
Role Based Access Control on

MLS Systems without Kernel

Changes

D. Richard Kuhn

National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Abstract

Role based access control (RBAC) is attracting increas-
ing attention as a security mechanism for both commer-
cial and many military systems. This paper shows how

RBAC can be implemented using the mechanisms avail-
able on traditional multi-level security systems that im-
plement information fow policies. The construction from

MLS to RBAC systems is signifcant because it shows that

the enormous investment in MLS systems can be lever-
aged to produce RBAC systems. The method requires no

changes to the existing MLS system kernel and allows im-
plementation of hierarchical RBAC e n tirely through site

confguration options. A single trusted process is used to

map privileges of RBAC roles to MLS labels. Access is

then mediated by the MLS kernel. Where C is the num-
ber of categories and d the depth of the role hierarchy, t h e

number of roles that can be controlled is approximately d

C	 ;d

.

C	 ; 2d

1	 Introduction

Role based access control (RBAC) is an alternative t o

traditional discretionary (DAC) and mandatory access

control (MAC) policies that is attracting increasing at-
tention [1], particularly for commercial applications. The

principle motivation behind RBAC is the desire specify

and enforce enterprise-specifc security policies in a way

that maps naturally to an organization's structure. Tra-
ditionally, managing security has required mapping an

organization's security policy to a relatively low-level set

of controls, typically access control lists.

With RBAC, security is managed at a level that cor-
responds closely to the organization's structure. Each

user is assigned one or more ro le s , and each ro le is as-
signed one or more privileges that are permitted to users

in that role.

For example, roles in a bank may include the role

of teller or accountant. Each of these roles has a set of

privileges or transactions that they can perform, includ-
ing some privileges that are available to both roles. Roles

can be hierarchical. For example, some roles in a hospital

may be health care provider, nurse, and doctor. The doc-
tor role may include all privileges available to the nurse

role, which in turn includes all the privileges available to

the health care provider role.

Roles have been used in a variety of forms for com-
puter system security for at least 20 years, and several

proposals for incorporating roles into existing access con-
trol mechanisms have been published [2], [3], [4]. More

recently, formal defnitions for general-purpose RBAC n o -
tions have been proposed [5], [6], [7].

This paper shows how R B A C can be implemented

using the controls available on traditional lattice-based

multi-level secure systems. This approach presents a

number of advantages:

•	 Many frms have s p e n t h undreds of millions of dol-
lars building, testing, and maintaining MLS systems.

By implementing RBAC using a single trusted pro-
cess, this investment can be leveraged to produce new

systems that have great commercial value without re-
quiring a similarly large investment to build entirely

new RBAC systems.

•	 The assurance process for trusted systems is lengthy

and expensive. By confning RBAC to a single

trusted process that sits above the MLS kernel,

the assurance process should be much less expen-
sive than that required for an entirely new system.

Since RBAC is implemented through confguration

options, a system can provide RBAC while retaining

the same high assurance level.

•	 Operating RBAC and MLS security s i m ultaneously

on a system may b e m uch easier to analyze for assur-
ance purposes. By using only combinations of cat-
egory labels to implement RBAC, information fow

can be protected using the conventional sets of secu-
rity l e v els and categories.

2	 Implementing RBAC on Multi-

level Secure Systems

RBAC can be implemented directly on multi-level secure

(MLS) systems that support the traditional lattice based

controls. This is signifcant because it means the enor-
mous investment in MLS systems can be applied to im-
plementing RBAC systems. The method described here d

C ;d

can handle approximately RBAC privileges,

C; 2d
where C is the number of categories supported on the

MLS system. and d the depth of the role hierarchy.

2.1 MLS Access Controls

MLS access controls make use of a set of labels attached

to subjects and objects. The labels defne a set of se-
curity le ve ls , such as CONFIDENTIAL, SECRET, TOP

SECRET, and a set of categories, s u c h a s N A TO, NO-
FORN. Conventional MLS systems implement the mil-
itary security policy defned by the Bell and LaPadula

model [8].

We assume a standard set of features and functions

for an MLS system, such as those described in [9] or [10].

The MLS system is assumed to maintain the following

sets:

L = an ordered set of security clearance levels l;

C = a set of category names c.

