
Formal Specification and Verification of Control Software for

Cryptographic Equipment

D.Richard Kuhn and James F. Dray

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, Md. 20899

ABSTRACT

This paper describes the application of
formal specification and verification methods to
two microprocessor-based cryptographic
devices: a “sman token” system that controls
access to a network of workstations, and a
message authentication device implementing the
ANSI X9.9 message authentication standard.
Formal specification and verification were found
to be practical, cost-effective tools for detecting
potential security weaknesses, and helped to
si@cantly strengthenthe security of the access
control system.

1. Introduction
Microprocessor-based systems are increasingly

being used to provide improved security. The
improvements in security are often accomplished at the
cost of increased complexity, as when a smart card
microprocessor replaces a simple password system for
network access control. Formal methods are recognized
as an effective means of assuring the security of systems,
and have been used in several military security
applications over the past 15 years meumann et O Z . , 1974;
Tagney et al., 1977; Feiertag et al., 1977; Neumau et al.,
1980; Young et al., 1986; Levin er al., 19891. This paper
reports on the application of formal methods to two
civilian security-critical systems: the NIST Token-Based
Access Control System (TBACS), a “smart t&en”l
system that controls access to a network of workstations,
and a message authentication device implementing the

U.S. Government work.

Not protected by U.S. copyright.

ANSI X9.9 message authentication standard [ANSI,
19861. A state-based specification was prepmd for the
smart token system. The message authentication device
spedication used the notation of theVienna Development
Method.

Tbe projects were undertaken primarily as exercises
in preparation for a larger project that is planned, but the
results surpassed the initial goal of gaining familiarity
with verification tools. It is noteworthy that no funding
was available for formal methods work in either case. A
verification tool, Unisys’ Formal Development
Methodology (FDh4)[Eggert er al., 19881, was obtained at
no cost and the formal methods work was done as time
permitted. Even with limited time available, we found the
effort worthwhile. In the smm token access control
system, several inconsistencies were found that led to
improved security. In addition, a subtle error was
discovered that could have compromised the security of
TBACS, had it been released. A breakdown of hours and
resources used in the access control system verification is
given in section 2.8, The most interesting mult of this
work, beyond the increased assurance for TBACS
security, is that it gives additional evidence that formal
methods can be successfully applied to “real world”
problems. Formal methods are rarely used today and are
often rejected out-of-hand as being too difficult or
expensive. Our experience has convinced us that, at least
for small projects, or for small portions of large systems,
formal methods are a practical and cost-effective adjunct
to traditional software engineering methods.

2. The TokenBased Access Control System

2.1. System Description
The Token Based Access Control System WACS)

was developed as an experimental system to replace
traditional password based systems. Based on the TBACS
proof-of-concept, a Smart card based Access Control
System (SACS) that inco~ratesthe TBACS design and

’ Shictly speaking. a smart token is diffcrcntiium a smart card. although the two terms are.often used interchangably.
Both an badcarried devices containing microprocessorsand memory,but there is an IS0 standard for smart cards. A
smart token is typically larger than a smart card.

32

TH0351-7/90/0000/0032$01.OO 01990 IEEE

1
code is now under development. TBACS uses a portable
device called a smart token to control access to the
resources of networked computer systems. The TBACS
smart token perfom cryptographic authentication to
identify the user and up to 100 computers which the user
wishes to access.

The system codguralion for TBACS consists of a
number of workstations and host computers
interconnected by a communications network. Each
workstation on the network isconnected to a readerbter
device, which provides theelectrical interface between the
TBACS token and the workstation. When the user inserts
a token into the readedwriter, a program running on the
workstation manages the authentication process by issuing
a sequence of commands to the token and receiving the
token’s responses to these commands.

2.1.1. Hardware
The smart token consists of a plastic carrier

containing a microprocessor and non-volatile memory.
The carrier has the same major dimensions as a standard
credit card, with six recessed metallic contacts along one
edge. The reader/writer connects to the workstation
through a standard asynchronous serial communications
port, eliminating the need for a custom communications
interface.

2.1.2. software
The TBACS token responds to a set of 17

commands (see Table l), which are implemented in
firmware stored in the token’s non-volatile memory. The
firmware code is approximately 2,600 lines of C. The
sequence in which these commands are executed is
controlled by a set of flags which are checked at the first
step of each command. If the flags are not set correctly,
the given command will not be executed and the token
will return an error code.

The commands are grouped into three general
classes: security officer (SO) commands, user/woricstation
authentication commands, and user/remote host
authentication commands. The SO commands provide for
the initialization of new tokens by loading host IDS,
cryptographic keys, and PINS. The token is ready to be
issued to the user after the SO has completed this
initialization process. The remaining commands
implement the authentications required by TBACS to
control the login process.

