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Abstract 

Risk analysis is an established field, but it is not yet well adapted to the needs of computer 

security evaluation. This paper reviews deficiencies in the state-of-the-art and proposes some 

promising directions for remedying them. 

Introduction 

Risk analysis as a methodological area was originally developed to handle the purely monetary 

and well-documented risks of accident and life insurance, and could rely on established statistical 

techniques1 . It was then extended to cover multiple, poorly documented (but still well-defined) 
3risks to health and safety, especially in the context of regulating new technologies2
• • This 

required consideration of subjective uncertainty and of tradeoffs between conflicting objectives 

such as the dollar value of human life. It had to draw on the concepts of personal probability 
6and decision theory4

• • More recently, it has been extended to cover more diffuse risks such as 

the environmental impact of major proposed projects (as required by the ·National Environmental 

Protection Act) and this has required the use of multiattribute utility theory, involving intangible 

effects6 
. 

The emergence of computer security as a major risk management area has surfaced a new level of 

complexity, due to its unusually diffuse effects and to the source of the risk being a human ad­

versary. The diffuseness of computer security risk stems from the fact that the interests of 

several different constituencies are being served (e.g., the nation's security, the facility operator's 

cost, the government's bureaucratic convenience) and that any specific consequences are difficult 

to enumerate, much less measure. In fact, computer security represents a larger category of risk 

management problems typified by diffuse risks from adversarial sources, which also includes 

risks of terrorism, nuclear theft, espionage, and nuclear proliferation. 

Risk analysis problems can be thought of as varying along two dimensions: diffuse versus 

focused effects; and adversarial versus non-adversarial sources. As Figure I shows, many kinds 

of computer security problems, particularly those which have to do with safeguarding of informa­

tion, rate high on both dimensions, and therefore appear in the top right of the figure. They 
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have diffuse risks and adversarial sources, and for simplicity, we will call such problems DR/AS. 

Note, however, that computer theft has highly focused risks--mainly money; and computer 

reliability, on the other hand, though somewhat diffuse in effect, usually stems from a non­

adversarial source. This is reflected in their locations in the figure. 

In this paper, I am mainly concerned with discussing methodology to be developed for aiding 

DR/AS problems, and computer information security problems in particular. 

In stating that DR/AS is a new methodological area, I do not wish to imply that no serious or 

high-quality risk analysis has been done on computer security or other DR/AS problems. The 

one-day computer security risk analysis conference preceding this one provided some interesting 

examples. However, I do suggest that the state-of-the-art is very primitive, either based largely 

on some ill-fitting adaptations of risk analysis techniques developed for other, less complex 

purposes; or that it has been developed, ad hoc, for specific problems, usually not in computer 

security, but in some other DR/AS area such as 'nuclear safeguards. In any case, I would agree 

with Lance Hoffman, in the talk preceding mine, that major work is needed to develop general­

purpose risk analysis methodology, including the basic data to feed such methodology7• 

I will now suggest some innovative directions for DR/AS risk analysis methodology to be 

developed, and the role that the practitioners and managers in the field of computer security (as 

contrasted with risk analysis specialists) can play in its development. 

General Princioles 

A promising conceptual framework which has guided several of the more successful DR/AS 

studies is personalized decision analysis (PDA) which is a well established technique for quantify­

ing the judgments of uncertainty and value that go into any decision4" We call it "personalized" to 

distinguish it from the many other approaches to analyzing decisions. 

For those of you who are familiar with decision trees, Figure 2 gives a schematic representation 

of a hypothetical case, where some national computer security policy alternatives are being 

evaluated in terms of their ultimate impact on the interests of relevant constituencies (such as 

society as a whole, facility operators, and the central government). In principle, such a tree could 

be fleshed out with relevant branches spelled out in detail, with uncertainties measured by prob­

abilities, and with values represented by a utility function. If the tree properly captures all the 

policy maker's data, perceptions, and judgments, his preferred option would be the one with the 

highest "expected" utility (i.e., a probability weighted average). In practice, such an ideal and 
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comprehensive analysis is not realizable, and probably should not be attempted, but it provides a 

useful conceptual framework within which to construct a more manageable and useful analysis. 

A more limited, and therefore more usable, analysis within this framework is indicated in Figure 

3 where the current computer security risk for a particular facility is assessed. (A distinction is 

made in risk analysis circles between "risk assessment" as referred to here, which assesses fac­

tually what the risks are, and "risk management," where specific measures to combat the assessed 

risks are evaluated.) 