Each subject s has a set of category names cs

authorized

for use by subject s, and each object o has a set of cat-
egory names co

associated with the object. Levels and

categories defne labels for subjects s and objects o, des-
ignated A(s) a n d A(o) respectively. The labels form a

lattice where A(i) > A(j) i f li

> lj

and ci

2 cj

For read and activate access, the mandatory ac-
cess control rules require the simple security p r o p e r t y:

A(s) > A(o). For write access, the *-property c o n trols

access. The traditional, or liberal *-property requires

that A(o) > A(s). The strict *-property, designed to

prevent i n tegrity problems as a result of \write-up", re-
quires A(o) = A(s). A variation on the *-property, t h e

trusted liberal *-property, i n troduced by Bell [11], desig-
nates separate labels for read and write, Ar

and Aw

re-
spectively. The simple security rule is applied for Ar

and

the *-property for Aw

.

2.2 MLS to RBAC Mapping

A role can be thought of as a set of permissions on priv-
ileges. RBAC can then be implemented on an MLS sys-
tem by establishing a relationship between privilege sets

within the RBAC system and category sets within the

MLS system.

To implement RBAC, a trusted interface function is

developed to ensure that the assignment o f l e v els and cat-
egories to users is controlled according to the RBAC r u l e s .

No modifcations to the MLS system are necessary. R o l e s

and their associated privilege sets must be mapped by

the interface function to sets of categories. The trusted

interface operates according to the rules given in Section

2.1. Each time a user establishes a session, the interface

presents the user's role options, then checks to ensure that

the user is authorized for the requested role. The trusted

interface then sets the subject's categories according to a

mapping function that determines a unique combination

of categories for the role requested. (See Figure 1.)

A problem arises in the choice of the mapping func-
tion. One possibility is the one-to-one assignment o f M L S

categories to RBAC privileges. This approach i s u s e d i n

the Data General DG/UX B2 Secure System [12]. For

small numbers of privileges, this is an efcient solution.

DG/UX supports up to 128 separate roles. Users can

simply be assigned a set of categories that correspond to

the privileges of their roles, then access is handled by t h e

MLS system.

Unfortunately, most MLS systems support a rela-
tively small number of categories and levels, typically 64

to 128 of each. Obviously, if the MLS system were testing

that ls

> lo

^ co

= cs, rather than ls

> lo

^ co

< cs, then

we could simply use subsets of categories to map to priv-
ileges, giving a total of 2c mappings. But since we w ant

to be able to control access to RBAC privileges simul-
taneously with MLS access control without changing the

MLS system, we need a method that can uniquely rep-
resent a large number of privileges using MLS categories

and levels.

One alternative is to establish a mapping between

RBAC privileges and pairs of MLS categories. This ap-
proach w ould support a total of (n2 ; n);2 privilege map-
pings. If 64 categories are available on the MLS system,

then 2, 016 privileges could be mapped to MLS categories.

This is a more reasonable number, but large organiza-
tions may require many more individual privileges to be

controlled. Also, in some applications only a very small

number of categories may b e a vailable. If only 10 cat-
egories were available, then only 45 privileges could be

controlled in this manner.

A more generalized approach i s t o u s e c o m binations

of categories. For c categories, the largest numbe r o f p r i v -
ileges that can be distinguished is

c

c;2

With 64 categories, this would be 1:83 x 1017 .

2.3 Construction of Category Sets

This section describes a method of implementing RBAC

by mapping from roles to categories at system initializa-
tion time. Only category sets are used; security l e v els are

not needed to control access to RBAC-protected objects.

This makes it possible to use RBAC simultaneously with

the information-fow policies supported on MLS systems.

2.3.1 Roles and Privilege Sets

Let R be a tree of roles and associated privileges, where

the root R0

represents one or more privileges that are

available to all roles in the system. Child nodes repre-
sent more specialized privilege sets. A child node Rj

can

access all privileges associated with role Rj

and any a s -
sociated with roles Ri, w h e r e Ri

are any ancestor nodes

of Rj

. The privilege sets are assumed to be disjoint. If

roles exist with overlapping privilege sets, then new roles

can be created with the common privileges and existing

roles can inherit from them. For example, if Ri

and Rj

have privilege sets P (Ri) a n d P (Rj) t h a t o verlap, then

1. create a new role Rk

with privilege set P (Ri) \

P (Rj

)

2. remove privileges in P (Ri) \ P (Rj

) from Ri

and

Rj

3. modify the role hierarchy so that role Ri

and Rj

inherit from Rk, and Rk

inherits from the role that Ri

and Rj

previously inherited from.

Let

C = total number of categories on the MLS system

to be used to implement RBAC.

d = maximum depth of child nodes from the root,

where the root is level 0. This is equivalent to the maxi-
mum level of the leaf nodes.