I Table 1. TBACS Commands
Command I Verified

Reset

2.2. Authentication Processes
For a user to gain access to computing resourceson

a network using TBACS, a series of authentications
between the smart token, the user, and various host
computers must be performed. TFSACS selectively
controls access to all computers on the network, including
the user’s local workstation. By taking advantage of the
processing capabilities of the smart token, the login
process can proceed transparently to the user while
providing a high level of authentication. The DES
algorithm, operating firmware, and critical data are stored
intemally on the smart token, providing a higher level of
security than systems which use tokens only as data
storage devices.

2.2 .l.UsedToken Authentications
When a user begins the login process on a

workstation, he or she should have some means of
determining the identity of the token. A program called
the “login manager” is executed on the workstation when
the user initiates a login, and is responsible for mediating
the required series of authentications between theuser, the
token, and the workstation. First, the user must prove his
or her identity to the token. The next step performed by
the login manager is to request the token identification
number from the token and display it on the user’s screen
for visual verification. The user can choose to either

33

continue the login process or abort by simply pressing a
key. The login manager prompts the user for his or her
PINpassword, which is then encrypted and tmnsmitted to
the token along with the user ID. The token decrypts the
user PIN and uses it as the key to encrypt the user ID. The
result is then compared to the value stored on the token,
and if these values match the token accepts the identity of
the user. From this point on, TBACS uses the token to
represent the user’s identity for the remaining
authentications.

23.2. 	Threeway HandshakeProtocol
Once the previous steps have been completed, the

token and the workstation must authenticate to each other.
This is accomplished through a three-way handshake
protocol which allows each party to prove that it posesses
the same cryptographic key as the other party, without
having to physically exchange keys N S T , 19881. This
protocol works as follows:

Party A generates a @-bit random number and
transmits it to party B.
Party B encrypts the random number using its secret
key, generates a second random number, and
transmits both values to party A.
Party A decrypts the first number and verifies the
result. Party A then encrypts the second random
number and transmits it to party B.
Party B decrypts and verifies the second random
number. At this point, each party is satisfied that the
other party posesses the same secret key.

2.23. 	 User/Workstation Authentications
After the user and token authenticate to each other,

the token must authenticate to the workstation. To
perform the authentications between the workstation and
the token, the login manager requests a random number
from the token. The three-way handshake then proceeds
with the token acting as party A and the workstation as
party B. If this handshake is completed successfully, the
login manager terminates and the user is logged in to the
system.

2.2.4. 	 UsedRemote Host Authentications
At some point during a session, the user may decide

to connect to a remote host via the network. The user
activates an rlogin manager, which requests a table of the
allowed TBACS hosts for this user from the token and
displays this table in a menu format. After theuser selects
the desired remote host from this menu, the rlogin
manager connects to an rlogin server on the remote host.

At this point, the local rlogin manager acts primarily as a
communications path between the token and the remote
rlogin server. The token is provided with the host ID,
which it uses to select the proper key for subsequent
cryptographic operations. The steps of the three-way
handshake are repeated between the token and the rlogin
server on the remote host, and finally the rlogin server
terminates and the standard rlogin process connects the
user to the remote host.

23. Token Deactivation
In addition to sequence control, theTBACS token is

capable of deactivating itself after three failed login
attempts or when the token expiration date is reached.
Deactivation is accomplished by deleting the intemal
token identification number, after which none of the
authentication steps required for user login wiU execute.
A token is reactivated when a security officer installs a
new token identification number.

2.4. Key Management
When a user first enrolls on a TBACS computer

system, the user must contact the appropriate security
officer for that computer. The SO initializes a blank token
by loading the following: the security officer’s ID,
encrypted under the security officer’s PIN; the user’s ID,
encrypted under an initial user PIN,a token identification
number, and the token expiration date.

The SO next generates a DES key which is loaded
onto the token. The random number generation capability
of the security officer’s token can be used to generate
these keys. The token encrypts this key using the user’s
PIN and stores it in the key table along with the
computer’s host identification number. The host computer
can generate this key from the user’s PIN and the host
master key as required during future login processes. As
an altemative, the DES key could be stored in the
computer’s key database indexed by the user’s identity.
After receiving the token from the SO, the user may
change the token identification number and the user PIN
by entering the current values.

The user may now enroll on another TBACS
computer by contacting that computer’s so, who
generates another DES key which is stored on the token
and the host computer as previously described. The

TBACS token is designed so that only the SO who first
initialized the token can delete token keys. Other security
officers can only append keys to the token key table.*

In order to activate the token during a login, the user
must supply the correct user PIN. Once activate4 the
token can be used to authenticate the user to the user’s
workstation and then to other host computers by means of
the three-way handshake previously described.

2.5. Development
TBACS is a small but reasonably complex

embedded system containing custom hardware. It was
developed at NIST primarily as a proof-of-concept for the
Smart card based Access Control System. Initially, a
software simulation of TBACS was written to serve as a
prototype. Experimentation with the prototype resulted in
several design changes that were later incorporated into
TBACS. The prototype also served as a specification for
TBACS functions. Because of hardware requirements,
most of the simulation code could not be used in the
TBACS implementation. SACS, however, does
incorporate almost all of the TBACS code. For this
reason, the formal specification was based on the design as
reflected in the TBACS code.

