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ABSTRACT 

This paper describes the application of 
formal specification and verification methods to 
two microprocessor-based cryptographic 
devices: a “sman token” system that controls 
access to a network of workstations, and a 
message authentication device implementing the 
ANSI X9.9 message authentication standard. 
Formal specification and verification were found 
to be practical, cost-effective tools for detecting 
potential security weaknesses, and helped to 
si@cantly strengthenthe security of the access 
control system. 

1. Introduction 
Microprocessor-based systems are increasingly 

being used to provide improved security. The 
improvements in security are often accomplished at the 
cost of increased complexity, as when a smart card 
microprocessor replaces a simple password system for 
network access control. Formal methods are recognized 
as an effective means of assuring the security of systems, 
and have been used in several military security 
applications over the past 15 years meumann et O Z . ,  1974; 
Tagney et al., 1977; Feiertag et al., 1977; Neumau et al., 
1980; Young et al., 1986; Levin er al., 19891. This paper 
reports on the application of formal methods to two 
civilian security-critical systems: the NIST Token-Based 
Access Control System (TBACS), a “smart t&en”l 
system that controls access to a network of workstations, 
and a message authentication device implementing the 

U.S. Government work. 
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ANSI X9.9 message authentication standard [ANSI, 
19861. A state-based specification was prepmd for the 
smart token system. The message authentication device 
spedication used the notation of theVienna Development 
Method. 

Tbe projects were undertaken primarily as exercises 
in preparation for a larger project that is planned, but the 
results surpassed the initial goal of gaining familiarity 
with verification tools. It is noteworthy that no funding 
was available for formal methods work in either case. A 
verification tool, Unisys’ Formal Development 
Methodology (FDh4)[Eggert er al., 19881, was obtained at 
no cost and the formal methods work was done as time 
permitted. Even with limited time available, we found the 
effort worthwhile. In the smm token access control 
system, several inconsistencies were found that led to 
improved security. In addition, a subtle error was 
discovered that could have compromised the security of 
TBACS, had it been released. A breakdown of hours and 
resources used in the access control system verification is 
given in section 2.8, The most interesting mult of this 
work, beyond the increased assurance for TBACS 
security, is that it gives additional evidence that formal 
methods can be successfully applied to “real world” 
problems. Formal methods are rarely used today and are 
often rejected out-of-hand as being too difficult or 
expensive. Our experience has convinced us that, at least 
for small projects, or for small portions of large systems, 
formal methods are a practical and cost-effective adjunct 
to traditional software engineering methods. 

2. The TokenBased Access Control System 

2.1. System Description 
The Token Based Access Control System WACS)  

was developed as an experimental system to replace 
traditional password based systems. Based on the TBACS 
proof-of-concept, a Smart card based Access Control 
System (SACS) that inco~ratesthe TBACS design and 

’ Shictly speaking. a smart token is diffcrcntiium a smart card. although the two terms are.often used interchangably. 
Both an badcarried devices containing microprocessorsand memory,but there is an IS0 standard for smart cards. A 
smart token is typically larger than a smart card. 
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code is now under development. TBACS uses a portable 
device called a smart token to control access to the 
resources of networked computer systems. The TBACS 
smart token perfom cryptographic authentication to 
identify the user and up to 100 computers which the user 
wishes to access. 

The system codguralion for TBACS consists of a 
number of workstations and host computers 
interconnected by a communications network. Each 
workstation on the network isconnected to a readerbter 
device, which provides theelectrical interface between the 
TBACS token and the workstation. When the user inserts 
a token into the readedwriter, a program running on the 
workstation manages the authentication process by issuing 
a sequence of commands to the token and receiving the 
token’s responses to these commands. 

2.1.1. Hardware 
The smart token consists of a plastic carrier 

containing a microprocessor and non-volatile memory. 
The carrier has the same major dimensions as a standard 
credit card, with six recessed metallic contacts along one 
edge. The reader/writer connects to the workstation 
through a standard asynchronous serial communications 
port, eliminating the need for a custom communications 
interface. 

2.1.2. software 
The TBACS token responds to a set of 17 

commands (see Table l), which are implemented in 
firmware stored in the token’s non-volatile memory. The 
firmware code is approximately 2,600 lines of C. The 
sequence in which these commands are executed is 
controlled by a set of flags which are checked at the first 
step of each command. If the flags are not set correctly, 
the given command will not be executed and the token 
will return an error code. 

