
Fault Classes and Error Detection Capability o f

Specifcation Based Testing

D. Richard Kuhn

National Institute of Standards and Technology

Gaithersburg, Maryland 20899-8970 USA

Some varieties of specifcation based testing rely upon methods for generating test cases from

predicates in a software specifcation [1] [2] [3] [4] [5] [6] [7]. These methods derive v arious test

conditions from logic expressions, with the aim of detecting diferent t ypes of faults. Some authors

have presented empirical results on the ability of specifcation based test generation methods to

detect failures [1] [2] [7] [8]. This paper describes a method for computing the conditions that

must be covered by a test set for the test set to guarantee detection of the particular fault class.

It is shown that there is a coverage hierarchy to fault classes that is consistent with, and may

therefore explain, experimental results on fault based testing. The method is also shown to be

efective for computing MCDC-adequate [9] tests.

Categories and Subject Descriptors: D.2.4 [Software]: software engineering|program verif-
cation; D.2.1 [Software]: software engineering|requirements/specifcations; D.2.5 [Software]:

software engineering|testing and debugging

General Terms: THEORY, VERIFICATION, TESTING

1. INTRODUCTION

A n umber of methods have been proposed for generating test cases from predicates

in a specifcation or program [1] [2] [3] [4] [5] [6] [7] [10] [11]. These methods derive

various test conditions from logic expressions, with the aim of detecting a variety

of fault types. This approach is analogous to standard digital circuit test methods

[12]. In circuit testing, typical manufacturing faws are hypothesized, then test sets

are derived to detect these faws.

With software, the situation is similar, but the set of possible fault classes is

much larger. Because the diference between an implementation and its specifcation

is the result of human error, some types of faults may be virtually impossible to

predict in advance. Nevertheless, some fault classes can be hypothesized and test

sets can be constucted to detect them. The fault classes defned in [2], [11], and

[13] are the following: Variable Reference Fault - a boolean variable x is replaced

by another variable y, x #6 y; V ariable Negation Fault - a boolean variable x

is replaced by xp; Expression Negation Fault - a boolean expression p is replaced

by pp; Associative Shift Fault - a boolean expression is replaced by one in which

the association between variables is incorrect, e.g. x ^ (y _ z) replaced by x ^

y _ z; Operator Reference Fault - a boolean operator is replaced by another, e.g.,

x ^ y replaced by x _ y. Additional types of faults are defned in [8] : Incorrect

relational operators, Incorrect parentheses, Incorrect arithmetic expression, Extra

binary operators, Missing binary operator. Experimental results have been used in

evaluating the efectiveness of various test generation methods [1], [2], [7], [8], [14],

although the fault classes considered are all derived from specifcations and some

2 � D.R. Kuhn

implementation faults may not ft neatly into these categories.

In this paper, the conditions under which a particular fault class will cause a

failure for a given predicate are calculated. We s h o w that the calculated conditions

must be covered by a test set for the test set to guarantee detection of the particular

fault class. By deriving the conditions under which v arious fault classes will cause

a failure, we s h o w that there is a hierarchy to fault classes. The ordering of the

hierarchy matches the ordering of efectiveness of fault-based testing techniques

established in empirical studies by W eyuker et al. [2], and Vouk et al. [8]. Thus

the fault hierarchy helps to explain experimental results on fault based testing.

2. DETECTION CONDITIONS

The detection conditions for a predicate P are the conditions under which a c hange

to P will afect the value of the predicate P . A test will detect a failure if and only

if a faulty predicate P

0 evaluates to a diferent v alue than the correct predicate P .

That is, where :(P , P

0), or P E P

0, where E is exclusive-or.

This is simply the boolean diference of P with respect to P

0 [15] [16], also

called the boolean derivative [17] [18],or predicate diference [19] when P contains

expressions rather than strictly boolean terms. To determine, for example, the

conditions under which a v ariable negation fault for variable v will be detected,

we simply compute P E Pv

v, where Pe

x is predicate P with all free occurrences of :

variable x replaced by expression e. (P e

x may also be written as P [x :# e].)