The formal specification and verification were done
after the TBACS hardware and software had been
implemented because, as noted earlier, formal verification
was not initially part of the development plan.
Fortunately however, we were able to complete the
verification before the implementation of the Smart card
based Access Control System, allowing a problem
detected in the formal verification to be corrected in the
SACS implementation.

2.6. Security Policy
Generally accepted practice for developing tmsted

systems requires the statement of a security policy that
describes the security properties of the system WSA,
1985; Tavilla, 1986; Bell, 19881. A formal model d e m g
the meaning of the security policy in terms of

mathematical logic can then be constructed. Confidence is
gained in the security of the system by showing that it
implements the requirements of the model. When a
formal toplevel specification of the system is prepared, its
consistency with the model can be shown by rigorous
mathematical argument. Proofs of lower level
specifications and of the code may be formal or informal,
depending on the complexity of the system and the
resources available. Showing the consistency of the
model with the policy statement is necessarily an infomal
process.

A formal model must be oriented toward a
particular class of systems [Nessett, 19861. For example, a
model prepared for an operating system is not appropriate
for expressing the security requirements for a network.
Significant work has been done on the definition of formal
models for multi-level secure operating systems pe l l and
LaPadula, 1976 Feiertag et al., 19771, and for trusted
networks [Gove, 1985; Freeman er al., 1988;l. Integrity
models, such as those of Biba [1977], Lipner [1982], and
Clark and Wilson Cl9871 are more directly related to
TBACS verification requirements, but even these are not
completely appropriate, so we developed a model that is
particular to the requirements of TBACS.

Figure 1 summarizes the rules of operation that
were originally defined as the security policy for TBACS,
detailed inDray et al. [1989] and Smid et al. 119891. The
original security policy was developed informally. The
formal specification effort was started later. Initially we
derived mathematical statements of the assertions given in

Figure 1. However, it was not immediately clear that the
conjunction of these assertions would guarantee the
security of TBACS. For a greater degree of assurance, a
more rigorously developed model of the security policy
was required. The goal of this model development was to
prepare a formal statement, P , of the security policy at a
sufficiently abstract level that its security would be clear.
Detailed assertions, A . . . ,A, ,such as those in Figure 1,
could then be stated and the model of TBACS functions
shown correct with respect to these detailed assertions
provided that A & A , 62. . .&A, => P. This model and
its derivation are documented in the next section.

Anyone can in fact append keys to the key tabk. This somewhat suprising featurc was determined to be a rcasonabk
design tradcoff. Sccurity officers maintain control over the keys for their systems, and a user must have a valid key to ac-
cess a particular host. A user can append a key, but it will be of no use unkss it is thc correct one that is controlled by the
security officer. An alternative to this design would be to have each security officer store an encrypted secret key on the
token, but this would require the token to be initialized by up to 1 0 0 security officers, since it is not known in advance
which hosts a user willeventually need acccss to. Another alternative would be to have a “master key” that could be used
by any security officer. But such a key would add little security, sinCC a key known to over 100 people would likely be
kakcd in a short timc ina civilian environmcnL where thcrc arc no criminal penalties for disclosure of confidentialinfor-
mation.

I: Token commands may only be executed in legal se-
quences: user authorization; token authorization; worh-
tation authorization; remote host authorization.
2: A token deactivates itself when its expiration date is
reached.
3:A user must enter correct ID and PIN to be authorized:
4: A token deactivates itself afer three failed login at-
tempts
5: A deactivated token will not permit login.
6: A token allows a user access only to hosts whose ID and
key are stored on the token.
7:The user cannot open the token iffail limit exceeded or
token expired.
8: The user cannot get SO privileges.
9:An SO must enter correct ID and PIN to be authorized:

IO: Only an SO may initialize a blank token.

I1:A PIN for a particular token may be changed only by

an SO or by the owner of that token.
12: Afer an SO has initialized a token, only this SO can
enter the user PIN.
13: Afer an SO has initialized a token, only this SO can
reactivate the token afrer it has been deactivated.
14: Afer an SO has initialized a token, only this SO can
delete a key from the token.
15: Only the SO can change the expiration date.

Firmre 1. Securitv Assertions

2.7. Security Model
This section describes the derivation of the formal

statement of security policy. In summary, TBACS security
is defined as the conjunction of the following conditions:
1. 	 Access control: Access to the network is granted

only if the user posesses the comct PIN and a valid
token. Ensuring this condition holds laquires
condition 2.

2. 	 Change control: An invalid token cannot be made
valid by the user, only by the security officer.
Ensuringthis condition holds requires condition 3.