The commands are grouped into three general 
classes: security officer (SO) commands, user/woricstation 
authentication commands, and user/remote host 
authentication commands. The SO commands provide for 
the initialization of new tokens by loading host IDS, 
cryptographic keys, and PINS. The token is ready to be 
issued to the user after the SO has completed this 
initialization process. The remaining commands 
implement the authentications required by TBACS to 
control the login process. 

I Table 1. TBACS Commands 
Command I Verified 

Reset 

2.2. Authentication Processes 
For a user to gain access to computing resourceson 

a network using TBACS, a series of authentications 
between the smart token, the user, and various host 
computers must be performed. TFSACS selectively 
controls access to all computers on the network, including 
the user’s local workstation. By taking advantage of the 
processing capabilities of the smart token, the login 
process can proceed transparently to the user while 
providing a high level of authentication. The DES 
algorithm, operating firmware, and critical data are stored 
intemally on the smart token, providing a higher level of 
security than systems which use tokens only as data 
storage devices. 

2.2 .l.UsedToken Authentications 
When a user begins the login process on a 

workstation, he or she should have some means of 
determining the identity of the token. A program called 
the “login manager” is executed on the workstation when 
the user initiates a login, and is responsible for mediating 
the required series of authentications between theuser, the 
token, and the workstation. First, the user must prove his 
or her identity to the token. The next step performed by 
the login manager is to request the token identification 
number from the token and display it on the user’s screen 
for visual verification. The user can choose to either 
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continue the login process or abort by simply pressing a 
key. The login manager prompts the user for his or her 
PINpassword, which is then encrypted and tmnsmitted to 
the token along with the user ID. The token decrypts the 
user PIN and uses it as the key to encrypt the user ID. The 
result is then compared to the value stored on the token, 
and if these values match the token accepts the identity of 
the user. From this point on, TBACS uses the token to 
represent the user’s identity for the remaining 
authentications. 

23.2. 	Threeway HandshakeProtocol 
Once the previous steps have been completed, the 

token and the workstation must authenticate to each other. 
This is accomplished through a three-way handshake 
protocol which allows each party to prove that it posesses 
the same cryptographic key as the other party, without 
having to physically exchange keys N S T ,  19881. This 
protocol works as follows: 

Party A generates a @-bit random number and 
transmits it to party B. 
Party B encrypts the random number using its secret 
key, generates a second random number, and 
transmits both values to party A. 
Party A decrypts the first number and verifies the 
result. Party A then encrypts the second random 
number and transmits it to party B. 
Party B decrypts and verifies the second random 
number. At this point, each party is satisfied that the 
other party posesses the same secret key. 

2.23. 	 User/Workstation Authentications 
After the user and token authenticate to each other, 

the token must authenticate to the workstation. To 
perform the authentications between the workstation and 
the token, the login manager requests a random number 
from the token. The three-way handshake then proceeds 
with the token acting as party A and the workstation as 
party B. If this handshake is completed successfully, the 
login manager terminates and the user is logged in to the 
system. 

2.2.4. 	 UsedRemote Host Authentications 
At some point during a session, the user may decide 

to connect to a remote host via the network. The user 
activates an rlogin manager, which requests a table of the 
allowed TBACS hosts for this user from the token and 
displays this table in a menu format. After theuser selects 
the desired remote host from this menu, the rlogin 
manager connects to an rlogin server on the remote host. 

At this point, the local rlogin manager acts primarily as a 
communications path between the token and the remote 
rlogin server. The token is provided with the host ID, 
which it uses to select the proper key for subsequent 
cryptographic operations. The steps of the three-way 
handshake are repeated between the token and the rlogin 
server on the remote host, and finally the rlogin server 
terminates and the standard rlogin process connects the 
user to the remote host. 

23. Token Deactivation 
In addition to sequence control, theTBACS token is 

capable of deactivating itself after three failed login 
attempts or when the token expiration date is reached. 
Deactivation is accomplished by deleting the intemal 
token identification number, after which none of the 
authentication steps required for user login wiU execute. 
A token is reactivated when a security officer installs a 
new token identification number. 