Other types of faults can be analyzed in the same way, letting P

0 be t h e

predicate P with the fault inserted. Given a particular fault hypothesized for a par-
ticular specifcation, it is possible to compute the conditions under which the fault

will cause a failure, i.e., conditions under which the fault will cause the expression

to evaluate to a diferent v alue than if the fault had not occurred. For example,

suppose the specifcation is S # p ^ qp_ r. W e can compute the conditions under

which a v ariable negation fault for variable q will cause a failure, by computing the

boolean diference:

q
dSq: # (p ^ : q _ r) E (p ^ q _ r)

p ^ rp

Weyuker, Goradia and Singh [2] describe an algorithm that computes test

conditions for detecting variable negation faults, and propose various strategies

to generate data for these conditions. Although their algorithm was designed to

detect variable negation faults, Weyuker et al. show that their approach detects

other fault types as well.

3. HIERARCHY OF FAULT CLASSES

This section develops a hierarchy of fault classes based on the conditions under

which a particular type of faults are detected. It is then shown that this hierarchy

can be used to explain the empirical results for fault based testing described by

Foster [1], Weyuker et al., [2], and Vouk et al. [8].

3.1 Fault Classes

We frst determine the detection conditions for the various fault classes under dif-
ferent assumptions. Let S be a specifcation in disjunctive normal form:

Fault Classes and Error Detection Capability of Specifcation Based Testing 3�

S # x11

^ x12

^ ::: _ x21

^ x22::: _ xn1

^ xn2::: (1)

In general, the xij

variables may not be distinct. For example, we c o u l d

have a ^ b _ a ^ c: Then the conditions under which, for example, a variable

negation fault for variable a will be detected are SESa:
a . The conditions for detecting

variable negation faults (SV N F

), variable reference faults (SV R F

) and expression

negation faults (SE N F

) are given below. (Note that the only expressions in ENF

are clauses.)

xijSV N F

S E S:xij

xijSV R F

S E Sxkl

, where xkl

is the variable substituted for xij

, xkl

#6 xij

SEN F

S E SXi ,:Xi

where Xi

is the conjuction xi1

^ xi2

^ ::: ^ xin. It can readily be shown that

SV R F

) SV N F

) SE N F

under very minimal restrictions.

Theorem 3.1. If the variable replaced i n SV R F

is the same variable negated i n

SV N F

then SV R F

) SV N F

.

Proof: For readability, t h e v ariables in formula(1) will be abbreviated as a1

for x11,

a2

for x12,b1

for x21, e t c .

P # a1

^ a2

^ ::: ^ ak

_ b1

^ b2

^ ::: ^ bm

_ ::: _ z1

^ z2

^ ::: ^ zn

Case 1: Substituting a variable from a diferent clause. We w ant to estab-
lish that detection conditions for an arbitrary variable reference fault, a1

:# b1, i n

this predicate imply the detection conditions for the variable negation fault a1

:# pa1,

i.e.: dP

a1) dP:
a1

b1

a1

The left hand side, dPb
a

1

1 reduces to:

p p[a1

^ a2

^ ::: ^ ak

E b1

^ a2

^ ::: ^ ak] ^ (pb1

_ b2

_ ::: _ bm)^

::: ^ (zp1

_ zp2

_ ::: _ zpn)

The right hand side dP

a1 reduces to: :a1

p pa2

^ ::: ^ ak

^ (pb1

_ b2

_ ::: _ bm) ^ ::: ^ (zp1

_ zp2

_ ::: _ zpn)

p pNote that [a1

^ a2

^ ::: ^ ak

E b1

^ a2

^ ::: ^ ak] ^ (pb1

_ b2

_ ::: _ bm) ^ ::: ^

(zp1

_ zp2

_ ::: _ zpn)

p p# [a1

E b1]^a2

^:::^ak ̂

(pb1

_ b2

_ ::: _ bm)^:::^(zp1

_ zp2

_ ::: _ zpn),

and that [a1

E b1] ^ a2

^ ::: ^ ak

) ^ a2

^ ::: ^ ak.

Case 2: Substituting a variable from the same clause. We w ant to establish

that detection conditions for an arbitrary variable reference fault, a1

:# a2, i n t h i s

4 � D.R. Kuhn

predicate imply the detection conditions for the variable negation fault a1

:# pa1,

i.e.: dP

a1) dPa
a
1

1

a2

:

The left hand side, dP

a1 reduces to: a2

p p[a1

^ a2

^ ::: ^ ak

E a2

^ a2

^ ::: ^ ak] ^ (pb1

_ b2

_ ::: _ bm) ^ ::: ^

(zp1

_ zp2

_ ::: _ zpn)

which i s

p pap1

^ a2

^ ::: ^ ak

^ (pb1

_ b2

_ ::: _ bm) ^ ::: ^ (zp1

_ zp2

_ ::: _ zpn)

which clearly implies the right hand side. Q.E.D.