3. 	 Privilege control: A user cannot gain security
officer privileges through manipulation of TBACS
functions.3

2.7.1. Terms
The primitive terms shown in Table 2 are used. In

the remainder of the paper, the symbols &, 1 , l, =>
represent and, or, not, implies, respectively. The notation
x' indicates the value of variable x after a state transition.
The universal quantifier is denoted by A and the
existential quantifier by E.

2.72. Formal Statement ofModel

2.7.2.1. Access Control
Access to the network is permitted only if the user

possesses a PIN which encrypts the user ID to the value
stored on thetoken,andthe token is valid. That is,

(1) access => E,,in-in(id-in)=user_Pin & token-valid
where &(I) represents the encryption of I with key K.
Access is defined as authorization of remote host,
workstation, token, or user. The token is valid when the
token has not expired and is active, the failure Limit has
not been reached, and the workstation ID is in the token's
host table. Substituting terms for these conditions into

I
invariant (1) gives

(2)
remote-host-authd I ws-authd I token-authd I user-authd
=> EPin-;,,(id-in) =user-pin &

today <exp-date &
faillog < 3 &
tokenjin f null &

ws-id E host-ids

2.73.2. Change Control
Invariant (2) must be maintained across state

transitions. If the user could change the variables that
determine if the token is valid, an invalid token could be
made valid illegitimately. Thus for each variable in the
definition of token-valid, we must deline the conditions
under which its value can ~ h a n g e : ~

36

exp-date Token expiration date.
faillog Count of failed login attempts.
remote-host-authd h e iff remote host is authorized.
ws-authd h e iff workstation is authorized.
token-authd True iff token is authorized.
user-authd True iff user is authorized.

so_authd True iff security officer is authorized.

t h y Today’s date.
userjin User PIN stored on token (encrypted).
ws jd Workstation ID of the workstation to which token is connected.

host-ids Host IDSto which the token may be used to gab access.

tokenjin Token PIN.
userjin User PIN.

A PIN for a pam’cular token may be changed only by an
SO or by the owner of that token:

(token-pin’ # tokenjin => so-authd I
user authd)
Only the SO can reactivate the token afrer it has been
&activated:

(token-pin = null & tokenjin’ # null =>
so-authd)

2.7.2.3. Privilege Control
If it can be shown also that the user cannot obtain

security officer privileges, the system is considered s e a .

The user cannot get SOprivileges:
user-authd => so-authd

2.73. Security Assertions
More detailed assertions were developed from the

design description. Many of these are directly derivable
from the formal policy statement given above. Others

authorization; remote host authorization:
(remote-host-authd => ws-authd) & (ws-authd =>

token-authd) & (token-authd => user-authd)
2; A user must enter correct ID and PIN to be authorized:

(user-authd => EPin-Jid-in) = user-pin)
3: A token deactivates itself when its expiration date is
reached:

(today 2 exp-date & so-authd => tokensin =
null)
4: A token deactivates itself afer three failed login
attempts

(fail-log 2 3 => tokenjin = null)
5: A deactivated token will not permit login.

(token-pin = nuU => user-authd)
6: A token allows a user access only to hosts whose ID and
key are stored on the token:

(user-authd 3 ws-id E host-ids)
7:The user cannot open the token iffail limit exceeded or
token expired:

(user-authd => fail-log < 3 &today < exp-date)

37

8: The user cannot get SO privileges:
(user-authd => so-authd)

9: A security offreer must enter correct ID and PIN to be
authorized:

(so-authd => E,,,(id-in) = so-pin)
10: Only an SO may initialize a blank token:

/* relies on external conditions, cannot be proven */

lkansition Assertions
These assertions must be true of all ”sitions

between states.
11: The initial value for the user PIN can only be entered
by the SO:

(user_Pin = null & userjin’ f null => so-authd)
12: A PIN for a particular token may be changed only by
an SO or by the owner of that token:

(tokenjin’ f takenjin => so-authd I
user-authd)

13: Only the SO can change the expiration date:
(e--date’ # exp-date => so-authd)

14: A PIN for a particular token may be changed only by
an SO or by the owner of that token:

(token-pin’ f tokenjin => so-authd I
user-authd)
15: The failure log is reset only after a successful login.

(fail-log’ = 0 & fail-log > 0 & fail-log < 3 =>
user-authd)
16: Only the SO can reactivate the token after it has been
deactivated:

(tokenjin = null & tokenjin’ f null =>
so-authd)
17:Afer an SO has initialized a token, only this SO can
delete a key from the token:

((Ehh0st-id-t (7 (h E host-ids’) & h E host-ids))
=> so-authd)

2.8. verification
When the verification was started, TBACS had

already been prototyped and built. The SACS system,
based on TBACS, was undergoing critical design review
during the verification effort. The verification thus served
as an additional check on the soundness of the SACS
design beyond the experimentation done with TBACS.

The security assertions and formal top level
specification (FILS) were specified using Unisys’ Formal
Development Methodology (FDM) [Eggert et al., 19881.