2.4. Key Management 
When a user first enrolls on a TBACS computer 

system, the user must contact the appropriate security 
officer for that computer. The SO initializes a blank token 
by loading the following: the security officer’s ID, 
encrypted under the security officer’s PIN; the user’s ID, 
encrypted under an initial user PIN,a token identification 
number, and the token expiration date. 

The SO next generates a DES key which is loaded 
onto the token. The random number generation capability 
of the security officer’s token can be used to generate 
these keys. The token encrypts this key using the user’s 
PIN and stores it in the key table along with the 
computer’s host identification number. The host computer 
can generate this key from the user’s PIN and the host 
master key as required during future login processes. As 
an altemative, the DES key could be stored in the 
computer’s key database indexed by the user’s identity. 
After receiving the token from the SO, the user may 
change the token identification number and the user PIN 
by entering the current values. 

The user may now enroll on another TBACS 
computer by contacting that computer’s so, who 
generates another DES key which is stored on the token 
and the host computer as previously described. The 



TBACS token is designed so that only the SO who first 
initialized the token can delete token keys. Other security 
officers can only append keys to the token key table.* 

In order to activate the token during a login, the user 
must supply the correct user PIN. Once activate4 the 
token can be used to authenticate the user to the user’s 
workstation and then to other host computers by means of 
the three-way handshake previously described. 

2.5. Development 
TBACS is a small but reasonably complex 

embedded system containing custom hardware. It was 
developed at NIST primarily as a proof-of-concept for the 
Smart card based Access Control System. Initially, a 
software simulation of TBACS was written to serve as a 
prototype. Experimentation with the prototype resulted in 
several design changes that were later incorporated into 
TBACS. The prototype also served as a specification for 
TBACS functions. Because of hardware requirements, 
most of the simulation code could not be used in the 
TBACS implementation. SACS, however, does 
incorporate almost all  of the TBACS code. For this 
reason, the formal specification was based on the design as 
reflected in the TBACS code. 

The formal specification and verification were done 
after the TBACS hardware and software had been 
implemented because, as noted earlier, formal verification 
was not initially part of the development plan. 
Fortunately however, we were able to complete the 
verification before the implementation of the Smart card 
based Access Control System, allowing a problem 
detected in the formal verification to be corrected in the 
SACS implementation. 

2.6. Security Policy 
Generally accepted practice for developing tmsted 

systems requires the statement of a security policy that 
describes the security properties of the system WSA, 
1985; Tavilla, 1986; Bell, 19881. A formal model d e m g  
the meaning of the security policy in terms of 

mathematical logic can then be constructed. Confidence is 
gained in the security of the system by showing that it 
implements the requirements of the model. When a 
formal toplevel specification of the system is prepared, its 
consistency with the model can be shown by rigorous 
mathematical argument. Proofs of lower level 
specifications and of the code may be formal or informal, 
depending on the complexity of the system and the 
resources available. Showing the consistency of the 
model with the policy statement is necessarily an infomal 
process. 

A formal model must be oriented toward a 
particular class of systems [Nessett, 19861. For example, a 
model prepared for an operating system is not appropriate 
for expressing the security requirements for a network. 
Significant work has been done on the definition of formal 
models for multi-level secure operating systems pe l l  and 
LaPadula, 1976 Feiertag et al., 19771, and for trusted 
networks [Gove, 1985; Freeman er al., 1988;l. Integrity 
models, such as those of Biba [1977], Lipner [1982], and 
Clark and Wilson Cl9871 are more directly related to 
TBACS verification requirements, but even these are not 
completely appropriate, so we developed a model that is 
particular to the requirements of TBACS. 

Figure 1 summarizes the rules of operation that 
were originally defined as the security policy for TBACS, 
detailed inDray et al. [1989] and Smid et al. 119891. The 
original security policy was developed informally. The 
formal specification effort was started later. Initially we 
derived mathematical statements of the assertions given in 

Figure 1. However, it was not immediately clear that the 
conjunction of these assertions would guarantee the 
security of TBACS. For a greater degree of assurance, a 
more rigorously developed model of the security policy 
was required. The goal of this model development was to 
prepare a formal statement, P , of the security policy at a 
sufficiently abstract level that its security would be clear. 
Detailed assertions, A . . . ,A, ,such as those in Figure 1, 
could then be stated and the model of TBACS functions 
shown correct with respect to these detailed assertions 
provided that A & A ,  62. . .&A, => P. This model and 
its derivation are documented in the next section. 

