis is on testing the 
implementation for conformance to functional specifications while in security testing the 
product must be tested not only for conformance to security function specifications but 
also for compliance with mandatory features of the underlying security model. For 
example testing an access control function in a DBMS product will involve not only 
verification of specified behavior (correct access denials and clearances for a particular 
user) but also conformance to the underlying Discretionary Access Control Model (DAC) 
that provides the logic governing denials and clearances depending upon certain user 
attributes and state variables. In traditional conformance testing, verification using test 
cases that satisfy some statistical coverage measures can provide the assurance that 
certain defects will seldom occur. However in security testing, complete test coverage is 
required since obscure flaws can be exploited individually and collectively to subvert the 
behavior of other correctly implemented functions. The requirement for complete 
coverage therefore results in the number of test cases for security testing being order of 
magnitude much more than for traditional conformance testing. 
 
Security Testing itself can be generally classified as security functional testing and 
security vulnerability testing.  Security functional testing involves testing the product or 
implementation for conformance to the security function specifications as well as for the 
underlying security model. The conformance criteria state the conditions necessary for 
the product to exhibit the desired security behavior or satisfy a security property. In other 
words security functional testing involves what the product should do. Security 
vulnerability testing on the other hand is concerned with identification of flaws in 
design or implementation that may be exploited to subvert the security behavior which 
has been made possible by the correct implementation of the security functions. In other 
words security vulnerability testing involves testing the product for what it should not do. 
  

4.2.2 Roadmap of Approach to Verification and Functional Testing 
 
Our approach to Security Functional Testing makes use of suitable tools to accomplish 
the following objectives: 

 
(a) Develop a machine-readable formal specification of security functions of a 

product. 
(b) Automatically generate test vectors and executable test code using the machine-

readable specification of security functions.  
Based on the above objectives it should be clear that ours is an automated approach to 
security functional testing. The underlying framework of our approach is called the Test 
Automation Framework (TAF) [Safford, 2000]. Hence we named our toolkit TAF-SFT 
(Test Automation Framework-Security Functional Testing). The activities performed in 
each of the process steps using TAF-SFT and the associated tool module involved is 
given below:  
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(a) Step1 – Develop a machine-readable specification of the various security 
functions of the product under test using the formal model SCR (language) - 
model development tool TTM. 

(b) Step 2 – Validate the SCR security specification model by verifying certain 
application-independent properties – TTM tool. 

(c) Step 3 – Generate test vectors using the SCR security specification model. 
This may require some transformation of the model into a form amenable for 
test vector generation – T-VEC test generation tool. 

(d) Step 4 – Generate the following artifacts to augment the SCR security 
specification model (transformed) with the following information – A Text 
editor: 

(i) Information about interfaces involved in establishing communication 
with the product and extracting its information contents (APIs). 

(ii) AA general strategy for exercising the product with actual tests using the 
generated test vectors 

(e) Step 5 – Generate executable test code (called test driver) using the validated 
(and transformed if need be) SCR security specification model and the artifacts 
developed in Step 4 – T-VEC test driver generator tool. 

(f) Step 6 - Execute the tests against the product, compare expected and actual 
outputs and generate a test report – T-VEC test comparison tool. 

Details of the above process steps in the context of security functional testing for a 
commercial DBMS product (Oracle version 8.0.5) are discussed in the following 
sections. The process flow diagram of the TAF-SFT toolkit application for security 
functional testing of  Oracle version 8.0.5 is given in Figure 4.1. 
 

4.2.3 Develop a machine-readable specification of security functions 
 
For our case study involving testing the security functions of a DBMS product, we 
obtained the text-based specification of the security functions for Oracle 8.0.5 from the 
Oracle 8.0.5 Security Target (ST) Document [Oracle, 2000]. The Security Target is a 
structured specification of security functional requirements as well as specification of 
security functions that meet those requirements expressed using pre-defined catalog of 
requirements and function representations in the international security criteria ISO/IS 
15408 [ISO/IS 15408, 2000]. The next step after obtaining the text-based security 
functions specifications is to develop an SCR model of these specifications. The 
specification for a security function that stipulates the conditions under which an Oracle 
database user can grant an object privilege to another user as stated in the Oracle ST 
document is: 
 
Granting Object Privilege Capability (GOP) - A normal user (the grantor) can grant an 
object privilege to another user, role or PUBLIC (the grantee) only if: 
GOP (a): the grantor is the owner of the object ; or 
GOP(b): the grantor has been granted the object privilege with the GRANT OPTION. 

A role represents a group of privileges associated with a business process. The 
keyword PUBLIC represents all users.Recall that the formulation of an SCR model 
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requires the identification of variables. The various variables identified for modeling the 
GOP security function are: 

(a) Monitored Variables (input variable) - grantor, grantee, selectedObj, 
selectedObjPriv, granteeType, grantedObj, grantedObjPriv 

(b) Controlled Variable (output variable) – grant_obj_priv_OK – A Boolean variable 
that will have the value TRUE when the conditions for ‘granting objective 
privilege’ by one user to another are satisfied. 

 
In addition to the above variables, we need two term variables to complete the GOP 
function specification in SCR. They are: (a) grantor_owns_object  (to incorporate the 
conditions that affirm the fact that the grantor is the owner of the selected object – the 
requirement GOP(a) ) and (b) has_grantable_obj_privs (to incorporate the conditions that 
affirms that the grantor hold the privilege in question for the selected object with the 
ability to propagate (GRANT OPTION) – the requirement GOP(b) ). Expressing the 
conditions that affirm the truth-values for the above discussed term variables in SCR 
notation we get: 
 
grantor_owns_object – TRUE when grantor = selectedObjOwner   (4.2.1) 
 
has_grantable_obj_privs – TRUE when 
selectedObj = grantedObj AND selectedObjPriv = grantedObjPriv AND 
GRANT_OPTION            (4.2.2) 
 
Based on our previous discussion, it should be clear that our security functional testing 
involves not only testing the security function specifications, but also the underlying 
model semantics (in this case the Discretionary Access Control (DAC) model)). Clearly 
the DAC model semantics in our case is that the object owner and the holder of the 
privilege (with GRANT option) are two different entities. This DAC model semantic 
constraint should be added to the term condition 4.2.2 above to yield: 
 
has_grantable_obj_privs – TRUE when 
selectedObj = grantedObj AND 
selectedObjPriv = grantedObjPriv AND 
GRANT_OPTION AND 
selectedObjOwner != grantor AND 
selectedObjOwner != grantee       (4.12.2’)’ 
 
Now that the expressions 4.12.1 and 4.12.2’ represents our requirements GOP(a) and 
GOP(b) (along with DAC model semantics), our SCR condition for the entire GOP 
function becomes: 
grant_obj_priv_OK – TRUE when grantor_owns_object OR has_grantable_obj_privs 
          (4.2.3) 

 
Now our SCR specification of the GOP security function fully represents the claimed 
functionality in the Oracle ST document along with DAC model semantics. However we 
have still not incorporated constraints that relate directly to the Oracle DBMS domain. 
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These relate to the fact that the grantee can only be of type user, role or PUBLIC and that 
the object privilege can only be one of UPDATE, DELETE, SELCT, INSERT or ALL 
(as they are the valid privilege modes for objects managed by the DBMS). Hence these 
domain constraints should also be incorporated to complete the GOP function 
specification. The SCR condition tables dealing with the conditions for the term variables 
(4.12.1 and 4.12.2’) as well as for the controlled variable (grant_obj_priv_OK – 4.2.3) 
(including the domain constraints) are given in table 4.1. 