The categories from C will be assigned to roles and

privilege sets. If the tree is relatively balanced, then C ; d

categories are available at each l e v el for representing priv-
ilege sets. To distinguish between privilege sets, combi-
nations of categories are used. At e a c h l e v el in the tree,

where n is the number of categories available for repre-
senting roles at that level, the number of privilege sets

n

that can be distinguished is . Using C ; d cate-
n;2

gories at each o f d levels, the total number of privilege sets

in the tree is therefore (depending on how w ell balanced

d

C ;d

the tree is) approximately .

C ; 2d

2.3.2 Assignment of Categories to Privilege Sets

Privilege sets are associated with categories as follows:

1. A role at the root of the tree, with privileges avail-
able to all users, is associated with a randomly selected

category. This category is removed from the set of cate-
gories available to designate roles.

2. Roles at level l of the tree, where nl

indicates the

numb e r o f n o d e s a t l e v el l, are associated with unique sets

of categories drawn from the set of remaining categories.

The number of categories needed for level l is the smallest

c

numbe r c such that nl

: . Choose c categories
c;2

from the remaining set of categories. Remove these c

categories from the set of categories available to designate

roles.

3. From the set of c categories chosen in step 2, assign

a unique set of categories to each privilege set at level l.

Step 2 ensures that there are enough categories to make

all the sets diferent.

One way of implementing this step is to generate a

list L1

of numbe r s f r o m 1 t o 2

c ; 1, then extract from this

list a second list L2

containing all numbers whose binary

representation contains c;2 bits. Each bit is associated

with a category. Assign to each privilege set at level l a

diferent n umbe r f r o m L2. Then label each privilege in

a privilege set with category i if and only if bit i in the

binary representation is a 1. For example, the mapping

from bits to categories in Table 1 shows how the proce-
dure works for c = 3 categories. Extracting all sets of

2 categories from the list gives fc2, c 1g, fc3, c 1g, fc3, c 2g.

(These are highlighted with brackets in Table 1. It would

also be possible to have three distinct sets of one category

each; two are used simply to demonstrate the procedure.)

Because all of the numbers associated with privilege sets

have c;2 bits, each privilege set will be labeled with a

diferent set of categories.

4. Repeat steps 2 and 3 until all privilege sets have

been assigned a set of categories.

L1

L2:binary Categories S

1::23 ; 1 x3x2x1

Cp

= jjxj

�1

cj

1 001 c1

2 010 c2

3 f011g f c2, c 1

g

4 100 c3

5 f101g f c3, c 1

g

6 f110g f c3, c 2

g

7 111 c3, c 2, c 1

Table 1.

2.3.3 Assignment of Categories to Roles

Each role must be able to access all privileges associated

with its privilege set and all privilege sets associated with

roles that it inherits, i.e., roles that are represented by an-
cestor nodes in the role hierarchy. Categories are assigned

to roles as follows:

1 . A s s i g n t o r o l e Ri

the set of categories assigned to

its privilege set.

2. For each ancestor role Rj

from which role Ri

inher-
its privileges, add to the labels for role Ri

the categories

associated with the privilege set for Rj

.

2.4 Analysis of MLS to RBAC Mapping

MLS systems typically provide 64 to 128 categories for la-
beling privileges. The construction described in the pre-
vious section will provide a capability for approximately

d

C ;d

roles. Tables 2 and 3 show t h e n umbe r o f

C ; 2d

roles that can be controlled for various combinations of

depth and breadth (branching factor) of role hierarchies.

Depth Max. Branching Factor Max. Roles

5

10

15

20

924

20

6

3

6 x 1014

1 x 1013

4:7 x 1010

3:4 x 109

Table 2. Number of Roles Supported with 64

Categories

Depth Max. Branching Factor Max. Roles

5

10

15

20

25

30

40

5,200,300

924

70

20

10

6

3

3:8 x 1033

4:5 x 1029

4:7 x 1027

1:0 x 1026

1:0 x 1025

2:2 x 1023

1:2 x 1019

Table 3. Number of Roles Supported with 128

Categories

2.5 Example of MLS to RBAC Mapping

Figure 2 shows an example of category labeling for a hi-
erarchical privilege set defning 36 roles. The tree has a

depth of 2 and a maximum branching factor of 6. A total

of 9 categories are needed. The privilege sets assigned to

a role are those labeling the role's node in the tree, plus

the labels of any ancestor nodes. For example, role R33

has categories a, b, d, g, a n d i.