Anyone can in fact append keys to the key tabk. This somewhat suprising featurc was determined to be a rcasonabk 
design tradcoff. Sccurity officers maintain control over the keys for their systems, and a user must have a valid key to ac-
cess a particular host. A user can append a key, but it will be of no use unkss it is thc correct one that is controlled by the 
security officer. An alternative to this design would be to have each security officer store an encrypted secret key on the 
token, but this would require the token to be initialized by up to 1 0 0  security officers, since it is not known in advance 
which hosts a user willeventually need acccss to. Another alternative would be to have a “master key” that could be used 
by any security officer. But such a key would add little security, sinCC a key known to over 100 people would likely be 
kakcd in a short timc ina civilian environmcnL where thcrc arc no criminal penalties for disclosure of confidentialinfor-
mation. 



I: Token commands may only be executed in legal se- 
quences: user authorization; token authorization; worh- 
tation authorization; remote host authorization. 
2: A token deactivates itself when its expiration date is 
reached. 
3:A user must enter correct ID and PIN to be authorized: 
4: A token deactivates itself afer three failed login at- 
tempts 
5: A deactivated token will not permit login. 
6: A token allows a user access only to hosts whose ID and 
key are stored on the token. 
7:The user cannot open the token iffail limit exceeded or 
token expired. 
8: The user cannot get SO privileges. 
9:An SO must enter correct ID and PIN to be authorized: 

IO: Only an SO may initialize a blank token. 

I1:A PIN for a particular token may be changed only by 

an SO or by the owner of that token. 
12: Afer an SO has initialized a token, only this SO can 
enter the user PIN. 
13: Afer an SO has initialized a token, only this SO can 
reactivate the token afrer it has been deactivated. 
14: Afer an SO has initialized a token, only this SO can 
delete a key from the token. 
15: Only the SO can change the expiration date. 

Firmre 1. Securitv Assertions 

2.7. Security Model 
This section describes the derivation of the formal 

statement of security policy. In summary, TBACS security 
is defined as the conjunction of the following conditions: 
1. 	 Access control: Access to the network is granted 

only if the user posesses the comct PIN and a valid 
token. Ensuring this condition holds laquires 
condition 2. 

2. 	 Change control: An invalid token cannot be made 
valid by the user, only by the security officer. 
Ensuringthis condition holds requires condition 3. 

3. 	 Privilege control: A user cannot gain security 
officer privileges through manipulation of TBACS 
functions.3 


2.7.1. Terms 
The primitive terms shown in Table 2 are used. In 

the remainder of the paper, the symbols &, 1 ,  l, => 
represent and, or, not, implies, respectively. The notation 
x' indicates the value of variable x after a state transition. 
The universal quantifier is denoted by A and the 
existential quantifier by E. 

2.72. Formal Statement ofModel 

2.7.2.1. Access Control 
Access to the network is permitted only if the user 

possesses a PIN which encrypts the user ID to the value 
stored on thetoken,andthe token is valid. That is, 

(1) access => E,,in-in(id-in )=user_Pin & token-valid 
where &(I) represents the encryption of I with key K. 
Access is defined as authorization of remote host, 
workstation, token, or user. The token is valid when the 
token has not expired and is active, the failure Limit has 
not been reached, and the workstation ID is in the token's 
host table. Substituting terms for these conditions into 

I 
invariant (1) gives 

(2) 
remote-host-authd I ws-authd I token-authd I user-authd 
=> EPin-;,,(id-in) =user-pin & 

today <exp-date & 
faillog < 3 & 
tokenjin f null & 

ws-id E host-ids 


2.73.2. Change Control 
Invariant (2) must be maintained across state 

transitions. If the user could change the variables that 
determine if the token is valid, an invalid token could be 
made valid illegitimately. Thus for each variable in the 
definition of token-valid, we must deline the conditions 
under which its value can ~ h a n g e : ~  
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exp-date Token expiration date. 
faillog Count of failed login attempts. 
remote-host-authd h e  iff remote host is authorized. 
ws-authd h e  iff workstation is authorized. 
token-authd True iff token is authorized. 
user-authd True iff user is authorized. 

so_authd True iff security officer is authorized. 


t h y  Today’s date. 
userjin User PIN stored on token (encrypted). 
ws jd  Workstation ID of the workstation to which token is connected. 

host-ids Host IDSto which the token may be used to gab  access. 

tokenjin Token PIN. 
userjin User PIN. 