4.2.4 Verification of SCR Security Specification Model 
 

The SCR model development tool TTM provides a consistency checker that checks the 
specification for defects such as type errors, missing cases, circular definitions and other 
application-independent errors. The TTM tool also provides a dependency graph browser 
that provides a graphical display of the dependencies among the variables in the 
specification.  Running the SCR security specification model through these two processes 
helps in developing an internally consistent model and in verifying that all the relevant 
variables have been taken into account. 
 
Table 4.1 – SCR Condition Function Tables for the GOP Security 
Function

DAC
Constraints

Domain 
Constraints

GOP(a)

GOP(b)

Table Name
grantor = selectedObjOwner NOT(grantor = selectedObjOwner)

grantor_owns_object = TRUE FALSE

Condition

Table Name
(GRANT_OPTION 
 AND 
 selectedObjPriv = grantedObjPriv)
AND selectedObj = grantedObj
AND selectedObjOwner != grantor
AND selectedObjOwner != grantee

NOT(GRANT_OPTION 
    AND 
    selectedObjPriv = grantedObjPriv)
AND selectedObj = grantedObj
AND selectedObjOwner != grantor
AND selectedObjOwner != grantee

has_grantable_obj_privs = TRUE FALSE

Condition

Table Name
((grantor_owns_object)
OR
(has_grantable_obj_privs))
AND
(grantor != grantee)
AND
(  granteeType = user
OR (granteeType = role
    AND
    granteeRoleID = valid_roleID)
OR granteeType = PUBLIC) 
AND
(  selectedObjPriv = ALL
OR selectedObjPriv = UPDATE
OR selectedObjPriv = SELECT
OR selectedObjPriv = INSERT
OR selectedObjPriv = DELETE)

(NOT(grantor_owns_object))
 AND
(NOT(has_grantable_obj_privs))
AND
(grantor != grantee)
AND
(  granteeType = user
OR (granteeType = role
    AND
    granteeRoleID = valid_roleID)) 
AND
(  selectedObjPriv = ALL
OR selectedObjPriv = UPDATE
OR selectedObjPriv = SELECT
OR selectedObjPriv = INSERT
OR selectedObjPriv = DELETE)

grant_obj_priv_OK = TRUE FALSE

Condition
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4.2.5 Generating Test Vectors From SCR Specification  
 

Our example security function (GOP) specification (in table 4.1) for the Oracle DBMS 
shows that the SCR security specification model is composed of tables of conditions and 
events. Now our next task is to examine as to how this model can be used for generating 
test sequences or test vectors. A test sequence is a sequence of system inputs and their 
associated outputs. In order to obtain such a sequence of inputs, it would be better if the 
security specification model is in the form of input-output relations and a set of 
conditions (or constraints) governing the inputs. The valid sequence of inputs can then be 
obtained based on the constraints on the input variables and the corresponding output 
variables obtained using the input-output relation. In other words we are faced with the 
necessity to convert the SCR security specification model into a security test specification 
model that consists of a set of input-output relations and associated constraints on inputs.  

 
We used the T-VEC model translator tool [Blackburn, Busser, Fontaine, 1997] to obtain a 
security test specification model from the SCR security specification model. More 
specifically, the T-VEC model translator converted our SCR security specification model 
into what is known as T-VEC linear form. The T-VEC linear form consists of a set of 
input-output relations (called the functional relationships) and a set of constraints  (called 
relevance predicates) on the inputs associated with a given functional relationship. 
Processing our SCR model for  ‘ Granting Object Privilege Capability’ (GOP security 
function) through the T-VEC model translator tool we obtained the following functional 
relationship (input-output relation). 
 
((grantor_owns_object) OR (has_grantable_obj_privs)) AND  
<domain_constraints>   grant_obj_priv_OK     (4.2.4) 
 
The next item we obtained from the T-VEC translator tool is the relevance predicates. 
Recall that the relevance predicate groups together all the constraints associated with 
input values and are expressed in the form of disjunctions of conjunctions and that each 
component in the expression (i.e. a conjunction) is called the Domain Convergence Path 
(DCP). In the GOP security function specification context, each DCP should therefore 
contain either the component GOP(a) or GOP(b) in table 4.1 along with each of the 
possible value associations given in the domain constraints. A few examples of DCPs 
are: 
 
(grantor_owns_object) AND (grantee=’user’) AND  
(selectedObjPriv = ‘UPDATE’)                              (4.2.5) 
(has_grantable_obj_privs) AND (grantee=’PUBLIC’)  
AND (selectedObjPriv = ‘SELECT’)               (4.2.6) 
 
Having obtained a transformed security specification model that consists of input-output 
relations and relevance predicates, the next step is to obtain test vectors (test sequences) 
using these specifications. We used the T-VEC test generator tool  [Blackburn, Busser, 
Fontaine, 1997] to accomplish this task. Recall that the relevance predicates are 
constraints on the input variables space and hence a valid input sequence is nothing but a 
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set of input variables values that satisfies the relevance predicates. However since the 
relevance predicates are in the form of disjunctions of conjunctions (each set of 
conjunctions is called the DCP), a valid input sequence is one that satisfies at least one 
DCP. In other words each DCP forms an equivalence class when we categorize all 
possible set of input sequences. It is this property that is used by our test vector generator 
to generate test sequences. Since a test sequence (or test vector) is nothing but an input 
sequence with its associated outputs, our test vector generator generates at least one test 
sequence for each DCP (since a DCP forms an equivalent class) and thus obtains the 
coverage of the input space. 