A second general principle (in addition to PDA) I would advocate for computer security risk 

analysis is plural analysis8
• By this, I mean developing multiple approaches to given problems 

when no single approach can assure adequate confidence in the findings. This is certainly the 

case with the current state-of-the-art of risk analysis for computer security. Two half -baked 

approaches are likely to be more useful than one three-quarter-baked approach! I should warn 

you that you are likely to find resistance to this idea from the research community, for reasons 

that have to do with the parochial perspective of a technician, rather than the best interests of the 

client. Your typical technician sets high store on avoiding technical criticism, and two half­

baked approaches present more tempting targets for a critic than one three-quarter-baked ap­

proach. 

We will now discuss some specific avenues for developing appropriate methodology for DR/AS. 

Analyzing Diffuse Risks 

There are two critical problems with the diffuse risk aspect of DR/AS, formulating risk con­

sequences, and evaluating them. 

The main problem with formulating consequences for diffuse risks is deciding at what level of 

aggregation to describe them. One end of the scale would be to specify in great detail all possible 

scenarios. This has the advantage of concreteness and ease of comprehension, but may pose an 

unmanageably burdensome task and it runs the risk of being seriously incomplete. For this 

reason, traditional Monte Carlo simulation is normally infeasible or inadequate. We have 

developed an alternative, called "step-through simulation," which avoids having to prejudge and 

anticipate the whole panoply of possible scenarios. However, it has not yet been developed very 

far except for certain military combat cases9 . There have also been specific applied attempts at a 
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slightly more aggregated level to model societal consequences of malevolent acts against energy 

facilities10 
. 

The other end of the scale is to work with broad, but comprehensive, attributes of interest. This 

makes for a simple structure, but very difficult assessment. Figure 4 shows an attempt to list 

general concerns to be addressed in evaluating national computer security policy options. It also 

shows a set of importance weights designated to be general enough that they will fit a wide 

variety of specific policy being evaluated. The weights indicated here, for example, that risks to 

national security from defense data sources are considered five times as important as national 

security risk from civilian sources, and ten times as important as economic loss to the govern­

ment. This apparently simple structure masks some very subtle and important issues, such as how 

exactly you define the importance weights and how you handle interactions between different at­

tributes, which we will not go into here. 

A simple and largely qualitative version of multiattribute utility analysis is shown in Figure 5 (it 

relates to some organizational options for managing and coordinating national computer security 

policy, which were considered in a study conducted for the congressional Office of Technology 

Assessment11
• The plusses and minuses in the body of the table indicate the assessed impact on 

each of the attributes listed across the top of each of the options listed down the left. The as­

terisks in the "weight" row represent the relative importance of each attribute. 

Since my purpose is to discuss methodology rather than substance, I will leave you to guess at 

what the specific options under consideration (cryptically abbreviated here) may have been! In 

any case, the inputs here are to be treated as purely hypothetical. They could have been gen­

erated in any of a number of ways: as the personal judgment of a single expert (or a collection of 

complementary experts); or as the consensus of a group workshop; or as the product of any of a 

number of ad hoc studies, addressing particular parts of the input. 

The Figure 5 chart, with its inputs, can then be used simply as a compact summary of "pros and 

cons" on the basis of which a policy maker makes up his own mind informally. Alternatively, the 

plusses and minuses can be totted up (with due account for differential weighting) as done here 

in the right-hand column (which suggests the three middle options are best). It might be argued 

that this is a hopelessly "unscientific" risk analysis, which no reputable risk analyst would sully 

his reputation with. I would argue, on the other hand, that this is often as far in the direction of 

scientific rigor as you will want to go in presenting the case to a busy, non-technical decision 

maker; and it is the naive analyst who will burden him with erudite findings! Indeed, I have 

been involved in studies where a sophisticated quantitative analysis was done first and then trans­
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RISKS AND VULNERABILITIES 	 WEIGHTS* 


National Security (vs. Foreign Threat) 
Defense Source of Data ( 1 00) 10 
Civilian Source ( 1 00) 2 

Economic Loss Risk (e.g., Via Comp. Crime) 
Government ($1 B) 1 
Business ($1 B) .2 
P.ublic ($1 B) .5 

Other Risks 
Public Privacy (1 00) 2 
Gov't Services (e.g., Reliability) (100) 2 

$ COSTS OF OPTIONS 

Direct $ Cost (Out-of-Pocket) 
Government ($1 B) 1 
Business ($1 B) .2 
Public ($1 B) .5 

Indirect Cost (e.g., Impaired Service) ($1 B) 	 1 

OTHER IMPACTS 

Bureaucratic Upset ( 1 00) 
Democratic Values (Civil Liberties, Open 

Government, etc.) ( 1 00) 1 

• 	EQUNALENCE IN BIWONS OF FEDERAL DOLLARS A YEAR FOR THE VALUE SWING IN PARENTHESES 
(EITHER $1 B A YEAR OR 100. DEPENDING ON WHETHER SCALE IS MONETARY OR QUAUTATJVE). 