A PIN for a pam’cular token may be changed only by an 
SO or by the owner of that token: 

(token-pin’ # tokenjin => so-authd I 
user authd) 
Only the SO can reactivate the token afrer it has been 
&activated: 

(token-pin = null & tokenjin’ # null => 
so-authd) 

2.7.2.3. Privilege Control 
If it can be shown also that the user cannot obtain 

security officer privileges, the system is considered s e a .  

The user cannot get SOprivileges: 
user-authd => so-authd 

2.73. Security Assertions 
More detailed assertions were developed from the 

design description. Many of these are directly derivable 
from the formal policy statement given above. Others 

authorization; remote host authorization: 
(remote-host-authd => ws-authd) & (ws-authd => 

token-authd) & (token-authd => user-authd) 
2; A user must enter correct ID and PIN to be authorized: 

(user-authd => EPin-Jid-in ) = user-pin) 
3: A token deactivates itself when its expiration date is 
reached: 

(today 2 exp-date & so-authd => tokensin = 
null) 
4: A token deactivates itself afer three failed login 
attempts 

(fail-log 2 3 => tokenjin = null) 
5: A deactivated token will not permit login. 

(token-pin = nuU => user-authd) 
6: A token allows a user access only to hosts whose ID and 
key are stored on the token: 

(user-authd 3 ws-id E host-ids) 
7:The user cannot open the token iffail limit exceeded or 
token expired: 

(user-authd => fail-log < 3 &today < exp-date) 
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8: The user cannot get SO privileges: 
(user-authd => so-authd) 

9: A security offreer must enter correct ID and PIN to be 
authorized: 

(so-authd => E,,,(id-in ) = so-pin) 
10: Only an  SO may initialize a blank token: 

/* relies on external conditions, cannot be proven */ 

lkansition Assertions 
These assertions must be true of all ”sitions 

between states. 
11: The initial value for the user PIN can only be entered 
by the SO: 

(user_Pin = null & userjin’ f null => so-authd) 
12: A PIN for a particular token may be changed only by 
an SO or by the owner of that token: 

(tokenjin’ f takenjin => so-authd I 
user-authd) 

13: Only the SO can change the expiration date: 
(e--date’ # exp-date => so-authd) 

14: A PIN for a particular token may be changed only by 
an SO or by the owner of that token: 

(token-pin’ f tokenjin => so-authd I 
user-authd) 
15: The failure log is reset only after a successful login. 

(fail-log’ = 0 & fail-log > 0 & fail-log < 3 => 
user-authd) 
16: Only the SO can reactivate the token after it has been 
deactivated: 

(tokenjin = null & tokenjin’ f null => 
so-authd) 
17:Afer an SO has initialized a token, only this SO can 
delete a key from the token: 

((Ehh0st-id-t (7 (h E host-ids’) & h E host-ids)) 
=> so-authd) 

2.8. verification 
When the verification was started, TBACS had 

already been prototyped and built. The SACS system, 
based on TBACS, was undergoing critical design review 
during the verification effort. The verification thus served 
as an additional check on the soundness of the SACS 
design beyond the experimentation done with TBACS. 

The security assertions and formal top level 
specification (FILS) were specified using Unisys’ Formal 
Development Methodology (FDM) [Eggert et al., 19881. 

FDM provides a formal language called Inajo [Scheid and 
Holtsberg, 19883 that is derived from first order logic. 
Inajo is used to repment the system as a state machine, 
specifying system states, state transitions, and security 
criteria. An interactive theorem proving tool [Schorre et 
al., 19881assists the user in showing that all aansforms of 
the abstract machine meet the safety criteria. The ten 
critical functions that implement the three-way handshake 
and control functions were modeled with 297 lines (not 
including comments) of Inajo. 

The verification resulted in some cases where the 
FTLS for a command could not be proven consistent with 
the security requirements. Such cases where the proof 
failed were the most interesting part of the verification. 
They prompted the discovery of some subtle discrepancies 
between the security requhements and the FTLS.With 
one exception, the discrepancies would not have 
compromised the security of the system, although they did 
expose design changes that couid strengthen system 
security. The verification effort thus served to increase 
our confidence in the security of TBACS. This section 
discussessome of the anomalies that were discovered. 