Corollary 3.2. Any test that detects a variable reference fault for a variable

x in a predicate wil l also detect a variable negation fault for the same variable.

Now consider the relationship between variable negation faults and expres-
sion negation faults.

Theorem 3.3. If expressions containing the variable negated i n SV N F

are n e gated

in SE N F

then SV N F

) SE N F

, where the expressions are clauses in the correct spec-

ifcation S.

Proof: We w ant to establish that detection conditions for a variable negation fault

in this predicate for an arbitrary variable a1

imply the detection conditions for an

expression negation fault for expressions including a1.

(E1:::Ek

)
dP

a1) dPa:1 :(E1

:::Ek)

where E1, E 2, :::Ek

are all expressions containing a1.

We assume that variable a1

may occur in more than one clause. That is,

some of bj, dk, etc., may be the same variable as a1. Let the formula be rearranged

so that all clauses containing a1

occur frst, followed by clauses not containing a1.

Then abbreviate clauses containing a1

by E1, E 2, :::, and clauses not containing a1

by R1, R 2, :::.

The detection conditions for the variable negation fault are then given by:

E1[a1

:# pa1] _ E2[a1

:# pa1] _ ::: _ Ek[a1

:# pa1] _ R1

_ ::: _ Rm

EE1

_ E2

_ ::: _ Ek

_ R1

_ ::: _ Rm

which i s

(E1

_ E2

_ ::: _ Ek

E E1[a1

:# pa1] _ E2[a1

:# pa1] _ ::: _ Ek[a1

:# pa1])

^:(R1

_ ::: _ Rm

The detection conditions for the expression negation fault are then given

by: PE N F

: E1

_ E2

_ ::: _ Ek

_ R1

_ ::: _ Rm

E : (E1

_ E2

_ ::: _ Ek) _ R1

_ ::: _ Rm)

(E1

:::Ek)Since PE N F

reduces to simply :(R1

_:::_Rm) , clearly dPa
a
1

1) dP

:(E1

:::Ek):

Similarly, if the variable is negated in some, but not all, of the Ei, the result also

holds. If the clauses in which t h e v ariable is negated are E1:::Ej, then (placing

these frst)

5 Fault Classes and Error Detection Capability of Specifcation Based Testing �

PV N F

(E1

_ E2

_ ::: _ Ej

E E1[a1

:# pa1] _ E2[a1

:# pa1] _ E2[a1

:#

ap1]) ^ : (Ej+1:::Ek

_ R1:::Rm)

and

PE N F

:(Ej+1:::Ek

_ R1:::Rm) Q.E.D.

Corollary 3.4. Any test that detects a variable negation fault for a variable

x in a predicate wil l also detect an expression negation fault for the expression in

which the variable occurs.

3.2 Examples

This section provides two examples. The frst one is simple enough to make t h e

hierarchy of fault detection conditions obvious. The second is a realistic example,

taken from the FAA Trafc Collision Avoidance System software specifcation, as

reported in [2].

3.2.1 Example 1. Consider the expression from Section 2: p ^ qp_ r. A v ariable

reference fault where q is replaced by r can be detected with conditions shown

below:

SV R F

: dSq # (p ^ qp_ r) E (p ^ rp_ r)r

p ^ q ^ rp

A v ariable negation fault where q is replaced by qp is dected with these conditions:

q
SV N F

: dSq: # (p ^ : q _ r) E (p ^ q _ r)

p ^ rp

An expression negation fault where (p ^ qp) is replaced with :(p ^ qp) is detected by

rp:

(p^q:)
S : dS # (p ^ : q _ r) E (:(p ^ q) _ r)EN F :(p^q:)

rp

Clearly, SV R F

) SV N F

) SE N F

, i.e., the following relationship holds:

p ^ q ^ rp) p ^ rp) rp

3.2.2 Example 2. For a realistic example, consider the following formula from [2] :

P : a ^ c ^ (d _ e) ^ h _ a ^ (d _ e) ^ hp _ b ^ (e _ f)