THE 1 00 PT. SCALES ARE DEFlNED AS FOLLOWS:· 

0 = STATUS QUO FROZEN INDEFlNITELY {NOT THE SAME AS THE "DO NOTHING" OPTION. WHICH CAN 

GET WORSE). 

-100 = MAXIMUM PLAUSIBLE DETERIORATION {DEFINE ARBITRARILY. BUT BE CONSISTENT). 

+1 00 = AS MUCH BETTER AS -1 00 IS WORSE. 

Figure 4: Attributes for Valuation of Consequences 
with Importance Weights
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lated into a more digestible qualitative form for the decision maker. (For example, a decision 

analysis on U.S. export policy was turned into a qualitative argument for Henry Kissinger, who 

was known to dis.trust numbers.) This is another case where the researcher should be discouraged 

from doing what he likes best (doing fancy mathematics), if something simpler to present is more 

useful to the client. 

Figure 6 shows a similar, but one degree more quantified, analysis of another set of policy op­

tions, but using the same attributes of value. The case addressed here has to do with civilian 

telecommunications security options. It suggests that, if the numbers and analysis are accepted, 

the option of performing R&D on encryption is the option to be preferred. 

Although both Figures 5 & 6, in fact, reflect a particular individual's preliminary reflections on 

the issues concerned, they could easily serve as "macro models" which are a distillation of more 

intensive studies, possibly involving many expert judgments, field surveys or mathematical 

models12• By using a ma_cro model as the primary link with the decision maker, we reap several 

important advantages. It simplifies communication with the decision maker (who may not have 

the time or inclination or competence to evaluate a fine-grained micro model). It permits plural 

analysis by allowing the user to consider and merge alternative inputs to the chart, including his 

own intuition. It can also be used to guide further analytic effort, by indicating, through sen­

sitivity analysis, where firming up inputs is most likely to affect conclusions. (This can help 

counteract a tendency among researchers to want to do new research on those topics that they al­

ready know most about--rather than where it is most needed.) 

There is an important point to be made in using such analyses to guide a decision maker. There 

will typically be considerations (like "bureaucratic upset" in this set of attributes), which the deci­

sion maker may not want to make public. In such cases, any formal analysis will either be em­

barrassing (if made public) or may lead to unwelcome conclusions (if the factor is omitted). 

Whether this is a good or a bad feature of formal analysis for risk management problems depends 

on whether you want to discourage the decision maker from taking into account considerations 

which he does not want to announce publicly. · 

Advers-arial Source of Risk 

The above macro model examples were at such a high level of aggregation that no specific risk 

event was assessed probabilistically. In a micro analysis they would be, for which a well­

developed array of Probabilistic Risk Assessment (PRA) methods are available13• However, the 

fact that the source of risk may be a human adversary calls for some distinctive methodology. It 
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is not only_that the source is human, and therefore involves considering psychological issues. 

Predicting human error in the operation of a nuclear plant, for example, also has this property. It 

is also that it involves deliberate (and hostile) intentions that themselves are changed by the 

security measures taken (at least to the extent that the adversary knows about them). If you close 

up one avenue of attack for him, it leads him (probabilistically) to try a different mode of attack. 

An early DR/AS problem we worked on was in the area of nuclear proliferation. The task was to 

assess the probability that the International Atomic Energy Agency would detect a country divert­

ing fissionable materials from peaceful uses, by analyzing each "diversion path" the proliferating 

country might adopt. We had not only to take into account the probability of detection if the 

country followed each diversion path, but also have the probability that he would choose that 

diversion path, which is itself a function of the detection probability. Much the same would 

apply to the behavior of a foreign agent seeking to breech a computer security system. 

Distinctive tools for assessi~g adversarial behavior do exist in the literature, but, to our 

knowledge, have not been very fully developed or applied. For example, game theory is logically 

well-established, but the necessary assumptions needed in most versions of it are rarely found in 

the real world, and I am not aware of any relevant successful applications14• 

A more promising alternative is "imputed PDA," in which we model the adversary's behavior as 

if he were using PDA to determine his decision. This approach has been used to predict non­

adversarial behavior, for example, to predict when NATO would mobilize ·in the event of an im­

pending (but unknown) Warsaw Pact attack 15• It is critically important, however, to allow for 

"slippage" between the prescriptive PDA model and descriptive reality (which in the NATO case 

led us to almost double the mobilization delay implied by PDA). Variants of this approach have 

been developed by psychologists relating probability of action to relative expected utility16• 

Conclusion 

In this paper, there has not been space to do more than touch lightly on the current state-of-the­

art of risk analysis and some new developments, as they bear on the distinctive problem of com­

puter security. My overall conclusion is that existing risk analysis techniques need substantial 

development and augmentation before the critical needs of computer security can be well served. 
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I. INTRODUCTION 

In designing the System Security Officer (SSO) interface for the 
Secure Ada Target (SAT) [ 1), it has become apparent that the 
Trusted Computing System Evaluation Criteria (TCSEC) description 
of security levels and the activities of an SSO is insufficient 
and does not accurately reflect the intention of DOD security 
policy in all application areas. This discussion will describe the 
issues related to implementing a security lattice and SSO 
functionality fo_r a Trusted Cpmput.ing Base (TCB) and will describe 
a modified lattice model which permits arbitrary lattices to 
evolve which represent a wider range of security environments. 
The discussion will include a descriptive policy for controlling 
the creation, deletion, and aggregation of security levels and 
other level maintenance operations. 