FDM provides a formal language called Inajo [Scheid and
Holtsberg, 19883 that is derived from first order logic.
Inajo is used to repment the system as a state machine,
specifying system states, state transitions, and security
criteria. An interactive theorem proving tool [Schorre et
al., 19881assists the user in showing that all aansforms of
the abstract machine meet the safety criteria. The ten
critical functions that implement the three-way handshake
and control functions were modeled with 297 lines (not
including comments) of Inajo.

The verification resulted in some cases where the
FTLS for a command could not be proven consistent with
the security requirements. Such cases where the proof
failed were the most interesting part of the verification.
They prompted the discovery of some subtle discrepancies
between the security requhements and the FTLS.With
one exception, the discrepancies would not have
compromised the security of the system, although they did
expose design changes that couid strengthen system
security. The verification effort thus served to increase
our confidence in the security of TBACS. This section
discussessome of the anomalies that were discovered.

The security officer authentication procedure had no
check that the input date parameter is greater than today’s
date, so assertion 2 could not be shown for this procedure:

token deactivates itself when its erpiration date is
reached:

(today 2 exp-date => tokenjin = null)

The SO could enter an expiration date that invalidated this
requirement, although the user would still not be able to
gain access in this case.

A more interesting condition occurred with the
procedure for entering the user PIN. The following
assertion could not be satisfied:

After an SO has initialized a token, only this SO can enter
the user PIN:

(user-pin = null & user-pin’ f null => so-authd)
Proving this condition would have required assuming that
no combination of key and data encrypted to null, i.e.:

A kid, p ~ i nEp(i)# null)

which, although highly improbable, is not strictly valid.

This was because a user PIN initialized to 0 could match
the encryption of the entered user ID with the user PIN if
E,,(id) = 0. The user PIN can be changed if either (the
SO opened the token) or (the user opened the token and

38

E P d Z D)= stored encryption of user ID). If Ep,(id) = 0
and the stored encryption of user IDis 0, then the user PIN
could be changed by user rather thanjust the SO.

Similarly, the system was designed to deactivate a token
by setting its token PIN to null. Since the token PIN is an
encrypted value, there was a small, but non-zero,
probability that two values would be found that encrypt to
null. In the implementation, special flags were used to
indicate the conditions described above, rather than using
null values.

The user authentication procedure allowed the
failure counter to be bumped to 3 without clearing the
token pin after it becomes equal to 3, so the assertion
below could not be proven for this procedure.

A token deactivates itself afer three failed login attempts:
(fail-log 2 3 => tokenjin = null)

This occuned because the failure log was specified to be
tested initially in the user authentication procedure but
was not tested again after it was incremented when the
user failed to authenticate. The token would of course be
deactivated when the user attempted to log in again.

When the SO opened the token entering the
procedure to change the token PIN, it was possible for the
token to be expired but still active. The requirement that
could not be satisfied is:

A token deactivates itself when its expiration date is
reached:

(today 2 exp-date => tokenqin = null)

The initial design called for the token authentication
to be performed before the user authentication. By the
time the formal specification was prepared, this had been
changed to perform the user authentication first. The
security requirements thus had assertions that the user
could not be authenticated if the token was expired or
deactivated:

A deactivated token will not permit login:
(token-pin = null => user-authd)

user cannot open token if fail limit exceeded or token
expired:

(user-authd => faillog < 3 & today c exp-date)

However, the checks for token expiration and deactivation
remained in the authenticate token procedure, so only the
following assemonS could be shown:

(tokenjin = null => token-auW)
(token-authd => fail-log < 3 & today < exp-date)

The design was changed to do the validation in the user
authentication procedure.

One error was discovered that could have
compromised the security of TBACS. If a token
deactivates itself because it expires or because there were
too many unsuccessful login attempts, only the security
officer should be able to reactivate it:

After an SO has initialized a token, only this SO can
reactivate the token afer it has been deactivated:

(tokenjin = null & tokenjin’ # null =>
so-authd)
An error in the token PIN change procedure allowed a
user to reactivate a token that had been deactivated as a
result of expiration. The token pin change procedure
checked that either the user or security officer had been
authenticated, without checking to see if the token was
deactivated. In the original design this would have been
acceptable, because the token was authenticated first, then
the user. The token authentication procedure checked for
a deactivated token and the sequence would have been
stopped by this procedure. With the change to
authenticate the user first, the token PIN change procedure
could be invoked before the token had been authenticated.

2.9. Discussion
This section discusses the impact of the formal

verification on the design and construction of TBACS.

2.9.1. AssurancdConfidence Gained
The most sigmficant problem discovered was the

possibility that a user could reactivate a token after it had
deactivated itself because the expiration date was reached
or for other reasons. Preventing this error from being
incorporated into a released product made the verification
well worth the effort.