 
The test vector generation process described above also helps to verify the satisfaction of 
a given specification. Since the entire specification is nothing but a disjunction of DCPs, 
the specification as a whole is satisfiable if at least one test vector exists for each DCP.  
Therere may existbes input variables in the input-output relation that are not constrained 
by relevance predicates. The test vector generator also generates additional test points by 
incorporating boundary value combinations from these unconstrained inputs (e.g. low 
bound and high bound for numeric objects, sets for enumerated variable). The 
incorporation of these additional test points helps to prove that unconstrained inputs do 
not the affect the expected value of the input-output relation. 
 
However the presence of a test vector for each DCP is no guarantee that collectively the 
set of test vectors are sufficient to verify all the path conditions for a functional 
relationship. This scenario may result if contradictions exist among DCPs.  Hence in 
order to ensure that this situation is not present in our specification, we used  the T-VEC 
coverage analyzer tool to detect these contradictions and ensure that the test vectors 
provide the intended coverage. 

 
In fact we can compute the total number of test vectors for testing our GOP security 
function, by calculating the number of DCPs in the relevance predicate and the fact that 
the test vector generator will generate at least one test vector for a DCP. Since a DCP is 
one disjunction, each of the OR s in our SCR condition function table 4.1 should 
participate in a DCP. Since the conditions GOP(a) and GOP(b) are connected with OR, 
each should give rise to a different DCP. On examining the domain constraints we find 
that there are three OR s for the expressions involving input variable ‘grantee’ (three 
possible values for grantee) and five OR s for the expressions involving the input 
variable ‘selectedObjPriv’ (five possible values for selectedObjPriv). Hence the total 
number of disjunctions or DCPs we will obtain will equal 2*3*5 = 30. There should 
therefore be a minimum of thirty test vectors for testing the GOP security function (all 
yielding the value TRUE for the controlled variable grant_obj_priv_OK). Including the 
test cases for grant_obj_priv_OK being FALSE (by negating at least one predicate in 
each DCP) and additional test points derived from boundary value combinations of 
unconstrained input variables like grantor, grantee, grantee_ roleID, the test vector 
generator generated about 80 test vectors for testing the GOP security function. The test 
vectors are shown in table 4.2. 
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4.2.6 Develop Additional artifacts for Test Driver generation 
 

We now have the translated SCR model containing the security function specification of 
security functions and the associated test vectors. These two documents by themselves do 
not provide sufficient information to the test driver to generate executable test code in a 
procedural language. We do need to provide the test driver generator the knowledge of 
the product’s interface API (that pertains to the test code language) and any other relevant 
APIs needed for extraction of information pertaining to the product’s state. This is 
exactly the information that is provided by the ‘Object Mapping’ file. More specifically, 
the ‘Object mapping file’ provides the mapping between the behavioral model variables 
and the interface elements needed to set, retrieve or evaluate the values of those model 
variables. The combination of the behavioral model and the object mapping information 
is called the ‘verification model’ since it represents the complete specification required 
for carrying out the product’s functional verification process. 

 
Table 4.2 – Test Vectors generated for testing the GOP Security Function 

 

77 39 FALSE 1 2 role 1 1 INSERT 3 FALSE ALL 1 1
78 39 FALSE 4 3 role 2 2 INSERT 2 FALSE SELECT 4 4
79 40 FALSE 1 2 role 1 1 DELETE 3 FALSE ALL 1 1
80 40 FALSE 4 3 role 2 2 DELETE 2 FALSE SELECT 4 4

# TSP
grant_obj
_priv_OK grantor grantee

grantee
Type

grantee
RoleID valid_roleID

selected
ObjPriv objOwner

GRANT_
OPTION

granted
ObjPriv

selected
Obj

granted
Obj

1 1 TRUE 1 2 user 2 2 ALL 1 TRUE ALL 4 4
2 1 TRUE 4 3 user 1 1 ALL 4 FALSE SELECT 1 1
3 2 TRUE 1 2 user 2 2 UPDATE 1 TRUE ALL 4 4
4 2 TRUE 4 3 user 1 1 UPDATE 4 FALSE SELECT 1 1
5 3 TRUE 1 2 user 2 2 SELECT 1 TRUE ALL 4 4
6 3 TRUE 4 3 user 1 1 SELECT 4 FALSE SELECT 1 1
7 4 TRUE 1 2 user 2 2 INSERT 1 TRUE ALL 4 4
8 4 TRUE 4 3 user 1 1 INSERT 4 FALSE SELECT 1 1
9 5 TRUE 1 2 user 2 2 DELETE 1 TRUE ALL 4 4

10 5 TRUE 4 3 user 1 1 DELETE 4 FALSE SELECT 1 1

. . .
77 39 FALSE 1 2 role 1 1 INSERT 3 FALSE ALL 1 1
78 39 FALSE 4 3 role 2 2 INSERT 2 FALSE SELECT 4 4
79 40 FALSE 1 2 role 1 1 DELETE 3 FALSE ALL 1 1
80 40 FALSE 4 3 role 2 2 DELETE 2 FALSE SELECT 4 4

# TSP
grant_obj
_priv_OK grantor grantee

grantee
Type

grantee
RoleID valid_roleID

selected
ObjPriv objOwner

GRANT_
OPTION

granted
ObjPriv

selected
Obj

granted
Obj

1 1 TRUE 1 2 user 2 2 ALL 1 TRUE ALL 4 4
2 1 TRUE 4 3 user 1 1 ALL 4 FALSE SELECT 1 1
3 2 TRUE 1 2 user 2 2 UPDATE 1 TRUE ALL 4 4
4 2 TRUE 4 3 user 1 1 UPDATE 4 FALSE SELECT 1 1
5 3 TRUE 1 2 user 2 2 SELECT 1 TRUE ALL 4 4
6 3 TRUE 4 3 user 1 1 SELECT 4 FALSE SELECT 1 1
7 4 TRUE 1 2 user 2 2 INSERT 1 TRUE ALL 4 4
8 4 TRUE 4 3 user 1 1 INSERT 4 FALSE SELECT 1 1
9 5 TRUE 1 2 user 2 2 DELETE 1 TRUE ALL 4 4

10 5 TRUE 4 3 user 1 1 DELETE 4 FALSE SELECT 1 1

. . .

 
 
The last but not the least important piece of information that the test driver generator 
needs is the generic sequence of steps needed for executing any test. It is this piece of 
information that is provided in the ‘Test driver Schema’ file. The test driver schema file 
describes the simple algorithmic pattern that is used to load, execute and receive test data 
and other environmental information pertaining to the target test environment. 