A v ariable reference fault where e is replaced by c is detected by the conditions

P :V R F

pPV R F

a ^ ((c _ h) ^ (d _ e)) _ b ^ (e _ f) E a ^ (c ^ h _ (d_ c) ^hp) _ b ^ (c _ f)

A v ariable negation fault where e is replaced by ep is detected by the conditions

P :VN F

p pPV N F

a ^ ((c _ h) ^ (d _ e)) _ b ^ (e _ f) E a ^ ((c _ h) ^ (d _ pe)) _ b ^ (ep_ f)

An expression negation fault where (d _ e) is replaced by its negation is detected

by the conditions PEN F

:

6 � D.R. Kuhn

p pPE N F

a^((c_h)^(d_e))_b^(e_f)Ea^((c_h)^ : (d_e))_b^ : (e_f)

(d_e)
It can then be shown that: dP

e) dP

e) dPc e: :(d_e)

4. ANALYSIS OF EMPIRICAL DATA

The empirical data presented in [2] show that tests detected 100% of ENF and

a s l i g h tly smaller percentage of the other faults. Testing detected fewer vari-
able negation faults than expression faults, and fewer variable reference faults

than variable negation faults. For variable reference faults (V R F), variable nega-
tion faults (V N F), and expression negation faults (E N F), the relationship is

V R F < V N F < E N F : Including the associative shift faults (ASF) and operator

reference faults (OR F), the relationship is ASF < V RF < V N F : OR F < E N F:

Why does this relationship hold? We will consider only the conditions for

V N F , V R F , a n d E N F as the conditions for ASF and OR F depend on the partic-
ular operators or association faults chosen by the tester. Note that the conditions

under which a particular fault will cause a failure are defned by the boolean difer-
ence of the specifcation with respect to the particular fault. Where Se

x defnes the

faulty substitution of an expression e for term x, the diference dSe

x # S E Se

x

defnes the conditions under which the fault will cause a failure. Weyuker et

al.'s meaningful impact testing draws tests from the conditions defned by dSx

x

: ,

i.e., the detection conditions for variable negation faults. As shown in Section 3,

dSV R F

) dSV N F

) dSE N F

. That is, conditions for dSV R F

(the conditions under

which a VRF will cause a failure) are the conjunction of dSV N F

and additional

conditions. So every condition that tests for a VRF also tests for a VNF. Likewise,

every test for a VNF is also a test for an ENF. In terms of test conditions, the

relationship between the fault classes is: dSV R F

< dSV N F

< dSE N F

.

Consider Example 1 from the previous section. The conditions to detect

the variable reference faults where q is substituted for p in specifcation S are

dSq

p # p^qp^rp. A v ariable negation fault for the variable p is detected by dSp

p

: # qp^rp.

Clearly, dSq

p) dSp

p . S o a n y test set that detects variable reference faults for p will:

also detect variable negation faults for p. Because dV RF) dV N F) dEN F , t h e

V R F fault class can be considered \stronger" than the V N F fault class, which i s

in turn stronger than the E N F fault class.

Recall that empirical results showed that variable reference faults were

detected less successfully than variable negation faults, which i n t u r n w ere detected

less successfully than expression negation faults. A VNF for p can be detected by

either p ^ qp^ rp or by pp^ qp^ rp. Depending on which i s c hosen, the test vector may

or may not also detect a VRF for p. On the other hand, the VNF test set for p

will always detect an ENF for an expression containing p. The empirical results

are thus consistent with the hierarchy d e v eloped in Section 3.

The results described in this paper suggest that fault-based testing can be

made more efcient b y designing test generation algorithms to target the strongest

fault class. The relationship between the VRF, VNF, and ENF fault classes implies

immediately that not more than n(n ; 1) tests are required to detect all faults in

any of these classes, for an expression with n distinct variables, or m(n;1) tests for

m occurrences of n variables. This is because each v ariable can be replaced by a n y

of the other variables in a variable reference fault. In practice the numbe r o f t e s t s

7 Fault Classes and Error Detection Capability of Specifcation Based Testing �

Expression

Negation

Faults
Faults
Negation
Variable

Faults

Missing
Condition
Faults

Condition
Incorrect

Fig. 1. Fault Detection Condition Relationships

needed is much less, because of overlap between detection conditions. As the next

section shows, however, tests computed for another fault model, missing condition

faults, can detect faults in the other classes at a cost that is linear in the numbe r

of conditions.