Complete Lattice After Category Addition 

:&'igure 1 
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II. ISSUES 

Lattice Configuration Issues 

The TCSEC refers to the hierarchical levels and non-hierarchical 
categories of a security lattice as though they were independent 
and orthogonal attributes [2]. Hence, the TCSEC lattice is often 
thought of as a complete lattice having exactly one SYSTEM-HIGH 
security level and exactly one SYSTEM-LOW security level. The 
,hierarchical levels form a linear ordered lattice arranged in 
order of dominance. At each hierarchical level exists an identical 
set of ncn-hierarchical categories. Dominance for these 
categories is computed by means of set theory. Thus, the set of 
categories is treated as a lattice of subsets. [3] 

This description of a lattice does not correspond well to many 
security lattices. In reality, many security lattices are not 
complete in that there is not exactly one SYSTEM-HIGH. 
Furthermore, the TCSEC' s concept of a non-hierarchical category 
does not map straightforwardly into environments where the need to 
know compartments available at each hierarchical level are not the 
same for all levels. To exemplify the problem, one might consider 
a complete security lattice having two hierarchical levels (TOP 
SECRET and UNCLASSIFIED) and two non-hierarchical categories (A 
and B) . A complete lattice would require there be three 
UNCLASSIFIED non-hierarchical categories (A, B, and the aggregate 
AB) as illustrated in Figure 1. These UNCLASSIFIED categories may 
not be appropriate. 

Complete Lattice with One Category 
Figure 2 

Another problem with the complete lattice model. is that i.t may 
require the creation of undesirable compartments as a side' effect 
of creating a new desired compartment. Consider a lcsttiee with 
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hierarchical levels consisting of UNCLASSIFIED and TOP SECRET. At 
each level there exists one category, A, as in Figure 2. Addition 
of another category, B, to the system would result in the creation 
of four new compartments (TS.B, TS.AB, U.B, and U.AB) as 
illustrated in Figure 1. Two of the newly created compartments 
will be aggregations of A and B which may not be desirable. 
Furthermore, it may have been desirable to create category B at 
TOP SECRET but not at UNCLASSIFIED. 

Many security lattices are more accurately described as partially 
ordered sets (poset 's) than lattices. The organization of the 
security poset is essentially arbitrary and there is no 
SYSTEM-HIGH. In contrast, there are multiple maximal security 
levels which can be thought of as local SYSTEM-HIGH's. Creation of 
need-to-know compartments and aggregation of compartments into 
dominating compartments in practice is under complete control of 
the System Security Officer (SSO) or other poset administrators. 
An example of such a poset is illustrated in Figure 3. 

Compartmented 
Security 

Level a 

Collateral 
Security 

Levels 

Typical Security Poset 

Figura 3 


Furthermore, some sites have been known to create· additional 
hierarchical levels for a specific category. The configuration of 
such a poset would have one level hierarchically dominating a 
second level where both levels are of the same "conventional" 
hierarchical level. This situation is illustrated in Figure 3 by 
the levels TS.C and TS.Y. 

System Security Officer CSSQ) Functionality Issuaa 

Security policies for the pen and paper world compartmentalize 
information for good reasons. Those reasons are equally valid 
when the paper world policy is mapped into TCB policy. For this 
reason, it is desirable for 4ll users of a TCB, including the SSO, 
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to be constrained by the principle of least privilege. Hence, the 
System Security Officer (SSO) should not be cleared any higher 
than would ordinarily be necessary for his pen and paper world 
activities. Many SSO functions require access to objects and all 
objects on a TCB should have a security level associated with 
them. The SSO, as with any other user of the TCB, has a distinct 
clearance lev'el. The actions of the SSO should be limited to 
objects for which he has proper clearance and should be auditable. 

Performing security level maintenance functions in a system 
requiring a single SYSTEM-HIGH would require some personnel to 
have a SYSTEM-HIGH clearance level. Such a requirement is 
considered dangerous in many environments. For a system employing 
a security poset with multiple maximal security levels, it would 
be equally dangerous to require a single person to be cleared to 
all maximal levels in order to perform level maintenance. Such a 
design defeats the purpose of need to know compartmentalization 
and introduces significant risks associated with SSO errors and 
system faults. 