Although the other dkcrepencies detected in the
verification would not compromise the security of the
system, in some cases they indicated m d c a t i o n s that
could be made to enhance the security of TBACS. The
failure to prove the assertions “A deactivated token will
not permit login” and “The user cannot open token i f
fail limit exceeded or token expired” is one such case.It

39

1

is generally best to detect invalid login attempts as soon as
possible. The protocol implemented by the system
resulted in the date check and token deactivation check
occurring in the token authentication function, rather than
in the user authentication function, which occurs earlier in
the authentication process.

2.9.2. 	 Estimated Time Savings
Since the formal verification was performed after

the design and implementation of TBACS was completed,
it is difficult to estimate the time savings which might
have resulted from applying these techniques through all
phases of the project. The original software simulation of
the TBACS command set consists of 2500 lines of C
source code, and requkd approximately three man-
months to complete. This code was used as a sounding
board to test various ideas during the design of TBACS,
and later served as the design specification for the system
filmware.

Many design decisions were explored by modifymg
the simulation code and observing the results. In some
cases, unexpected side effects were discovered. In other
cases, some features proved to be impossible to
implement. This approach provided a reasonable
assurance that the system would perform as expected, but
was labor intensive. By applying formal verification
methods, the programming effort required to test ideas
which proved to be inconsistent with the overall design
might have been avoided. Since testing these ideas
through code modification involved more than 50% of the
programming effort, a significant time savingswould have
resulted. As shown in Table 3, the verification effort was
approximately 6% of the software design and
development time.

2.93. 	Limitations
Does the verification guarantee that TBACS and

SACS are absolutely secure? No, the verification only
checked the consistency of a formal specifkation, which is
essentially a simplified model of TBACS, with the
security criteria. Many code-level details are not dealt
with by the formal specification. In addition, only the ten
most critical functions were modeled But the goal of the
verification effort was only to verify the soundness of the
design and detect errors that may not have been
discovered in TBACS before the SACS system was
completed. We believe this goal was achieved at a
reasonable cost in time and resources. To our knowledge,
TBACS is the first smart token application to have a
formally verified design. The SACS design verification is
being completed, representing the first application of
formal verification to a smart card application.

The cost and difficulty of using formal methods
rises very quickly with the depth to which verification is
performed. A full code-level verification would probably
be far too costly to justify on a system of this type. Other
methods, such as code reviews and inspections, can be
used to check the consistency of the code with the formal
specification. Determining the optimal combination of
formal verification and traditional methods is a
challenging management problem.

3. X9.9 Message Authentication System
To support the need for secure electronic funds

transfer (EFT) of both industry and its own bureaus, the
U.S. Treasury Department initiated a program for
certifying EFT equipment Ferris, 1987; Treasury,19861.
The EFT equipment being certified provides ANSI X9.9
Message Authentication capability [ANSI, 19861 and
ANSI X9.17 Key Management functions [ANSI, 19841.

The equipment typically includes a secure
microprocessor and a chip to perform encryption using the
Data Encryption Standard [NBS, 19771. Softwarecontrols
access to the various functions through either password
protection or magnetic cards. The software is usually
small, approximately 4,000 lines of source code.
Commercial developers supplying EFT equipment to the
Treasury Department are required to develop it according
to specifications given in [Treasury, 1986bl. The
specifications mandate security features recommended in
BSA, 19861 and include requirements to aid in
verification suggested by W S , 19821.

40

In an earlier project we had developed static
analysis tools to assist in the certification of software used
in EFT equipment IKuhn, 19881. To improve the
certification process, a proposal was made to prepare a
formal reference specification of devices implementing
ANSIX9.9. A preliminary draft of this specification was
prepared using the Vienna Development Method
notation [Bjomer and Jones, 1978; Jones, 19801.

ANSI X9.9 defjnes the format of EFT messages,
gives a digital signature algorithm using DES, and
specilies several ways in which the signatures can be
attached to messages. The digital signature, or Message
Authentication Code (MAC), is computed by encrypting
the first 64 bits of the message using DES [N B S , 19771
and then XORing the resulting 64 bits with the next 64
bits and feeding it back into DES. This continues until the
end of the message. The leftmost 32 bits of the final
output ate used as the MAC.

A 64 bit key is used in computing the digital
signature. Every key has a lifetime known as the
cryptoperid, which is defined as [ANSI,19861

The time span during which a specific key is
authorized for use or in which the keys for a
given system may remain in effect.

To protect against message duplication each message
comes with a message identifier which is unique for
spec& dates and cryptoperiod. The standard states that
[ANSI, 19861

The message identifier, which shall be used as
an authentication element, is a value that does
not repeat before either the change of date or
expiration of the cryptoperiod of the key used
for authentication, whichever occurs h t .
I.e., there shall not be more thanone message
with the same date and the same message
identifier that uses the same key.