The security officer authentication procedure had no 
check that the input date parameter is greater than today’s 
date, so assertion 2 could not be shown for this procedure: 

token deactivates itself when its erpiration date is 
reached: 

(today 2 exp-date => tokenjin = null) 

The SO could enter an expiration date that invalidated this 
requirement, although the user would still not be able to 
gain access in this case. 

A more interesting condition occurred with the 
procedure for entering the user PIN. The following 
assertion could not be satisfied: 

After an SO has initialized a token, only this SO can enter 
the user PIN: 

(user-pin = null & user-pin’ f null => so-authd) 
Proving this condition would have required assuming that 
no combination of key and data encrypted to null, i.e.: 

A kid, p ~ i nEp(i )# null) 

which, although highly improbable, is not strictly valid. 

This was because a user PIN initialized to 0 could match 
the encryption of the entered user ID with the user PIN if 
E,,(id) = 0. The user PIN can be changed if either (the 
SO opened the token) or (the user opened the token and 
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E P d Z D )= stored encryption of user ID). If Ep,(id) = 0 
and the stored encryption of user IDis 0, then the user PIN 
could be changed by user rather thanjust the SO. 

Similarly, the system was designed to deactivate a token 
by setting its token PIN to null. Since the token PIN is an 
encrypted value, there was a small, but non-zero, 
probability that two values would be found that encrypt to 
null. In the implementation, special flags were used to 
indicate the conditions described above, rather than using 
null values. 

The user authentication procedure allowed the 
failure counter to be bumped to 3 without clearing the 
token pin after it becomes equal to 3, so the assertion 
below could not be proven for this procedure. 

A token deactivates itself afer three failed login attempts: 
(fail-log 2 3 => tokenjin = null) 

This occuned because the failure log was specified to be 
tested initially in the user authentication procedure but 
was not tested again after it was incremented when the 
user failed to authenticate. The token would of course be 
deactivated when the user attempted to log in again. 

When the SO opened the token entering the 
procedure to change the token PIN, it was possible for the 
token to be expired but still active. The requirement that 
could not be satisfied is: 

A token deactivates itself when its expiration date is 
reached: 

(today 2 exp-date => tokenqin = null) 

The initial design called for the token authentication 
to be performed before the user authentication. By the 
time the formal specification was prepared, this had been 
changed to perform the user authentication first. The 
security requirements thus had assertions that the user 
could not be authenticated if the token was expired or 
deactivated: 

A deactivated token will not permit login: 
(token-pin = null => user-authd) 

user cannot open token if fail limit exceeded or token 
expired: 

(user-authd => faillog < 3 & today c exp-date) 

However, the checks for token expiration and deactivation 
remained in the authenticate token procedure, so only the 
following assemonS could be shown: 

(tokenjin = null => token-auW) 
(token-authd => fail-log < 3 & today < exp-date) 

The design was changed to do the validation in the user 
authentication procedure. 

One error was discovered that could have 
compromised the security of TBACS. If a token 
deactivates itself because it expires or because there were 
too many unsuccessful login attempts, only the security 
officer should be able to reactivate it: 

After an SO has initialized a token, only this SO can 
reactivate the token afer it has been deactivated: 

(tokenjin = null & tokenjin’ # null => 
so-authd) 
An error in the token PIN change procedure allowed a 
user to reactivate a token that had been deactivated as a 
result of expiration. The token pin change procedure 
checked that either the user or security officer had been 
authenticated, without checking to see if the token was 
deactivated. In the original design this would have been 
acceptable, because the token was authenticated first, then 
the user. The token authentication procedure checked for 
a deactivated token and the sequence would have been 
stopped by this procedure. With the change to 
authenticate the user first, the token PIN change procedure 
could be invoked before the token had been authenticated. 

2.9. Discussion 
This section discusses the impact of the formal 

verification on the design and construction of TBACS. 

2.9.1. AssurancdConfidence Gained 
The most sigmficant problem discovered was the 

possibility that a user could reactivate a token after it had 
deactivated itself because the expiration date was reached 
or for other reasons. Preventing this error from being 
incorporated into a released product made the verification 
well worth the effort. 