Security Lattice Management Issues 

The TCSEC specifies or implies numerous requirements on SSO 
functionality and requires the SSO functions "shall be identified" 
([2] section 4.1.3.4). Unfortunately, the TCSEC is silent on 
functions relating to lattice maintenance such as control of 
compartment aggregation, creation of new compartments, and 
deletion of old compartments. Not surprisingly, most multi-level 
TCB's to date have assumed the security lattice is static between 
system regenerations. 

III. KEY ELEMENTS OF PROPOSED POLICY 

Summarizing the issues presented previously: 

• 	 A complete lattice is ill-suited to actual DOD security 
environments. 

• 	 Requiring a single SYSTEM-HIGH is generally unacceptable for 
compartmented security environments. 

• 	 Requiring any personnel to be cleared to all compartments or 
to a SYSTEM-HIGH is considered dangerous and defeats the 
purpose of compartmentalization. 

• 	 The TCSEC does not specify how security levels are to be 
created, deleted, aggregated, or maintained. 
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The proposed remedy for the above issues is based upon the 
following concepts: 

• 	 Explicit Creation o~ Security Levels and Dominance 
Relationships Realistic security posets will not 
necessarily need or want identical category sets at each 
hierarchical level. A method for explicit level creation 
and explicit denotation of dominance relationships will be 
defined and the capability of building completely arbitrary 
security posets with numerous maximal security levels will 
be provided. 

• 	 Delegation o~ SSO Authority The SSO functionality 
cannot conform to the requirement of least privilege if a 
single SSO is required to perform all poset maintenance 
functions. Therefore, the responsibilities of the SSO will 
be delegated to other authorized personnel. A set of 
distinguished users, referred to as Security Level 
Administrators (SLA 's), will be designated by the SSO to 
execute security maintenance functions on specific security 
levels. The SSO will only be responsible for maintenance 
functions on security levels at or below his or her 
clearance level. 

• 	 Two ltey Control - Critical functions, such as aggregation 
or deletion of a security level, will require approval of 
two authorized users. The authorized users will generally 
be the SLA's, the SSO, or a combination of both. 

IV. DESCRIPTION OF PROPOSED POLICY 

In the proposed policy, a hierarchical level and a 
non-hierarchical category set is replaced by a single entity 
referred to as a security level. Dominance relationships between 
security levels are designated explicitly. The collection of 
security levels and dominance relationships forms a partially 
ordered set (poset). The creation of new levels (vertices) or 
dominance relationships (edges} will be by distinct auditable 
action. 

The maintenance of a security level is the responsibility of a 
distinguished user who will be referred to as the Security Level 
Administrator (SLA) . There exists at least one SLA for every 
security level in the poset. The SSO is a distinguished SLA who 
generally performs security level maintenance for all security 
levels which are dominated by his or her clearance level. 

Each security level is represented by a distinguished object whose 
contents describe attributes of the security level. This object 
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is referred to as a Security Level Descriptor Object (SLDO). The 
SLA is the only user authorized to modify the SLDO. The SLDO 
contains the following information: 

• 	 The names of security levels which this level immediately 
dominates. 

• 	 The number of security levels which immediately dominate 
this level. 

• 	 The names of the Security Level Administrators (SLA's) for 
this level. 

• 	 The names of all users cleared to this level. 

• 	 The names of all devices cleared to this level and the 
corresponding labels (if any) which represent this level on 
those devices. 

• 	 Names of devices and users that have been cleared to any 
immediately dominating levels. 

The SLDO of a security level is created at the time of level 
creation and is classified at the level it represents. 

Every security level contains at least one user that is designated 
as the Security Level Administrator (SLA). A SLA is designated at 
the time of level creation. This user is responsible for 
maintaining the security level. Alternate SLA' s may be 
designated. 

One function of the SLA will be to maintain the list of cleared 
users contained in the Security Level Descriptor Object (SLDO) for 
the security level. This list will contain one entry for every 
user cleared to the level. The entry will contain the user's name 
and may contain other information about the user such as group 
name, date of last password change, object ownership list, etc. 
The SLA will be responsible for keeping the data in the list of 
cleared users up to date. The SLA will be able to modify existing 
user entries, delete users, and add new users. 

The System Security Officer (SSO) is responsible for maintaining 
an UNCLASSIFIED user database. All users are initially made known 
to the system by the SSO and given a clearance level of 
UNCLASSIFIED. The various SLA's of the system can grant clearance 
to their security level to any user in the User Database who is 
clea·red to all security levels immediately dominated by the SLA' s 
security level. This requirement will insure that for all levels 
a user dominates, the SLA of each level has properly approved the 
user's access to the level. 