Thus for all messages mi, mi,where i g j , the following
invariant is maintained:

(date(m,) # date(mj)

I message-D(m,.)# message-mmj

I key@,) f key(mj1)

Keys are distributed by a combination of manual
and automatic means, and are indexed by a key ID. A
message authentication device uses the key ID field
contained in a message to determine which key should be
used to authenticate the message. There are no restrictions
on key ID reuse or on when a cryptoperiod can expire. To
understand the difliculty that a novice user might have in
interpreting the standard, consider the following two

messages. Remember that the key is not part of the
message; the key ID is used to retrieve it from databases
stored by both sender and receiver.

Feb 2 BBBB

Suppose that the cryptoperiod for key AAAA ends at
12:OO noon and that for key BBBB starts at 12:OO noon. If
the message with key AAAA is sent at 1159 am. and
received at 12:Ol p.m., which key should be used to
authenticate the message? The ayptoperiod is defined as

The time span during which a specific key is
authorized for use or in which the keys for a
given system can remain in effect.

In practice this is interpreted as requixing the key to be
discontinued on both the sender’s and receiver’s ends at
the same time. Thus for our example, the message with
key AAAA would fail to authenticate because the
cryptoperiod for key AAAA had expired at noon, even
though the message was sent before the expiration of the
cryptopenod. If the message with key BBBB were
received after noon, it would authenticate correctly,
regardless of when it was sent. Although this is the
correct way to use X9.9, it may seem unsatisfactory to the
user, raising questions about how the standard should be
interpreted.

3.1. Discussion
The dd6cult.y in interpretation occumd in the

process of specifymg a device to implement X9.9, rather
than in verification. It has been suggested that the primary
value of formal methods is in forcing a disciplined and
thorough analysis during specification, rather than in the
verification itself. The formal specification can be used to
clarify aspects of the requirements that may not be clear
from the natural language statement. This is valuable in
software development for communication among different
developers. In standards, the formal specification can be
even more valuable because the standard is often used by
hundreds or even thousands of developers who may have
no communication with each other, yet who must produce
software products that can work correctly with products
that others produce according to the standard.

We found the Vienna Development Method notation
very effective for specification. At a surface level,
specifications in VDM are similar to Inajo (FDM)
specifications, although the underlying theory is different.
Anyone familiar with one method would have little
trouble using the other. The extent to which VDM will be

useful for verification is a question for future work. We
hope to investigate this question in the future using the
RAISE (Rigorous Approach to Industrial Software
Engineering) tools developed by the European Esprit
program Weilsen et al., 19891.

4. Conclusions and Future Directions
The formal specification and verification work

described in this paper was undertaken primarily to gain
experience with verification tools, such as FDM, in
preparation for experimenting with the application of
formal methods to safety-critical systems. The project
surpassed this original goal, enabling us to contribute to
the security of a critical system. Our experience with
FDM was quite positive. We believe the system is easily
accessible to anyone with a background in mathematical
logic. As time and funding permit, we plan to acquire
other verification tools as well.

Although formal methods are increasingly used on
security critical systems, other application domains have
seen relatively little use of these methods. We are
interested in determining the extent to which the tools
used in the work described in this paper can be applied to
safety-critical systems, particularly medical devices. We
hope to investigate the use of FDM, RAISE, and other
tools in this domain in thenear future.

5. Acknowledgements
We are grateful to Miles Smid for supporting the

verification of SACS, the successor to TBACS. Miles was
also helpful in explaining ANSI X9.9. We thank Roger
Martin for making this work possible amidst many
pressures from other projects.

The identification of certain commercial systems in
this paper does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor
does it imply that the systems are necessarily the best
available for thepurpose.

6. References
ANSI [1984] Financial Institution Key Management
(Wholesale), ANSI X9.17-1984, American National
Standards Institute.
ANSI [19861 Financial Institution Message Authentication
(Wholesale), ANSI X9.9-1986, American National
Standards Institute.

Bell, D.E. [1988] ‘‘Modeling Issue Paper,”National
Computer Security Center, Contract No. MDA904-86-G-
0028.
Bell, D.E. and L.J. LaPadula [1976] “Secure Computer
Systems: Unified Exposition and Multics Interpretation,”
ESD-TR-306, Hauscom AFB, Bedford, Mass.
Biba, K.J. [April 19771 “Integrity Considerations for
Secure Computer Systems,” Mitre Corp., TR-3153,
Bedford, Mass.
Bjorner, D., and C.B. Jones [1978] The V i e m
Development Method: The Meta Language, Lecture
Notes in Computer Science, Vol. 61, Springer Verlag,
New York.
Clark,D.D. and D.R. Wilson [1987] “A Comparison of
Commercial and Military Computer Security Policies,”
Proceedings, IEEE Symposium on Security and Privacy,
Oakland,CA.
Dray, J.F., M.E. Smid, R.B.J. Wamar, “Implementing an
Access Control System with Smart Token Technology,”
Proceedings, SCATIASlT Conference, May 1989,
Washington D.C., Miller-Freeman Publications.
Eggert, P., D. Cooper, S . E c k m a ~ ,J. Gingerich, S .
Holtsberg, N. Kelem, R. Martin mcember 19881 FDM
User Guide Unisys Corp. Thf8486/000/02.
Feiertag, R.J., K.N. Levitt, L. Robinson, [1977] “Proving
Multilevel Security of a System Design,” Proceedings,
ACM Symposium on Operating Systems Principles.
Freeman, J.W., RB. Neely, G.W. Dinolt [1988] “An
Internet Security Policy and Formal Model,’’
Proceedings, II th National Computer Security
Conjierence.
Fems, M. and A. Cerulli, [1987] “Certification, A Risky
Business,” Proceedings, loth National Computer Security
Conference.
Gove, R.A., [1985] “Modeling of Computer Networks,”
Proceedings, 8th National Computer Security
Conference.
Jones, C.B. E19801 Software Development: A Rigorous
Approach, Prentice/Hall, Englewood Cliffs, N.J.