Although the other dkcrepencies detected in the 
verification would not compromise the security of the 
system, in some cases they indicated m d c a t i o n s  that 
could be made to enhance the security of TBACS. The 
failure to prove the assertions “A deactivated token will 
not permit login” and “The user cannot open token i f  
fail limit exceeded or token expired” is one such case.It 
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is generally best to detect invalid login attempts as soon as 
possible. The protocol implemented by the system 
resulted in the date check and token deactivation check 
occurring in the token authentication function, rather than 
in the user authentication function, which occurs earlier in 
the authentication process. 

2.9.2. 	 Estimated Time Savings 
Since the formal verification was performed after 

the design and implementation of TBACS was completed, 
it is difficult to estimate the time savings which might 
have resulted from applying these techniques through all 
phases of the project. The original software simulation of 
the TBACS command set consists of 2500 lines of C 
source code, and requkd approximately three man-
months to complete. This code was used as a sounding 
board to test various ideas during the design of TBACS, 
and later served as the design specification for the system 
filmware. 

Many design decisions were explored by modifymg 
the simulation code and observing the results. In some 
cases, unexpected side effects were discovered. In other 
cases, some features proved to be impossible to 
implement. This approach provided a reasonable 
assurance that the system would perform as expected, but 
was labor intensive. By applying formal verification 
methods, the programming effort required to test ideas 
which proved to be inconsistent with the overall design 
might have been avoided. Since testing these ideas 
through code modification involved more than 50% of the 
programming effort, a significant time savingswould have 
resulted. As shown in Table 3, the verification effort was 
approximately 6% of the software design and 
development time. 

2.93. 	Limitations 
Does the verification guarantee that TBACS and 

SACS are absolutely secure? No, the verification only 
checked the consistency of a formal specifkation, which is 
essentially a simplified model of TBACS, with the 
security criteria. Many code-level details are not dealt 
with by the formal specification. In addition, only the ten 
most critical functions were modeled But the goal of the 
verification effort was only to verify the soundness of the 
design and detect errors that may not have been 
discovered in TBACS before the SACS system was 
completed. We believe this goal was achieved at a 
reasonable cost in time and resources. To our knowledge, 
TBACS is the first smart token application to have a 
formally verified design. The SACS design verification is 
being completed, representing the first application of 
formal verification to a smart card application. 

The cost and difficulty of using formal methods 
rises very quickly with the depth to which verification is 
performed. A full code-level verification would probably 
be far too costly to justify on a system of this type. Other 
methods, such as code reviews and inspections, can be 
used to check the consistency of the code with the formal 
specification. Determining the optimal combination of 
formal verification and traditional methods is a 
challenging management problem. 

3. X9.9 Message Authentication System 
To support the need for secure electronic funds 

transfer (EFT) of both industry and its own bureaus, the 
U.S. Treasury Department initiated a program for 
certifying EFT equipment Ferris, 1987; Treasury,19861. 
The EFT equipment being certified provides ANSI X9.9 
Message Authentication capability [ANSI, 19861 and 
ANSI X9.17 Key Management functions [ANSI, 19841. 

The equipment typically includes a secure 
microprocessor and a chip to perform encryption using the 
Data Encryption Standard [NBS, 19771. Softwarecontrols 
access to the various functions through either password 
protection or magnetic cards. The software is usually 
small, approximately 4,000 lines of source code. 
Commercial developers supplying EFT equipment to the 
Treasury Department are required to develop it according 
to specifications given in [Treasury, 1986bl. The 
specifications mandate security features recommended in 
BSA, 19861 and include requirements to aid in 
verification suggested by W S ,  19821. 
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In an earlier project we had developed static 
analysis tools to assist in the certification of software used 
in EFT equipment IKuhn, 19881. To improve the 
certification process, a proposal was made to prepare a 
formal reference specification of devices implementing 
ANSIX9.9. A preliminary draft of this specification was 
prepared using the Vienna Development Method 
notation [Bjomer and Jones, 1978; Jones, 19801. 

ANSI X9.9 defjnes the format of EFT messages, 
gives a digital signature algorithm using DES, and 
specilies several ways in which the signatures can be 
attached to messages. The digital signature, or Message 
Authentication Code (MAC), is computed by encrypting 
the first 64 bits of the message using DES [ N B S ,  19771 
and then XORing the resulting 64 bits with the next 64 
bits and feeding it back into DES. This continues until the 
end of the message. The leftmost 32 bits of the final 
output ate used as the MAC. 