The SLA will also be responsible for maintaining the list of 
cleared devices contained in the security level's SLDO. Each 
device cleared to the level will have an identifier in this list. 
If the device is label preserving, the entry will contain 
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labelling information which when sent to the device will represent 
the level. The label may be human readable. A device may have one 
or more human readable labels such as the character strings 'TOP 
SECRET' and 'TS'. Another human readable label might be an escape 
sequence representing a color or special font. An attribute of 
the labelling information in the cleared device list might be a 
description of a labeller to be used in sending information to the 
device. 

Transferring ownership of objects is another function which must 
be provided for the SLA. This function is accomplished via tools 
which modify the object ownership lists for entries in the Cleared 
User List. The SLA will want to transfer object ownership is when 
it becomes known to the SLA that a user is no longer cleared to 
the level (the user might have died, left the company, or sold out 
to the Red hordes). In this case, all objects owned by the 
problematic user will be removed from his ownership list and given 
to another user cleared to the level. 

The SLA is authorized to import, export, and downgrade objects. 
The SLA has the capability of de~ignating a new SLA or co-SLA for 
his level. The SLA may delegate a subset of his capabilities to 
other users cleared to his level. Delegatable capabilities might 
be the authorization to export and import objects to or from 
non-label preserving devices or authorization to downgrade 
objects. 

V. SPECIAL LATTICE OPERATIONS 

There are four lattice operations which modify the lattice 
configuration significantly and require special treatment. These 
operations are Fan-Out, Fan-In, Forced SLA Replacement, and 
Security Level Deletion. Two key approval is required to perform 
all these operations except Fan-Out. 

Simple Fan-Out Complex Fan-out 
l'!gur• 4a l'igure 4b 
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Fan-Out 

The Fan-Out operation creates a new security level immediately 
dominating the level from which it is created. A simple Fan-Out 
operation is illustrated in Fi~ure 4a where level A has Fanned-Out 
to create level X. A SLA can perform a Fan-Out by creating a new 
Security Level Descriptor Object .(SLDO) and performing a TCB 
operation which creates a new level from the object (activates the 
SLDO). By performing repeated simple Fan-Out's, a SLA can create 
a complex Fan-Out as illustrated in Figure 4b. 

When the SLA of level A in Figure 4a Fans-Out to create level X, 
the following steps will be executed: 

1. 	SLA (A) creates a SLDO. The new security level exists at 
this time but is inoperative. 

2. 	 SLA (A) assigns a unique name to the new SLDO. This name 
may be provided by the SLA or randomly generated by some 
dictionary on the system. In this example, the new level 
has been assigned the name X. 

3. 	SLA (A) assigns at least one interactive console type device 
to security level X. This device is also given exactly one 
human readable label. This device should be one, such as a 
CRT terminal, which will allow the SLA for the new level to 
perform security level maintenance functions. 

4. 	 SLA (A) designates a user to be the Security Level 
Administrator for level X -- SLA (X) . This user is the sole 
user cleared to level X at this time. 

5. 	SLA(A) executes the TCB Let-Dominate operation and the level 
becomes operative. 

The new security level X will not become operative until all five 
steps have been completed. SLA (X) is now responsible for adding 
more users and devices to his level. SLA (A) can repeat the above 
operations to create a complex Fan-Out similar to that in Figure 
4b. 

ran-In 

The Fan-In operation creates a level which is an aggregation of 
two existing levels. A simple Fan-In is illustrated in Figure Sa 
where level A and level B have Fanned-In to create level X. The 
Fan-In operation requires the approval of both aggregating SLA's 
-- either SLA can veto the operation. 
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Simple Fan-In 	 Complex Fan-In 
l'igure Sa 	 l'igure Sb 

When the SLA's of levels A and B of Figure Sa decide to aggregate, 
following steps are executed to perform the operation: 

1. 	SLA (A) and SLA (B) agree to Fan-In. 

2. 	 It must be decided between the SLA' s of the aggregating 
levels which SLA will initiate the aggregation. For this 
example, SLA (A) will initiate. 

In the following steps, that level which initiates the 
aggregation will be referred to as the first aggregating 
level. That level which does not initiate the aggregation 
will be referred to as the second aggregating level. 

3. 	 The first aggregating level performs a Fan-Out to create the 
new level. In our example, SLA (A) Fans-Out creating level 
X. 

4. 	 The first aggregating level will communicate the name of the 
Fanned-Out level to the second aggregating level. In our 
example, this operation requires the SLA (A) to communicate 
the name of Level X to SLA(B). 

5. 	The SLA of the second aggregating level will communicate a 
name representing his level to the SLA of the new level. In 
our example, SLA (B) communicates the name for security 
level B to SLA(X). 

6. 	 The SLA of the second aggregating level in!tiates the 
creation of a dominance relationship with the Fanned-Out 
level by executing a Let-Dominate TCB function. The name of 
the new level is a parameter to this function. In our 
example, SLA (B) will execute the Let-Dominate function 
using the name of level X. 