 
As far as interface information (for object mapping file) for our DBMS product is 
concerned, we need the following: 

(a)  knowledge of the Java APIs to interface with Oracle DBMS  
(b)  knowledge of the structure of the data stores that contain the security state 

information (Data Dictionary tables) 
(c) knowledge of Content extraction API needed to extract and verify information 

from those data stores.  
Fortunately since Oracle is a relational DBMS, it supports the standardized Java 
Database Connectivity (JDBC) [JDBC, 2000] interface API, and Structured Query 
Language (SQL) [ISO/IEC 9075, 1999] as the content extraction API. 
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Now our test driver for our Oracle DBMS, in order to perform its intended function, has 
to contain Java code that verifies the conditions in our SCR security function 
specification model (using the data from our test vectors) by extracting the security state 
information stored in data dictionary views through the JDBC API library calls and SQL 
commands. In order to generate such a test driver, we need to combine the security 
function specification and test vectors with the interface API, content-extraction API and 
the data dictionary views in Oracle DBMS. In other words we need information that 
maps the model variables in the behavioral specification to the commands in JDBC API 
and SQL API and the data dictionary views against which these commands must be 
executed. It is this mapping information that is specified in our ‘Object Mapping File’. 

 
With the development of the ‘Object Mapping’ file, the SCR behavioral specification and 
the test vectors we have the constituent ingredients of the verification model. The only 
other artifact that we need for the test driver to generate security function tests for the 
Oracle DBMS environment is the ‘Test driver schema’. 

 
As already stated, the test driver schemas are templates containing generic execution 
steps for each of the tests. In a database environment the security state is determined by a 
combination of security data that consists of user attributes, roles (entities that represent 
collection of privileges), database objects (tables, views etc) and privilege assignments to 
users and roles for various database objects. This security data is stored in database 
dictionary tables (also called system tables or database catalogues). The data in these 
tables cannot be created or deleted using the traditional data manipulation SQL 
commands but only through some privileged SQL commands. Hence definition of 
generic execution steps for each of the ‘security function tests’ against the database 
involves a set of these privileged SQL commands to systematically populate the database 
dictionary tables with security state-defining data as well as other relevant data. In other 
words appropriate database conditions must be established prior to the execution of each 
of the ‘security function tests’ by accessing the database as administrative-level system 
user. 
 

4.2.7 Generate test drivers, execute tests and generate test results report  
 

We used the test driver generator tool [Blackburn, Busser, 1996] (from T-VEC) that 
operates on the transformed SCR security specification model, test vectors, object 
mapping information and test execution template definitions (in the test driver schema 
file) to generate the executable test code. In our TAF-SFT toolkit, we configured the test 
driver generator to generate executable test code in Java, though conceptually any 
language generator module can be incorporated within the test driver generator. The test 
driver generator also generates the ‘Expected Outputs’ file whose format is again 
specified in the test driver schema. 

 
The generated test driver code is then executed against the product by incorporation of 
the appropriate run-time libraries (e.g. Java Virtual Machine and Java run-time libraries). 
This process generates the ‘Actual Outputs’ File. The last process in our TAF-SFT 

26 



approach for automated security functional testing is the ‘Cross Comparison’ step that 
compares the expected outputs with the actual outputs to generate the test results report.  
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Figure 4.1 – TAF-SFT Process Steps for security functional testing of a DBMS 
product 

 

4.2.8 Lessons Learned 
 
Our TAF-SFT approach (and an associated toolkit implementation) for automated 
security functional testing addressed the economics aspect of testing (though automated 
test vector, executable test code and test report generation) as well as the quality aspect 
(through a validated formal model of specifications, coverage criterion based test vector 
generation etc). The fact that the approach was scalable was established by using the 
TAF-SFT toolkit for developing and conducting security functional tests for a large, 
complex commercial DBMS product.  

 
The major disadvantages of our approach are the detailed knowledge of the security 
function semantics required on the part of the modeler to develop good behavioral 
models and the complexity of object mapping information that may result in case of 
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products with complex interfaces. These disadvantages can be partially overcome in 
situations where the following are possible:  

 
(a) Partial reuse of SCR security behavioral model 
(b) Partial reuse of Object Mapping information 

Since the SCR behavioral model is based on the security function specifications, reuse of 
parts of this model is possible if security function specifications in the different products 
under security testing are based on an interoperable security API like CDSA 
[CDSA,1998]. Partial reuse of Object Mapping information is possible if the different 
products under security testing support a common interface API (like the different 
relational DBMS products supporting the JDBC API and the SQL API). 

 
4.3 Cost and Practicality of Specification Based Test Generation  
 
Test development is typically an enormous expense, often half of total development cost. 
But because of the wide variation in the extent of testing by different developers, and 
variance in testing requirements for different types of software, testing costs can range 
from 30% to 90% of total labor resources [Beizer,1990]. Thus any increases in the 
efficiency of test development can have a significant impact on product cost. 
 
Although not widely used in system assurance, formal verification is an added cost 
beyond system testing.  The cost of formal verification has two components:  
development of a formal system specification, and analysis of the specification against 
requirements.  The analysis may take the form of a computer-assisted proof, or an almost 
fully automated verification through model checking.  Formal verification of this type 
can add 10% - 20% to the system cost 
 
But formal specifications can be used for more than analysis and proof.  Using methods 
we and others have developed, formal specifications can be used to generate complete 
test cases, both input data and expected results.  This can result in a significant reduction 
in the cost of  testing.  Table 4.3 shows system development cost under various 
assumptions: 
 
• Traditional development, testing but no formal verification 
• Development with formal verification 
• Development with formal verification and automated test generation, assuming 

automated generation reduces the cost of test coding by 50%. 
• Development with automated test generation but no formal verification, assuming 

automated generation reduces the cost of test coding by 50%. 
• Development with automated test generation but no formal verification, assuming 

automated generation reduces the cost of test coding by 66%. 
 
To date, most research on automated software testing has focused on structural testing, 
i.e., testing based on execution paths within the code that implements a specified 
function.  However, structural testing is not possible with many systems, as there is no 
access to source code.  An alternative is to use specification-based testing, in which tests 
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are derived from the specification alone.  Faults are inserted into a specification and a 
model checker is used to generate counterexamples that can be post-processed into 
complete test cases.  Experiments show test coverage to be as good or better than hand 
crafted tests. 
 Traditional Formal spec & 

verification 
w/out test 
generation 

Formal spec 
& verification 
w/ test 
generation (a)

Formal 
spec w/ test 
generation 
(b) 

Formal spec 
with test 
generation 
(c) 

Design, code, 
other costs 

50% 50% 50% 50% 50% 

Test 
coding 

30% 30% 15% 15% 10% 

Test 
execution 

20% 20% 20% 20% 20% 

Formal 
specification 

--- 10% 10% 10% 10% 

Formal 
verification 

--- 10% 10% --- --- 

Cost compared 
to traditional 

 120% 105% 95% 90% 

 
Table 4.3.  Estimated Costs of Using Automated Test Generation Under 
Conservative Assumptions 
 
Methods for generating tests from specifications can make formal methods cost effective 
for a much larger class of systems.  Use of formal methods is largely confined to secure 
systems or safety-critical systems, i.e., those systems whose failure can have catastrophic 
cost.  But if the high cost of formal methods can offset the possibly higher cost of test 
development, formal techniques become much more attractive.  The past two decades 
have seen great advances in methods and tools for formal verification.  More effective 
tools can do a great deal to increase the use of formal techniques in industry.  In addition, 
better methods and tools for specification based testing could reduce the cost and increase 
the effectiveness of system testing. 