5. MISSING CONDITION FAULTS

While the results presented in previous sections are interesting from a theoretical

standpoint, a natural question to ask is whether the various fault types described

in Section 1 are realistic models of faults that occur in software. In this section

we consider a type of fault that does occur in software, and its relationship to

other fault types. One of the most common implementation errors is the failure to

validate input data, or check preconditions. We will refer to this type of fault as

a missing condition fault, i.e., a fault where the specifcation contains one or more

conditions not implemented by the programmer. Missing condition faults can be

regarded as a special case of variable reference fault. For example, suppose the

correct predicate is: P # A ^ B ^ C _ D ^ E ^ F _ ::::

A missing condition fault in which A is not implemented is equivalent t o

the variable reference fault in which A is replaced by (for example) B, i.e.,

P [A :# B] # B ^ C _ D ^ E ^ F _ ::::

With a singular condition, e.g. A in

P # A _ D ^ E ^ F _ ::::,

the missing condition fault is equivalent t o A being replaced by one of the conjunct

expressions in the DNF formula, e.g.

P [A :# D ^ E ^ F] # D ^ E ^ F _ ::::

Variable reference faults can now be divided into those in which t h e v ariable

substitution results in a missing condition fault and others in which one condition

is replaced by another, e.g., where A is replaced by E in P # A ^ B ^ C _ D ^

E ^ F _ ::::. The second type of fault could be described as an incorrect condition

8 � D.R. Kuhn

fault, since the boolean variables typically represent some relation or condition in

a specifcation. The hierarchy can thus be extended as shown in Figure 1.

There is some evidence from empirical investigations of software faults that

missing condition faults are extremely common. Marick [20] shows that approxi-
mately half of the faults posted on usenet bug reports are faults of omission, while

only 23% were simple faults. Although not all faults of omission are necessarily

missing condition faults, tests based on this fault model do appear to be efective

in fnding errors. Experiments have been conducted in generating tests from speci-
fcations by using missing condition faults. Preliminary results show that the tests

generated provide coverage that is as good or better than typically produced by

manually created tests, as measured by statement c o verage and branch c o verage

metrics [14].

6. MCDC COVERAGE VIA BOOLEAN DIFFERENCES

Chilenski and Miller [21] analyze Modifed Conditions/Decision Coverage (MCDC),

which DO-178B [9] defnes as follows:

Every point o f e n try and exit in the program has been invoked at least

once, every condition in a decision in the program has taken on all pos-
sible outcomes at least once, and each condition has been shown to in-
dependently afect the decision's outcome by v arying just that condition

while holding fxed all other possible conditions.

Chilenski and Miller present a ` P airs Table' approach to identifying MCDC

adequate test sets. In the Pairs Table approach, a truth table is defned for the

boolean decision of interest. Rows in the truth table are numbered. An additional

column is added for each condition. The entry in this column for a particular row

is the row o r r o ws for which i) the condition of interest is the only variable that

changes, and ii) the boolean decision changes truth value as well. Often, many o f

the entries in a Pairs Table are blank. The possibility o f m ultiple entries arises

when short-circuit operations are considered.

MCDC coverage is obtained by selecting enough rows in the truth table

such that each condition column has a `Pair' selected. That is, for each column,

the chosen rows must include a pair of rows such that when the relevant condition

changes, the value of the boolean decision changes as well. Chilenski and Miller

state that for a boolean expression with n conditions, a minimum of n + 1 tests

`can usually be achieved'.

Explicitly constructing truth tables has signifcant d r a wbacks. This sec-
tion presents an alternative approach that uses boolean diferences to develop a

specifcation for the circumstances under which MCDC is achieved.

Consider a particular condition x in some boolean decision P . T h e n t h e

boolean diference of P with respect to x, dP x

:x

P E P x

:x gives the conditions

under which P depends on the value of x. T h us by c hoosing an assignment o f t r u t h

values such that dP x

:x is satisfed, and then choosing x to be true and then false, two

tests are generated that satisfy MCDC with respect to x. Repeating the procedure

for each condition yields a total of 2n tests. Careful selection of these tests may

reduce the total number of tests to n + 1 .