7. 	 The SLA of the Fanned-Out level completes the creation of 
the dominance relationship by executing the Dominate TCB 
function.· The name of the second aggregating level is a 
parameter to this function. In our example, SLA (X) executes 
the Dominate function using the name for security level B. 
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The new security l.evel becoJIIe.s operative after step 4 the 
Fan-Out step. However, the aggr.egatio.n ll.s not complete unt.i.l the 
Dominate and Let-Dominate functions are performed. B!Y this 
procedure, the SLA of either t~b..e ~e.co:nd agsu:egating level or the 
new level can veto the a.ggr.egatJ.,on by refusing to perform his 
Let-Dominat# or Do.ll.ti..tUJt:~ ope.ratioa,. 

There will be occa:aions in which an SLA of a level t~~ust be 
replaced l!lithout bis or her cott.sent. This operation .is referre.d 
to as Force,d $LA Replacement a.nd requires the approval o~ two 
different authorize~ uBer•. Authorized users may include a 
combination of the following: 

• 	 A Co-SLA, if one e~iats. 

• 	 The SLA of any level immediately dominated by the level of 
the problematic SLA. 

• 	 One of the System Security Officers (SSO' s). Two SSO' s 
should not be allowed to replace an SLA except for levels 
which immediately dominate the SSO's level. 

To illustrate the procedure for replacing a SLA, suppose that in 
Figure 4a it has been determined that the SLA of level X must be 
replaced. To do so the following steps will be performed: 

1. 	Two of the above authorized users are 'made aware' that SLA 
(X) must be replaced. 

2. 	Each of these users independently performs the Replace-SLA 
TCB operation. 

3. 	 If there were no Co-SLA' s at level X, then the SLA of the 
immediately dominated level will designate a new SLA for 
level X as a parameter to the Replace-SLA operation. 

4. 	 The newly designated SLA will correct any deficiencies noted 
at the level. 

In this operation, the SLA's provide a two key control function. 
Either SLA can veto the operation by refusing to execute the 
Replace-SLA TCB operation. 

Security Leyel Qeletion 

The capability to delete levels from the security poset is also 
required. A security level can not be deleted if it is dominated 
by any other level, hence, the SLDO for each level contains a 
count of the number of security levels which immediately dominate 
the level. This operation will require the approval of the SLA of 
the level to be deleted and the SLA' s of all levels immediately 
dominated by the level to be deleted. 
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A security level can not be deleted if it is dominated by any 
other level. Once this requirement is met, the following steps 
may be performed to delete the level. 

1. 	All objects existing at the level to be deleted must be 
removed from the level. 

2. 	All users cleared to the level to be deleted must lose their 
clearance. When the SLA removes a user's clearance, the 
user maintains his clearances to levels immediately 
dominated by the SLA's level. 

3. 	All devices cleared at the level to be deleted must have 
their clearances downgraded to levels immediately dominated 
by the level to be deleted. 

4. 	 The SLA of the level to be deleted executes the Delete-Me 
TCB operation. For example, in Figure 4a, security level X 
is to be deleted. After downgrading the clearance of all 
users at X and downgrading all devices cleared at X, SLA (X) 
will execute the Delete-Me TCB operation. 

5. 	 The SLA's of the levels immediately dominated by the level 
to be deleted each execute the Delete-Up TCB operation. In 
our example, SLA (A) will execute this command. 

The security level is not deleted from the system until both the 
Delete-Me and Delete-Up functions are performed by all SLA's 
involved. In this way, the SLA of either the deleting level or the 
ievel being deleted can veto the deletion by refusing to perform 
his Delete-Up or Delete-Me operation. 

VI. SUMMARY 

The proposal described above provides a capability to design 
arbitrary security posets which can reflect the exact desire of a 
specific site. The delegation of a subset of the SSO's authority 
to Security Level Administrators allows a practical SSO interface 
to be designed which adheres to the principle of least privilege. 
The special operations for creation and deletion of new levels 
provide the capability for the SSO designated SLA's to customize 
the poset configuration to his or her needs without the need for 
SSO oversight. The two key control features of the design prevent 
potentially hostile poset JJtodifications from occurring unchecked. 

VII. REFERENCES 

1. 	Boebext, W. E., Ka . .in, R. Y., Young, W. D., and Hansohn, s. 
A., "Secure Ada Taxget: Issues, System Design, and 
Verifi.cation,,. Pxoc. 1985· Symp. on Computer Security and 
Privacy, 176-183, April 1gss. 

25 



2. Department of Defense, "Trusted Computer Systems Evaluation 
Criteria," CSC-STD-001-83 Auqust 15, 1983. 

3. Denning, D. E. "A Lattice Model of Secure Information 
Flow," in Communications of the ACM, vol. 19, no. 5 (May 
1976), pp. 236-243. 