 
5 Formal Methods and Certification Standards  
  
Is it possible to develop a market for high assurance components for M&S systems?  If 
so, what certification and accreditation schemes are effective, and how can they be used 
to encourage the transfer of high assurance technology into the commercial market?  This 
section provides some lessons learned from the computer security field that can help 
answer these questions.  In particular, we focus on the relationship between government 
assurance standards – which will clearly be required for M&S components used by DoD 
systems – and the commercial market.  Our aim is to identify approaches that work in an 
environment where COTS systems and components are to be incorporated into larger 
systems.  We describe early, unsuccessful, efforts to encourage the industrial use of 
formal methods through assurance standards, and discuss lessons learned.  We also 
describe a current assurance standard that has resulted in the adoption of formal methods 
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by industry; that is, developers are using formal techniques strictly for the marketing 
advantage of obtaining a higher rating under the assurance standard. 
 
5.1 Standards and Technology Transfer 
 
Formal methods have been included in government standards for nearly 20 years.  One of 
the first was the DoD Trusted Computer Security Evaluation Criteria (TCSEC), 
commonly known as the "Orange Book".  The TCSEC defined requirements for 
operating system security, in a series of levels with progressively stronger security 
objectives.  The lower levels provided a minimal level of security, with a correspondingly 
basic degree of assurance.  At the highest levels, B3 and A1, formal methods were 
required.   B3 and A1 systems required the same security features; the key difference 
between them was the degree of formal assurance required. 
 
In the terminology introduced earlier in this paper, B3 systems required a formal 
statement of security requirements, with an informal system specification and an informal 
proof of correspondence between the two.  A1 systems required that both the 
requirements and system specifications be formally defined, and a formal proof of 
correspondence between the two.  To encourage the development of these high assurance 
systems, the National Security Agency sponsored the creation of several high-quality 
verification tools, some of which were forerunners of today’s best-known tools.   
 
The TCSEC was a tremendous success in encouraging research on security and assurance 
methods.  Its multiple evaluation levels gave customers the ability to compare the 
features and assurance of secure systems.  In terms of technology transfer, the TCSEC 
was successful in getting basic security features into the commercial market.  But its 
technology transfer success did not extend to the assurance side of security.  Despite the 
availability of good tools and a recognized need for secure systems, only a handful of A1 
systems were ever produced.  All of these were for government customers, and nearly all 
developed under government contract. Only one A1-rated product is commercially 
available today.   
 
Why was the TCSEC not more successful in promoting the use of formal methods for 
high assurance systems?  An often-cited reason for the paucity of high assurance TCSEC-
rated products is the lengthy evaluation period required  An evaluation often required two 
years or more, making it difficult for developers to get products into the market.  A 
second problem was likely the significantly increased work required to produce an A1 
level product, as compared with the B3 level.  As one developer explained,  
 

Given the functionality of an A1 system and the functionality of a B3 system are 
*identical*, we decided the added documentation/mathematical proofs required 
to attain the A1 evaluation were not worth the extra effort and cost, particularly 
as most users seem willing to take on the added risk of using a B3 to meet what 
would be, according to the Yellow Book matrix, an A1 requirement. [Goertzel, 95] 
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Later standards, informed by the TCSEC experience, have taken somewhat different 
approaches to assurance requirements.  The Information Technology Security Evaluation 
Criteria (ITSEC) is a single uniform standard adopted by the UK, France, Germany, the 
Netherlands and the European Commission.  From an assurance standpoint, the 
significant difference between the ITSEC and the TCSEC is that functionality and 
assurance have been decoupled.  That is, a system with minimal security functions could 
be evaluated to a high assurance level, or a system with extensive features could be 
evaluated at a low assurance level.  A second significant difference from the TCSEC is 
that ITSEC evaluations are done by third-party accredited laboratories.  This framework 
helps to eliminate the evaluation bottleneck that occurs when evaluation resources are not 
sufficient for the volume of products submitted for evaluation.   
 
5.2 Cost and Practicality of Mandating Use of Formal Methods  
 
A test standard that is focused on a particular class of product, and thus more relevant to 
the needs of high assurance M&S components, is FIPS 140-2, Security Requirements for 
Cryptographic Modules.  FIPS 140-2 was defined by NIST for sensitive government 
systems.  FIPS 140-2 specifies requirements for hardware, firmware, and software, 
including the use of formal methods at all levels.  Like the ITSEC, the FIPS 140-2 
framework uses third-party laboratories to test modules according to requirements of the 
standard.  To date, more than 250 products from over 40 vendors have been tested by 
accredited labs.  The number of testing labs has grown from three in 1995 to six, as 
demand has increased.  Products include radios, telephones, cryptographic co-processors, 
PDAs, smart cards, routers, toolkits, accelerators, and postal systems.   
 
Despite the variety of these products, all share some common requirements in their 
cryptographic functions, making it possible to provide greater specificity in evaluation 
requirements than is possible for other standards, like the ITSEC, that must be 
sufficiently broad to cover the range of IT products.  For example, specific V&V 
requirements can be established for features that all cryptographic modules must have, 
such as operator authentication, random number generation, key management and 
storage, and key zeroization.   The FIPS 140-2 experience may thus have some lessons 
for assurance of M&S components.  As noted by Balci, Nance, and Arthur [2002], 
software tools designed specifically for VV&A of M&S system features such as 
experimental design or random variate generation are likely to be more effective than 
general-purpose V&V tools.  Similarly, certification requirements specific to particular 
types features have advantages for the inclusion of formal methods in V&V, as 
demonstrated by experience with FIPS 140-2. 
 