9 Fault Classes and Error Detection Capability of Specifcation Based Testing �

Consider an example, A ^ (B _ C), developed with both the Pairs Table

approach and via boolean diference. The Pairs Table approach in [21] begins with

constructing a truth table for A ^ (B _ C), for all possible values of the variables

A, B, a n d C. The columns labeled A, B, a n d C show w h i c h test cases (frst

column) can be used to show the independence of the condition (second column).

For example, the independence of A can be shown by pairing test case 1 with test

case 5.

Case ABC Result A B C

1

2

3

4

5

6

7

8

111

110

101

100

011

010

001

000

1

1

1

0

0

0

0

0

5

6

7

1

2

3

4

2

4

3

Table 2. Pairs Table for A ^ (B _ C)

The boolean diference approach is as follows. First, the boolean diferences

with respect to A, B, a n d C are calculated:

(1) dP
A

A

(2) dP

B

B

:

:

A ^ (B _ C) E Ap ^ (B _ C) # B _ C

p# A ^ (B _ C) E A ^ (Bp _ C) # A ^ C

(3)	 dP
C

C _

Test sets are generated as follows:

:
p p# A ^ (B _ C) E A ^ (B C) # A ^ B

(1) TA: F :A	

(c) f101 001g.,

BdProm :

rom dP

A

false, yielding three choices for tests (the notation indicates the assignments of

truth values to A, B, and C, respectively): (a) f111, 011g, (b) f110, 010g, a n d

B

, select B _ C true (three possibilities) and A both true and

(2) TB

: F , select A^Cp true and B both true and false, yielding f110, 100g.

:rom dP
C

C

Next, combine the test sets generated above. There are three possible

test cases: (1) f111, 110, 101, 100, 011g (i.e., TA(a), T B, T C

); (2) f110, 101, 100, 010g

(TA(b), T B

, T C); (3) f110, 101, 100, 001g (TA(c), T B

, T C). The second and third pos-
sibilities are more desirable since they use the minimum numbe r (n + 1) of tests.

7. COMPARING TEST METHODS

The results can be used to compare the theoretical efectiveness of published test

methods. One published test generation method, Ofutt and Liu's [7], uses the

following procedure, where predicates are assumed to be in disjunctive normal form:

|At the disjunctive l e v el, where predicates are of the form A _ B _ C _ :::, generate

test values by holding all disjuncts but one false, then vary each one to be true

in turn.

(3) TC

: F , select A^Bp true and C both true and false, yielding f101, 100g.

10 � D.R. Kuhn

|At the conjunctive level, where predicates are of the form A ^ B ^ C ^ :::, frst

fnd values that cause each clause to be true, then generate additional tests by

holding all conjuncts but one true and vary each one to be false in turn.

As it turns out, this procedure is equivalent to generating missing condition

faults for each of the variables in the predicates being tested. That is, for each

variable xi, the conditions to detect a missing condition fault for xi

are given by:

f(x1, :::xi, : : : x n) E f(x1, : : : x i;1, x i+1, :::xn):

This results in an expression of the form W
xpi

^ xj

^ xk::: ^ : (6 Xm):,xi2Xm

where xj, x k

are other variables in the conjunct containing xi.

For example, suppose the predicate is a ^ b ^ c _ d ^ e ^ f . Computing the

detection conditions for missing condition faults for each v ariable gives the following

set of expressions:

ap ^ b ^ c ^ : (d ^ e ^ f)

p
b ^ a ^ c ^ : (d ^ e ^ f)

cp^ a ^ b ^ : (d ^ e ^ f)

p
d ^ e ^ f ^ : (a ^ b ^ c)

ep^ d ^ f ^ : (a ^ b ^ c)

fp^ d ^ e ^ : (a ^ b ^ c)

Computing such an expression for each v ariable is thus equivalent t o u s i n g

the test generation method of [7]. By comparison, the methods described by F oster

and by W eyuker et al. use algorithms that are equivalent to computing boolean

diferences for variable negation faults. Since tests that detect missing condition

faults will also detect variable negation faults, Ofutt and Liu's method should be

at least as efcient than these, and may be more efcient for some faults.

8. CONCLUSIONS

This paper has developed a hierarchy of fault models used in specifcation based

software testing. Tests that detect missing condition faults will detect variable

negation faults, and tests that detect variable negation faults will detect expression

negation faults. These results suggest that test generation methods that focus on

detecting missing condition faults will also detect a variety of other fault types.

