802.11i: The User Perspective

Or

How I Learned to Stop Worrying about War Chalkers and Love WLANs

NIST WLAN Security Meeting
December 4-5, 2002

Stephen T. Whitlock stephen.whitlock@boeing.com

Paul Dodd paul.dodd@boeing.com

Agenda

- Steve
 - Background
 - Current Architecture
 - Target Architecture
- Paul
 - Test Results
 - What Boeing is Looking For
- Migration to RSN

Background

- Initial deployment
 - Ad-hoc implementations
 - Rapid growth (~1000 Access Points, 90% in Factory)
 - Endless variety of client devices
 - WEP encryption used inconsistently
 - No WLAN security architecture or policy
 - Deployed as extensions of the wired network
 - Caused the Access Points to be shut down in Aug 2001 while security architecture and policies were developed

Uses

- Flight line assembly
 - Moving aircraft assembly line requires wireless connections to workstations
 - Wireless wearable computers provide information directly to workers
- Conference rooms
 - WLANs provide consistent access to mobile workers
- Office areas
 - WLANS simplify cabling and provide ubiquitous coverage

Client Types

- Laptops and other computers
 - Can use existing and future solutions
- Resource challenged devices
 - Palm, Pocket PC, Bar Code scanners, etc
 - Can use some security solutions
- Devices without a user interface
 - Printers, embedded machine controllers
 - Automated device authentication needed
- Really, really dumb devices
 - Sensors, RFID tags
 - No OS, no crypto support, etc.

Current Architecture

- Network Services named as sole wireless LAN provider
- WLANS treated as untrusted networks
 - Partitioned from wired network
 - Access via VPNs using two-factor authentication and encryption
 - Increased application security
- WEP required
 - Reduces exposure
 - Provides legal barrier
- Wireless policy established
 - Ad-hoc WLANs not permitted

Issues

- IEEE 802.11 Wired Equivalent Privacy (WEP) protocol lacks effective security
 - Group-keyed access control
 - No user authentication
 - Flawed encryption
 - Radio signals extend beyond Boeing property
 - Interception is hard to detect
- VPN solution is unwieldy
 - Limited availability of VPN client software
 - VPN's require frequent reconnection

Target Architecture

- Embrace IEEE 802.11i Robust Security Network (RSN) standard to enable WLANs to be trusted
 - Native per-user access control
 - Native strong authentication (e.g. token cards, certificates, and smart badges)
 - Native strong encryption
 - RSN Availability unknown
- Evaluate and deploy Wi-Fi Protected Access
 - In testing now

Early Test Results of WPA

- First testing of beta software was in September 2002
 - ✓ Supports 802.1x/PEAP, with Dynamic WEP or TKIP
 - Supports Safeword token cards and Soft Token
 - Only works with W2k SP3+ and WXP clients
 - Did not support VLAN's
 - Did not support network login at the GINA
 - Did not support existing Boeing user certificates

Client Test Results

- Only works with W2k SP3+ and WXP clients
 - Windows 2000 SP1 is our current default for laptops and desktops
 - Windows CE? Pocket PC? Pocket PC 2002? Unix flavors? Linux? PalmOS?

Authentication Test Results

- Can switch between hard tokens and soft tokens on the fly
- Requires certificates to have a "Client Authentication" Extended Key Usage (EKU) field which is not in production Boeing certificates
- Can't switch between token card (PEAP) and certificate (EAP/TLS) authentication without first logging in with cached credentials
- PEAP supplicants battle each other for control

Infrastructure Test Results

- ✓ Newer software release now supports VLAN's
- ✓ Software-only upgrade to AP's and RADIUS server
- AP and RADIUS server configuration is complex and difficult

- Our Priorities are:
 - 1. Usability
 - 2. Security
 - 3. Affordability
- Evolution, not Revolution
 - Software upgrades, not hardware replacements
 - Coexistence strategies, not flag days

- Our users are mechanics, technicians, and engineers
 - Not just office workers
- Our environment is mobile and fluid, with hazardous substances and devices that are subject to being dropped
 - No open device ports (e.g. smart card, USB)
 - Can't depend on standard keyboards

- Most clients will be bar code scanners,
 RFID tags, embedded controllers,
 handheld computers, and PDA's
 - Not just laptops
 - No touch labor to configure or admin
- Computers are tools that are shared
 - No assumption of cached credentials, or a single authentication type

- Support for multiple strong authenticators (for users and client devices)
 - Certificates
 - ✓One Time Passwords
 - ✓ Biometrics (voice)
 - No static passwords

- Flexible networks
 - Devices that can easily transition between Adhoc and Infrastructure mode
 - Assembly support WLAN inside the fuselage could become a fly-away WLAN upon delivery
- Secure Ad-Hoc networks (IBSS)
 - Print to the nearest printer
 - Detachable UI (screen, microphone)

Moving from WPA to RSN

- Depends on
 - Timing
 - Progress of WEP/VPN to WPA migration
 - Time between WPA and RSN availability
 - Backwards compatibility
 - WPA and RSN coexistence
 - Availability of incremental approach
 - Migration process
 - Whether or not new hardware is required
 - Ability to remotely manage firmware/software upgrade

Moving to RSN – Continued

- Benefits of RSN in order of interest
 - 1. P2P security
 - 2. Connection reestablishment
 - 3. AES
- Likely scenario
 - Implement new AP installations using 3 VLANs (WEP/VPN, WPA, and RSN)
 - Gradually migrate existing APs to add an RSN VLAN
 - Client devices will upgrade independently, based on business need