Formal methods have been incorporated into all four levels of FIPS 140-1 assurance.  At 
levels 1 – 3, a basic formal specification of the system, in the form of a finite state 
machine model, is required (a portion of these requirements can be seen in Figure 5.1).   
Notice that even this basic level of formal specification is more rigorous than 
specifications for most software.   Properly constructed, the finite state machine transition 
table, with state transition conditions, expected inputs and outputs, should provide 
sufficient detail for a test generation tool such as that described in Section 4. 
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Figure 5.1.  FIPS 140-1  Level 1-3 Formal Methods Requirements 
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The operation of a cryptographic module shall be specified using a finite state model (or 
equivalent) represented by a state transition diagram and/or a state transition table.  
 
 Documentation shall include a representation of the finite state model (or equivalent) using a 
state transition diagram and/or state transition table that shall specify: 

• all operational and error states of a cryptographic module, 
• the corresponding transitions from one state to another, 
• the input events, including data inputs and control inputs, that cause transitions from 

one state to another, and 
• the output events, including internal module conditions, data outputs, and status 

outputs resulting from transitions from one state to another. 
 

A cryptographic module shall include the following operational and error states:
 

• Power on/off states. States for primary, secondary, or backup power. These states may 
distinguish between power sources being applied to a cryptographic module. 

• Crypto officer states. States in which the crypto officer services are performed (e.g., 
cryptographic initialization and key management). 

• Key/CSP entry states. States for entering cryptographic keys and CSPs into the 
cryptographic module. 

• User states. States in which authorized users obtain security services, perform 
cryptographic operations, or perform other Approved or non-Approved functions. 

• Self-test states. States in which the cryptographic module is performing self-tests. 
• Error states. States when the cryptographic module has encountered an error (e.g., 

failed a self-test or attempted to encrypt when missing operational keys or CSPs). 
Error states may include "hard" errors that indicate an equipment malfunction and that 
may require maintenance, service or repair of the cryptographic module, or 
recoverable "soft" errors that may require initialization or resetting of the module. 
Recovery from error states shall be possible except for those caused by hard errors 
that require maintenance, service, or repair of the cryptographic module. 

 
A cryptographic module may contain other states including, but not limited to, the following: 

• Bypass states. States in which a bypass capability is activated and services are 
provided without cryptographic processing (e.g., transferring plaintext through the 
cryptographic module). 

• Maintenance states. States for maintaining and servicing a cryptographic module, 
including physical and logical maintenance testing. If a cryptographic module 
contains a maintenance role, then a maintenance state shall be included. 

 

 140-2 provides four levels of assurance, with increasingly stringent requirements 
oth hardware and software.  As with other security standards, the use of multiple 
ls of assurance is designed to provide developers and purchasers with a metric that 
e used to compare products.  Those products that achieve higher ratings on the 
ard can be expected to provide better security, and therefore be more attractive to 
mers.   
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Level 4 adopts a much stronger requirement, which might be described as “modified 
A1”, to adopt the TCSEC terminology.  Table 5.1 summarizes key differences between 
these requirements and the TCSEC A1 and B3 levels.   
 

 A1 B3 FIPS 140-2 
Requirements Statement Formal Formal Formal 
System Specification Formal Informal Formal 
Spec to Requirements Proof Formal Informal Informal 

 
Table 5.1.  Comparison of TCSEC and Level 4 FIPS 140-2 Requirements 

 
Rather than require a formal, machine checked, proof of correspondence between 
requirements and system specification, FIPS 140-2 level 4 requires an informal proof that 
is sufficiently detailed to convince the tester.  Figure 5.2 shows major requirements for 
Level 4. 
 

Figure 5.2  FIPS 140-1 Level 4 Formal Methods Requirements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

In addition to the requirements for Security Levels 1, 2, and 3, the following requirements shall 
apply to cryptographic modules for Security Level 4. 
 

• Documentation shall specify a formal model that describes the rules and characteristics 
of the cryptographic module security policy. The formal model shall be specified using 
a formal specification language that is a rigorous notation based on established 
mathematics, such as first order logic or set theory. 

• Documentation shall specify a rationale that demonstrates the consistency and 
completeness of the formal model with respect to the cryptographic module security 
policy. 

• Documentation shall specify an informal proof of the correspondence between the 
formal model and the functional specification. 

• For each cryptographic module hardware, software, and firmware component, the 
source code shall be annotated with comments that specify (1) the preconditions 
required upon entry into the module component, function, or procedure in order to 
execute correctly and (2) the postconditions expected to be true when execution of the 
module component, function, or procedure is complete. The preconditions and 
postconditions may be specified using any notation that is sufficiently detailed to 
completely and unambiguously explain the behavior of the cryptographic module 
component, function, or procedure. 

• Documentation shall specify an informal proof of the correspondence between the 
design of the cryptographic module (as reflected by the precondition and postcondition 
annotations) and the functional specification. 

 

This approach was adopted to make the use of formal methods more cost effective.  It 
takes advantage of two considerations: 
 
• The specification of a cryptographic module is likely to be smaller than that of an 

operating system kernel, reducing the work required for proofs. 
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• It has been observed that most of the benefit of using formal methods often comes 

from the process of developing the specification.  In formalizing the system 
description, ambiguities and omissions are detected.  Although no study has 
actually quantified these values, the “80/20 rule” seems to be in effect:  perhaps 
20% of the effort of a formal verification goes into developing the formal 
specification, but around 80% of the value of formal techniques can come from 
this process.  (In practice, however, some developers have used fully formal, 
machine-assisted proofs, rather than develop informal proofs.  Theorem proving 
tools have become sufficiently advanced to make computer assisted theorem 
proving practical.) 

 
This simplified approach has paid off.  In 1998, the IBM 4758 cryptographic coprocessor 
became the first device to achieve a Level 4 rating.  Developers defined and mechanically 
verified a formal mathematical model of the coprocessor’s internal software [Smith and 
Weingart, 1999; Smith et al., 1999].  It is notable that the IBM 4758 is a mass-produced 
product for the commercial market, developed without government funding.  The 
developers sought the Level 4 rating strictly for its marketing advantage.    
 
Since 1998, eight Level 4 evaluations have been completed and more are expected.  
Although these eight products represent only about 4% of all products evaluated, it is 
significant that they were done for the competitive advantage a Level 4 certificate would 
provide in the marketplace, rather than to fulfill a government contract.  From a 
technology transfer standpoint, FIPS 140-2 is thus a useful model for encouraging the 
adoption of formal methods for commercial products.   