Kuhn, D.R. [1988] “Static Analysis Tools for Software

Security certification,” Proceedings, 11fh National

Computer Security Conference.

Levin, T.E.,S.J. Padilla, R.R. Schell[1989] “Engineering
Results from the A1 Formal Verification Process,”
Proceedings, 12th National Computer Security
Conference.
Lipner, S.B. [April 19821 “Non-Discretionary Controls for
Commercial Applications,” Proceedings, IEEE
Symposium on Security and Privacy, Oakland,CA.

42

McLean, J., [July, 19843 “A Formal Method for the
Abstract Specification of Software”,Journal of the ACM ,
Vol. 31, Nr. 3.
Neumann, P.G., [August 19741 “On the Design of a
Provably Seam Operating System,” Proceedings,
International Workshop on Protection in Operating
Systems.
Neumann, P.G., R.S. Boyer, R.J. Feiertag, K.N. Levitt, L.
Robinson w a y 19801 “A Provably Secure Operating
System: the System, Its Applications, and Proofs,” SRI
Intl., Rpt. CSLll6.
NBS [1977] National Bureau of Standards, Data
Encryption Standard, Federal Information Processing
Standard, Publication 46,National Bureau of Standards,
Gaithersburg, Md., 1977.
NBS [1982] National Bureau of Standards, “Software
Validation, Verification, and Testing Technique and Tool
Reference Guide,’’ National Bureau of Staruiarak Special
Publication 500-93, P.B. Powell, editor, National Bureau
of Standards, Gaithersburg, Md, 1982.
Neilsen, M., K. Havelund, K.R.Wagner, and C. George
[1989] “The RAISE Language, Method and Tools,”
Formal Aspects ofComputing, 1,1,1989.
Nesset, D. [1986] “Factors Afecting Distributed System
Security,” Proceedings, IEEE Symposium on Security and
Privacy, April, 1986, OaklandCA.
NIST [1988] Smart Card Technology: New Methods for
Computer Access Control National Institute of standards
and Technology, special Publication 500-157, National
Technical Information Service, Springfield, VA,
September 1988.
NSA [1985] National Security Agency, Trusted Computer
System Evaluation Criteria,’’ Dod 5200.28-STD.
NSA [1986] National Security Agency, X12, INFOSEC
Standards and Evaluations Group, “Functional Security
Requirements Specifications - NSA Specification 86-16”.
National Security Agency, FortMeade, Md.
Scheid, J., S. Holtsberg [Spetember 19881 Inajo
Specification Language Reference Manual, U&ys Corp.
TM-6021/001/04.
Schone, D.V., D. Cooper, P. Eggea, J. Gingerich, G. Smith
[November 19881 The Interactive Theorem Prover (ITP)
Reference Manual, U a y s C O ~ . TM-6889/000/08.
Smid, M., J. Dray, R.B.J. Wamar, [19893 “A Token Based
Access Control System for Computer Networks,”
Proceedings, 12th National Computer Security
Co@erence.

Tagney, J.D., S.R. Ames Jr., E.L. Bulke, [June 1 9 n l
“Security Evaluation Criteria for MME Message Service
Selection,” MIX-3433,MITRE Corp.

Tavilla, D.A. [June 19861 “A Guide to Understmdmg the
Orange Book Security Model Requirements,” MlTRE!
Corp.
Treasury [1986] U.S. Department of the Treasury
Directive 16-02, “Electronic Funds and Securities
Transfer Policy -- Message Authentication and Enhanced
Security,” October 3,1986.
Treasury [1986b] U.S. Department of the Treasury,
“Criteria and Procedures for Testing, Evaluating, and
Ce-g Message Authentication Devices for Federal
E.F.T.Use”, Sept. 1,1986.
Young, W.D., P.A. Telega, W.E. Boebert, R.Y. Kain
[1986] “A Verified Labeler for the Secure Ada Target,”
Proceedings, 9th National Computer Security
Cogerenee.

43