Experimental results presented by v arious authors are consistent w i t h t h e

hierarchy. Experiments show that expression negation faults are detected more

readily than variable negation faults, which in turn are detected more readily than

variable reference faults, of which missing condition faults are an imporant subclass.

This is to be expected because a test for a variable reference fault will also detect

the other fault types, while the converse is not necessarily true. Experimental

results are thus in alignment with results presented in the paper, and suggest that

specifcation based testing should give priority to the detection of missing condition

faults.

9. ACKNOWLEDGEMENTS

I am grateful to Paul Ammann for many suggestions and for contributing work on

MCDC testing. Paul Black did a careful analysis of the results. Marv Zelkowitz

11 Fault Classes and Error Detection Capability of Specifcation Based Testing �

provided helpful comments on demonstrating the practical benefts of the results.

ACM reviewers suggested many i m p r o vements.

REFERENCES

[1]	 K.A. Foster. Sensitive test data for logical expressions. ACM SIGSOFT software engineering

notes, 9(2), 1984.

[2]	 E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from a boolean

specifcation. IEEE Transactions on Software Engineering, 20(5), 1994.

[3]	 A.M. Paradkar and K.C. Tai. Test generation for boolean expressions. In Proc. IEEE Inter-

national symposium on software r eliability engineering, 1995.

[4]	 A.M. Paradkar and K.C. Tai. Automatic test generation for predicates. In Proc. IEEE In-
ternational symposium on software r eliability engineering, 1 9 9 6 .

[5]	 A.M. Paradkar, K.C. Tai, and M.A. Vouk. Automatic test generation for predicates. IEEE

Transactions on Reliability, 45(4), 1996.

[6]	 P. Stocks and D. Carrington. A framework for specifcation based testing. IEEE Transactions

on Software Engineering, 9(22), 1996.

[7]	 A. J. Ofutt and S. Liu. Generating test data from SOFL specifcations, ISSE-TR-97-02.

Technical report, George Mason University, 1997.

[8]	 M.A. Vouk, A.M. Paradkar, and K.C. Tai. Empirical studies of predicate-based software

testing. In Proc. IEEE International symposium on software r eliability engineering, pages

55{65, Nov. 1994.

[9]	 RTCA. Software considerations in airborne systems and equipment. T echnical Report DO-
178B, RTCA Inc., December 16 1992.

[10]	 L.J. Morrell. Theoretical insights into fault-based testing. In Proceedings of the Second Work-

shop oin Software T esting, Verifcation, and Analysis. A CM/SIGSOFT, 1988.

[11]	 D.J. Richardson and M.C. Thompson. The relay model of error detection and its application.

In Proceedings of the Second Workshop oin Software T esting, Verifcation, and Analysis.

ACM/SIGSOFT, 1988.

[12]	 M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and Testable

Design. IEEE Press, 1990.

[13]	 D.J. Richardson and M.C. Thompson. An analysis of test data selection criteria using the

relay model of fault detection. IEEE Transactions on Software Engineering, 19(5), 1993.

[14]	 P.E. Ammann, P.E. Black, and W. Ma jurski. Using model checking to generate tests from

specifcations. In Proceedings, Second IEEE International Conference o n F ormal Engi-
neering Methods. IEEE Computer Society, 1998.

[15]	 I.S. Reed. A class of multiple-error correcting codes and the decoding scheme. Transactions

of the Institute of Radio Engineers, IT-4, 1954.

[16] S.B. Akers. On a theory of boolean functions. SIAM Journal, 7(4), 1959.

[17] F.M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

[18]	 D.A. Hufman. Solvability criterion for simultaneous logical equations. Technical Report AD

156-161, Massachusetts Institute of Technology, Jan. 1958.

[19]	 D.R. Kuhn. A technique for analyzing the efects of changes in formal specifcations. BCS

Computer Journal, 35(6), 1992.

[20]	 B. Marick. Two experiments in software testing. Technical Report UIUCDCS-R-90-1644,

University of Illinois at Urbana-Champaign, 1990.

[21]	 J.J. Chilenski and S.P. Miller. Applicability of modifed condition/decision coverage to soft-
ware testing. Software Engineering Journal, 9(5), 1994.