 
6 Conclusions 

 
We have reviewed the role that formal methods and associated tools can play in the 

verification and validation of software specifications and implementations. We then 
proceeded to give a brief narrative on the real-world applications of formal V & V 
methodologies. We also discussed in detail a case study involving test code generation 
for security functional testing of a commercial product based on formal specification. 
Lastly we dealt with the issue of formal methods in evaluation and certification of 
software products. Our conclusion was that the use of formal methods brings with it 
significant technical and cost impacts in situations where product evaluations involve a 
small and compact set of specialized functions (e.g. cryptographic functions in FIPS 140-
2 evaluations). 

 
Three decades of research and practical experience have demonstrated two truths of 

formal methods – they are not the “silver bullet” to eliminate all software failures, but 
neither are they beyond the budget constraints of software developers.  Formal methods 
are usually the only practical means of demonstrating the absence of undesired behavior, 
an essential property of critical systems.  Industrial-quality model checkers and advanced 
theorem provers make it possible to do sophisticated analyses of formal specifications in 
an automated or semi-automated mode, making these tools attractive for commercial use.  
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The ability to generate complete test cases from formal specifications can result in overall 
savings, despite the cost of developing the specification.  Experience has shown that 
formal techniques can be applied productively even without full-blown proofs.  The 
process of developing a specification is often the most valuable phase of a formal 
verification, and “lightweight formal methods” approaches make it possible to formally 
analyze partial specifications and early requirements definitions.  Experience with 
mandated use of formal techniques in FIPS 140-1 and other standards provides empirical 
evidence that these methods can be successfully incorporated into the development 
process for commercial products.   

 
 

7 References 
  
S. Agerholm and P.G. Larsen, “Modeling and Validating SAFER in VDM-SL”, 
Proceedings, Fourth NASA Langley Formal Methods Workshop, Sept. 1997. 

P. E. Ammann, Paul E. Black, and William Majurski, “Using Model Checking to 
Generate Tests from Specifications”, Proceedings of 2nd IEEE International Conference 
on Formal Engineering Methods (ICFEM'98), Brisbane, Australia (December 1998), 
edited by John Staples, Michael G. Hinchey, and Shaoying Liu, IEEE Computer Society, 
pages 46-54.  

R. J. Anderson. The formal verification of a payment system. Technical report, Computer 
Lab, Univ. of Cambridge, UK, 1997. 
 
O.  Balci, “A Methodology for Certification of Modeling and Simulation Applications”,   
ACM Transactions on Modeling and Computer Simulation, Vol. 11, No. 4 (Oct.).   

O. Balci, R.E. Nance, J.D. Arthur, “Expanding Our Horizons in Verification, Validation, and 
Accreditation Research and Practice”, Proceedings 2002 Winter Simulation Conference, San 
Diego, CA, Dec. 8-11, 2002 (to appear). 

B. Beizer, Software Testing Techniques, Van Nostrand Rheinhold, New York, second 
edition, 1990. 

G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal verification of 
cardholder registration in SET. In F. Cuppens, Y. Deswarte, D. Gollman, and M. 
Waidner, editors, Computer Security | ESORICS 2000, LNCS 1895, pages 159{174. 
Springer, 2000. 
 
G. Bella, F. Massacci, L. C. Paulson, Verifying the SET Purchase Protocols, University of 
Cambridge, 2001. 

M.R. Blackburn, R.D. Busser, “T-VEC: A Tool for Developing Critical System”, Proc. 11th  
International Conference on Computer Assurance, Gaithersburg, Maryland,USA pages 237-
249, June, 1996. 

35 



M.R. Blackburn., R.D. Busser, J.S. Fontaine. “Automatic Generation of Test Vectors for 
SCR-Style Specifications”, Proc. 12th h Annual Conference on Computer Assurance, 
Gaithersburg, Maryland, pages 54-67, June, 1997. 

D. Bolignano. Towards the formal verification of electronic commerce protocols. In Proc. 
10th IEEE Computer Security Foundations Workshop (CSFW). IEEE Computer Soci-ety 
Press, 1997. 

P. Bonatti, Vimercati, S.D.C., Samarati, P., “A modular Approach to Composing Access 
Control Policies“, Proceedings of Computer Communications Conference, 2000. 

P. Bose, “Automated Translation of UML Models of Architectures for Verification and 
Simulation Using SPIN”,  

J.R. Burch, E.M. Clarke, D.L. Dill, B. Misra, “Automatic Verification of Temporal Circuits 
Using Temporal Logic”, IEEE Transactions on Computers, C-35, V. 12, pp. 1035 – 1044. 

E.M. Clarke and J. Wing, “Formal Methods: State of the Art and Future Directions”, ACM 
Computing Surveys, 1996. 

Common Data Security Architecture (CDSA),  
http://www.opengroup.org/security/l2-cdsa.htm, 1998 

Defense Modeling and Simulation Office, “Conceptual Model Development and Validation”, 
www.msiac.dmso.mil/vva/Special_Topics/ Conceptual/conceptual-pr.PDF, Nov. 30, 2000. 

Defense Modeling and Simulation Office, VV&A Recommended Practices Guide, 
http://www.msiac.dmso.mil/vva/default.htm, 2001. 

S. M. Easterbrook and J. R. Callahan, "Formal Methods for Verification and Validation of 
partial specifications: A Case Study," Journal of Systems and Software, vol. 40, (3), 1998. 

S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton “Experiences 
Using Lightweight Formal Methods for Requirements Modeling,” IEEE Transactions on 
Software Engineering , Vol. 24, No. 1, January, 1998. 

S.R. Faulk, P.C.Clements. “The NRL SCR requirements specification”, Proc. 4th International 
Workshop on Software Specification and Design, Monterey, California,USA, 1987. 

C. Heitmeyer, J.Kirby,B.Labaw and R.Bharadwaj. “SCR: A toolset for specifying and 
analyzing software requirements”,Proc. 10th Annual Conference on Computer-Aided 
Verification, Vancouver, Canada, 1998. 
JDBC Data Access API, http://java.sun.com/products/jdbc/download.html, 2000 

ISO/IEC 9075, "Information Technology --- Database Languages --- SQL", 
http://www.iso.org, 1999 

ISO/IS 15408 International Standard (IS), http://csrc.nist.gov/cc/ccv20/ccv2list.htm, 2000 

D. Jackson, “Lightweight Formal Methods”, International Symposium of Formal Methods 
Europe, Berlin, Germany, March 12-16, 2001, Proceedings. 