Consider roles R0, R1, a n d R20. Privileges authorized

for role R0

are assigned category a. Privileges authorized

for role R1

are assigned categories a, b and c (a from

role R0

and b and c from role R1). Privileges authorized

for role R20

are assigned categories a, b, c, g, a n d h. (a

from role R0; b and c from role R1

and g and h from role

R20). A user who establishes a session at role R1

will be

assigned categories a, b and c. Note that this user can

access the privileges assigned to role R0

because the user

has category a. A user who establishes a session at role

R20

will be assigned categories a, b, c, g, and h. T h i s

user can access all inherited privileges, but not any other

privilege sets because all others have at least one category

not assigned to role R20.

Figure 3 shows a portion of Figure 2, with privilege

sets associated with various roles. Each of the privileges,

P1

and P2

associated with role R0

is labeled with category

a. Therefore any user authorized for role R0, o r a n y role

that inherits privileges from R0

(e.g. R1, R7, etc.), can

access privileges P1

or P2. Note that a user authorized

only for R0

cannot access privileges such a s P5, P 6, P 7,

because these are labeled with categories a, b, a n d c, b u t

R0

has only category a. A user authorized for role R1,

or any role that inherits from R1

can access P5, P 6, P 7,

because R1

has categories a, b, and c.

3	 Discussion and Future Direc-

tions

Several authors have discussed the relationship between

MLS lattice based systems and RBAC. Nyanchama and

Osborn [13] and Sandhu [1 4] presented methods for sim-
ulating lattice based MLS systems in RBAC. Osborn [15]

investigated the interaction between RBAC and manda-
tory access control rules, showing that signifcant c o n -

straints exist on the ability to assign roles to subjects

without violating MAC rules.

One advantage of the approach described in this pa-
per is that it allows RBAC t o b e o p e r a t e d s i m ultaneously

with MAC. Because the roles-to-categories construction

allows the implementation of a large role hierarchy w i t h a

relatively small number of categories, the remaining cat-
egories can be used to implement the traditional multi-
level security model. If the RBAC system does not embe d

data accesses in processes or roles, then one set of cate-
gories can be used to implement RBAC, with the remain-
ing categories available for implementing MAC. If the pro-
cesses or transactions available to users are labeled with

a level of system-low and with categories according to the

construction of Section 2, then system users can activate

any process available to their role, and apply the process

to any data for which they are cleared by virtue of MAC

clearance level and categories. This architecture may b e

particularly advantageous in a military system that must

support both roles and MAC security. For example, a

system for satellite photo analysts could provide a role

structure to control access to photos that are classifed

into diferent clearance levels and categories.

One possible limitation of the construction in Section

2 is that the role to category mapping must be regener-
ated if changes are made in the role structure. In practice,

however, role structures change relatively slowly, a n d t h e

mapping can be regenerated automatically without im-
pacting users. Another potential problem is that the hi-
erarchy created by the algorithm must be a tree, rather

than a lattice hierarchy. This should not be a serious

limitation because, to our knowledge, existing role based

systems use tree hierarchies. Note that the data objects

controlled by M A C rules can still be organized int o a l a t -
tice. The MAC system will use both levels and categories,

while the RBAC system uses only a set of categories with

all processes labeled at system-low.

An MLS system designed using the \traditional" *-
property w ould encounter constraints on assigning roles

to subjects [15]. In particular, a role R is assignable to

an untrusted subject only if all of the following hold:

• w-level of R > r-level of R

• A(s) > r-level of R

• A(s) : w-level of R

where r-level is the maximum security level of any o b j e c t

readable by processes in role R, and w-level is the min-
imum security level of any object writable by processes

in role R. Since a role might require read and write ac-
cess to objects at a broad range of security l e v els, this

constraint could theoretically present a problem in im-
plementing RBAC with MAC. However, practical appli-
cations provide a way around this limitation. In practice,

the traditional *-property is relaxed to allow write ac-
cess if the data written does not depend on the data read

[10], reducing constraints on role assignment depending

on the degree to which there is independence between

read and write data in \typical" applications. Another

approach w orth investigating is the use of Bell's \liberal

*-property" [11]. It would be interesting to investigate ex-
isting systems that have a need for both roles and MAC t o

evaluate the practical implementation of RBAC on real-
world MLS system applications.