A 64 bit key is used in computing the digital 
signature. Every key has a lifetime known as the 
cryptoperid, which is defined as [ANSI,19861 

The time span during which a specific key is 
authorized for use or in which the keys for a 
given system may remain in effect. 

To protect against message duplication each message 
comes with a message identifier which is unique for 
spec& dates and cryptoperiod. The standard states that 
[ANSI, 19861 

The message identifier, which shall be used as 
an authentication element, is a value that does 
not repeat before either the change of date or 
expiration of the cryptoperiod of the key used 
for authentication, whichever occurs h t .  
I.e., there shall not be more thanone message 
with the same date and the same message 
identifier that uses the same key. 

Thus for all messages mi, mi,where i g j ,  the following 
invariant is maintained: 

(date(m,) # date(mj) 

I message-D(m,. )# message-mmj 

I key@,) f key(mj1) 

Keys are distributed by a combination of manual 
and automatic means, and are indexed by a key ID. A 
message authentication device uses the key ID field 
contained in a message to determine which key should be 
used to authenticate the message. There are no restrictions 
on key ID reuse or on when a cryptoperiod can expire. To 
understand the difliculty that a novice user might have in 
interpreting the standard, consider the following two 

messages. Remember that the key is not part of the 
message; the key ID is used to retrieve it from databases 
stored by both sender and receiver. 

Feb 2 BBBB 

Suppose that the cryptoperiod for key AAAA ends at 
12:OO noon and that for key BBBB starts at 12:OO noon. If 
the message with key AAAA is sent at 1159 am. and 
received at 12:Ol p.m., which key should be used to 
authenticate the message? The ayptoperiod is defined as 

The time span during which a specific key is 
authorized for use or in which the keys for a 
given system can remain in effect. 

In practice this is interpreted as requixing the key to be 
discontinued on both the sender’s and receiver’s ends at 
the same time. Thus for our example, the message with 
key AAAA would fail to authenticate because the 
cryptoperiod for key AAAA had expired at noon, even 
though the message was sent before the expiration of the 
cryptopenod. If the message with key BBBB were 
received after noon, it would authenticate correctly, 
regardless of when it was sent. Although this is the 
correct way to use X9.9, it may seem unsatisfactory to the 
user, raising questions about how the standard should be 
interpreted. 

3.1. Discussion 
The dd6cult.y in interpretation occumd in the 

process of specifymg a device to implement X9.9, rather 
than in verification. It has been suggested that the primary 
value of formal methods is in forcing a disciplined and 
thorough analysis during specification, rather than in the 
verification itself. The formal specification can be used to 
clarify aspects of the requirements that may not be clear 
from the natural language statement. This is valuable in 
software development for communication among different 
developers. In standards, the formal specification can be 
even more valuable because the standard is often used by 
hundreds or even thousands of developers who may have 
no communication with each other, yet who must produce 
software products that can work correctly with products 
that others produce according to the standard. 

We found the Vienna Development Method notation 
very effective for specification. At a surface level, 
specifications in VDM are similar to Inajo (FDM) 
specifications, although the underlying theory is different. 
Anyone familiar with one method would have little 
trouble using the other. The extent to which VDM will be 



useful for verification is a question for future work. We 
hope to investigate this question in the future using the 
RAISE (Rigorous Approach to Industrial Software 
Engineering) tools developed by the European Esprit 
program Weilsen et al., 19891. 

4. Conclusions and Future Directions 
The formal specification and verification work 

described in this paper was undertaken primarily to gain 
experience with verification tools, such as FDM, in 
preparation for experimenting with the application of 
formal methods to safety-critical systems. The project 
surpassed this original goal, enabling us to contribute to 
the security of a critical system. Our experience with 
FDM was quite positive. We believe the system is easily 
accessible to anyone with a background in mathematical 
logic. As time and funding permit, we plan to acquire 
other verification tools as well. 

Although formal methods are increasingly used on 
security critical systems, other application domains have 
seen relatively little use of these methods. We are 
interested in determining the extent to which the tools 
used in the work described in this paper can be applied to 
safety-critical systems, particularly medical devices. We 
hope to investigate the use of FDM, RAISE, and other 
tools in this domain in thenear future. 
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