W. Jansen.  “Security Testing Characteristics”, 
http://csrc.ncsl.nist.gov/sectest/Security_Testing.html, April 1998 

36 

http://www.opengroup.org/security/l2-cdsa.htm
http://www.msiac.dmso.mil/vva/default.htm
http://www.cs.toronto.edu/%7Esme/papers/1998/NASA-IVV-97-010.pdf
http://www.cs.toronto.edu/%7Esme/papers/1998/NASA-IVV-97-010.pdf
http://java.sun.com/products/jdbc/download.html
http://www.iso.org/
http://csrc.nist.gov/cc/ccv20/ccv2list.htm
http://csrc.ncsl.nist.gov/sectest/Security_Testing.html


W. Janssen, R. Mateescu, S. Mauw, P. Fennema, P. v.d. Stappen,  “Model Checking for 
Managers”, 6th International SPIN Workshop on Practical Aspects of Model Checking, 
Toulouse, France, 21 and 24 September 1999. 
 
D. R. Kuhn and J.F. Dray, “Formal Specification and Verification of Control Software 
for Cryptographic Equipment,” Proceedings, Annual Computer Security Applications 
Conference, IEEE Computer Society Press, 1990.  
 
R.R. Lutz, “Reuse of a Formal Model for Requirements Validation”, Proceedings, Fourth 
NASA Langley Formal Methods  Workshop, Sept. 1997. 
 
Mastercard and VISA. SET Secure Electronic Transaction Specification: 
Formal Protocol Definition, May 1997.  
http://www.setco.org/set specifications.html. 
 
C. Meadows and P. Syverson, “A Formal Specification of Requirements for Payment 
Transactions in the SET Protocol”, Proceedings, Financial Cryptography, 1998. 
 
S. Merz, “Model Checking, a Tutorial Overview”, F. Cassez et al. (eds): Modeling and 
Verification of Parallel Processes. Springer LNCS 2067, pp. 3-38. (2001) 
 
National Institute of Standards and Technology, FEDERAL INFORMATION 
PROCESSING STANDARDS PUBLICATION 140-2.  SECURITY REQUIREMENTS FOR 
CRYPTOGRAPHIC MODULES  (Supersedes FIPS PUB 140-1, 1994 January 11) 
 
P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson. A provably secure 
operating system: The system, its applications, and proofs. Technical report, Computer 
Science Laboratory SRI International, Menlo Park, California, May 1980. 2nd ed., Report 
CSL-116.  

NSA, 2001.  “Frequently Asked Questions:  National Policy Regarding the Evaluation of 
Commercial IA Products”  Information Assurance Directorate, National Security 
Agency.  http://www.nsa.gov/isso/20020215memo.pdf 
 
Oracle Corporation, Oracle8 Security Target Release 8.0.5, April 2000. 

D.K.  Pace, “Conceptual Model Development for C4ISR Simulations”, 5th International 
International Command and Control Research and Technology Symposium, Dept. of 
Defense, 2001.  http://www.dodccrp.org/2000ICCRTS/cd/papers/Track2/059.pdf 
 
D.K. Pace, “Simulation Conceptual Model Role in Determining Compatibility of 
Candidate Simulations for a HLA Federation”,  Proc. Spring 2001 Simulation 
Interoperability Workshop. Paper 01S-SIW-024. 25-30 March 2001. Orlando, FL. 
http://www.dmso.mil/briefs/war/vva/prod/01S-SIW-024.doc. 
 
J. Rushby, Formal Methods and their Role in the Certification of Critical Systems, SRI 
Technical Report CSL-95-1, March 1995. 

37 

http://hissa.ncsl.nist.gov/kuhn/tbacs.ps
http://hissa.ncsl.nist.gov/kuhn/tbacs.ps
http://www.setco.org/set specifications.html
http://www.nsa.gov/isso/20020215memo.pdf
http://www.dodccrp.org/2000ICCRTS/cd/papers/Track2/059.pdf
http://www.dmso.mil/briefs/war/vva/prod/01S-SIW-024.doc
http://www.csl.sri.com/csl-95-1.html


38 

 
E.L. Safford, “ Key Applications of Test Automation Framework (TAF)”, Proceedings of 
the 12th Annual Software Technology Conference, April 30-May 5, 2000. 
 
R.G.  Sargent, “Validation and Verification of Simulation Models”, Proceedings, 1999 
Winter Simulation Conference.   
 
S.W. Smith, S.H. Weingart. ``Building a High-Performance, Programmable Secure 
Coprocessor.''  Computer Networks (Special Issue on Computer Network Security).  
31: 831-860. April 1999. 
 
S.W. Smith, R. Perez, S.H. Weingart, V. Austel. ``Validating a High-Performance, 
Programmable Secure Coprocessor.'' 22nd National Information Systems Security 
Conference.  October 1999. 
 
S.W. Smith, V. Austel. ``Trusting Trusted Hardware: Towards a Formal Model for 
Programmable Secure Coprocessors.'' 3rd USENIX Workshop on Electronic Commerce.  
August 1998. 

S. Stepney.  “New HoriZons in Formal Methods”, The Computer Bulletin, British 
Computer Society, January 2001. 

D.E.  Stevenson, "A Critical Look at Design, Verification, and Validation of Large Scale 
Simulations ", IEEE Computational Science and Engineering (to appear).  

J.B. Warmer, A.G. Kleppe,  The Object Constraint Language: Precise Modeling With 
UML, Addison-Wesley,  1998. 
 

http://www.research.ibm.com/secure_systems/papers/arch.pdf
http://www.research.ibm.com/secure_systems/papers/arch.pdf
http://www.research.ibm.com/secure_systems/papers/ec98.pdf
http://www.research.ibm.com/secure_systems/papers/ec98.pdf
http://cyclone.cs.clemson.edu/%7Esteve/vandvcse.ps
http://cyclone.cs.clemson.edu/%7Esteve/vandvcse.ps

	Introduction
	Formal Methods and Software Assurance
	Improving Precision in Specifications
	Analyzing and Proving Properties of Systems and Specifications
	Theorem Proving Tools
	Model Checkers

	Generating Test Cases from Formal Specifications
	Using Formal Techniques in Validation

	Formal Methods in Real World V&V
	Examples From Aerospace Software Safety
	Examples from Computer Security and Electronic Commerce

	Formal Techniques from Specification through Testing Phases
	SCR Modeling, Consistency Checking & Simulation
	Detailed Case Study
	Characteristics of Security Functional Testing
	Roadmap of Approach to Verification and Functional Testing
	Develop a machine-readable specification of security functions
	Verification of SCR Security Specification Model
	Generating Test Vectors From SCR Specification
	Develop Additional artifacts for Test Driver generation
	Generate test drivers, execute tests and generate test results report
	Lessons Learned

	Cost and Practicality of Specification Based Test Generation

	Formal Methods and Certification Standards
	Standards and Technology Transfer
	Cost and Practicality of Mandating Use of Formal Methods

	Conclusions
	References