4 Conclusions

Because of both cost and trust considerations, it is desir-
able to build RBAC systems on a proven MLS operating

system. From a cost standpoint, it will normally be much

easier to build RBAC as a single trusted process, then rely

on the MLS to control access to objects, than to modify

the kernel of a secure system or build a new one from

the ground up. Trust and assurance may b e e v en more

important considerations. The assurance process for a

secure computing system is lengthy and expensive. MLS

systems on the market today h a ve had extensive e v alu-
ations and years of use in the feld, largely by military

organizations. The addition of RBAC to these systems

can make them much more useful for commercial appli-
cations. The method described in this paper will make

it possible to leverage the large investment in these sys-
tems to produce RBAC systems that are in demand for

commercial use.

For further information on this or other NIST RBAC

research, contact the NIST Ofce of Technology Partner-
ships.

5 Acknowledgments

I am grateful to Sylvia Osborn for many helpful comments

and suggestions.

References

[1] R. Sandhu, E.J. Coyne, and C.E. Youman, editors.

Proceedings of the First ACM Workshop on Role

Based A ccess Control. A CM, 1996.

[2] R.W. Baldwin.	 Naming and grouping privileges to

simplify security management in large databases. In

Proceedings, IEEE Computer Society Symposium on

Research in Security and Privacy. IEEE Computer

Society, 1990.

[3] D.J. Thomsen.	 Role-based application design and

enforcement. In Database Security IV: Status and

Prospects. North-Holland, 1991.

[4] D.F. Sterne.	 A TCB subset for integrity and role-
based access control. In 15th National Computer Se-

curity Conference. NIST/NSA, 1992.

[5] D. Ferraiolo and D.R. Kuhn. Role based access con-
trol. In 15th National Computer Security Confer-

ence. NIST/NSA, 1992.

[6] D. Ferraiolo, J. Cugini, and D.R. Kuhn. Role based

access control: Features and motivations. In Annual

Computer Security Applications Conference. IEEE

Computer Society Press, 1995.

[7] R.	 Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.

Youman. Role based access control models. IEEE

Computer, 29(2), February 1996.

[8] D. Bell and L. LaPadula. Secure computer systems:

Mathematical foundations and model. Technical Re-
port M74-244, Mitre Corp., 1973.

[9] M. Gasser. Building a Secure Computer System. V an

Nostrand Reinhold, 1988.

[10] C. Pfeeger.	 Security in Computing. P r e n tice Hall,

1989.

[11] D.E. Bell. Secure computer systems. In Proceedings,

3rd a n n u a l c omputer security application conference,

1987.

[12] W.J. Meyers. RBAC e m ulation on trusted DG/UX.

In Proceedings of the Second ACM Workshop on Role

Based A ccess Control. A CM, 1997.

[13] M. Nyanchama and S. Osborn. Modeling mandatory

access control in role-based security systems. In Pro-

ceedings of the IFIP WG 11.3 ninth annual working

conference o n d a t a b ase security. Chapman and Hall,

1995.

[14] R.	 Sandhu. Role hierarchies and constraints for

lattice-based access controls. In Computer Security

- ESORICS 96, pp. 65-79. Springer Verlag, 1996.

[15] S. Osborn. Mandatory access control and role-based

access control revisited. In Proceedings of the Sec-

ond ACM Workshop on Role Based A ccess Control.

ACM, 1997.

Subject

RBAC

Trusted

Interface

MLS

System

O1 O2 On

RBAC to

MLS mapping

function

 role request

 {categories}

Figure 1: RBAC/MLS Interface

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R

11

R
12

R

13

R
14

R
15

R

16

R
17

R

18

R
19

R
20

R

21

R
22

R

23

R
24

R

25

R
26

R

27

R
28

R

29

R
30

R

31

R
32

R

33

R
34

R

35

R
36

a

bc

bd

cd

be

ce

de

fg

fh

gh
 fi

fg

fh

gh

fi

fg

fh

gh
 fi

fg

fh

gh
 fi

fg

fh

gh

fi

hi

fg

fhgh

fi

Figure 2:

gi

gi

gi

gi

gi

Fi
gu

re
 2

.
E

xa
m

pl
e

of
 H

ie
ra

rc
hi

ca
l P

ri
vi

le
ge

 M
ap

pi
ng

R0

R1 R2

R7

R15

R20

R26

R32

P5, P6, P7

P11, P12, P15

P1, P2abc

abcfg

abcfh

abcgh

abcfi

abcgi

Privilege sets

Privilege set

labels

abd

abc

abcgh

category labels

Role category

a

a

Figure 3: Roles and Privilege Sets with Category Labels