12 

26 



GOULD COMPUTER SYSTEMS DIVISION 

SECURE UNIX® PROGRAM 


STATUS 


Gary Grossman 
Gould, 

ABSTRACT 

Gould Computer Systems Division is 
committed to an intensive development 
program whose goal is to produce a 
system with UNIX® functionality that is 
evaluated at Class Al by the National 
Computer Security Center (NCSC). To 
satisfy customers' needs for security in 
the short term, Gould is producing a 
graded series of secure UNIX products. 
The first product, called UTX/32STM 1.0, 
is in formal evaluation by the NCSC as a 
candidate for Class C2. This paper 
explains Gould CSD's goals for its secure 
UNIX products, discusses standard UNIX 
in the light of the C2 criteria, describes 
the characteristics and features provided 
by UTX/32S 1.0, reviews Gould's 
experience in producing its first product 
for evaluation, and gives a preview of 
future products. 

Inc. 

INTRODUCTION 

Gould Computer Systems Division (CSD) is 
committed to an intensive development program to 
meet DoD and industry needs as expressed in the 
National Policy on Telecommunications and 
Automated Information Systems Security.l The 
goal of this program is to produce a system with 
UNIX® functionality that is evaluated at Class A 1 
by the National Computer Security Center 
(NCSC). To satisfy customers' needs for security 
in the short term, Gould is producing a graded 
series of secure UNIX products. The first product, 
called UTX/32S™ l.Q2,3,4,5, is in formal 
evaluation by the NCSC as a candidate for Class 
C2. This paper discusses Gould CSD's goals for 
its secure UNIX products, informally evaluates 
standard UNIX from the point of view of security, 
describes the characteristics and features provided 
by UTX/32S 1.0, reviews Gould's experience in 
producing its firSt product for evaluation, and gives 
a preview of future Gould security products. 

GOALS 

Gould CSD has adopted four primary goals for its 
secure 1JNIXTM products: 

1. 	 The security. of each product must be 
fonnally evaluated by the NCSC. 

2. 	The security features of each product must 
be convenient and easy to use. 

3. 	 Each product must be as compatible as 
possible with UNIX standards and with 
other Gould CSD products. 

4. 	Each product should maintain Gould's high 
standard of performance. 
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Formal evaluation 

Gould's goal is to produce a graded series of 
secure UNIX products leading to a product in the 
early 1990's that is evaluated as Qass A 1 under the 
DoD Trusted Computer Systems Evaluation 
Criteria6 (TCSEC) by the National Computer 
Security Center. Each product will be developed 
under a developmental evaluation and will be 
submitted for formal evaluation once development 
is complete. 

Gould's first secure UNIX product, UTX/32S 
1.0, was developed under a developmental 
evaluation and was submitted for formal evaluation 
in June 1986. Gould hopes to complete formal 
evaluation by the end of calendar 1986. 

Gould is presently developing a system targetted at 
Class B 1, also under developmental evaluation, 
and expects to submit it for formal evaluation 
sometime in calendar 1987. 

Gould plans to continue work on systems aimed at 
the higher Division B classes, with an eye toward 
reaching A 1 in the early 1990's. 

User-friendliness 

As with any system, the easier it is to use and 
administer a secure system, the more successful it 
is likely to be. One of Gould's goals is to make the 
security of the system transparent to the ordinary 
user who is operating at a single level. Where 
users must interact explicitly with the secure 
features of the system, the security-relevant 
commands will be made to look like analogous 
UNIX commands wherever possible. 

The TCSEC define the minimum requirements for 
the evaluation of the security of a system. They are 
not a prescription for how the system is to look or 
what features will make the system most useful 
from a security point of view in any given context. 

Gould is investigating integrating features into its 
secure systems that increase the security of 
terminals, as well as features that increase the 
power of administrators and decrease the 
probability of administrative error. 

Compatibility 

UNIX systems are coming to represent a 
substantial segment of the U.S. Government 
computer market, both within the DoD and within 

civilian agencies. This is primarily due to the 
relative ease of software portability _between 
different versions of UNIX, even across hardware 
vendors. This portability, in tum, is due to the 
standardization of the interface to UNIX systems. 
To be competitive in this market place, a hardware 
vendor like Gould must keep track of the 
developing UNIX standards and ensure that its 
products are compliant. Gould's UTX/32 is 
compatible with both AT &Ts System V Interface 
Definition and with the University of California at 
Berkeley's 4.3 BSD release. 

Just as Gould has been tracking the UNIX 
standards with UTX/32, UTX/32S will remain 
compatible with UTX/32 to the fullest extent 
possible consistent with security. There will be no 
change in the user interface that is not dictated by 
compliance with the TCSEC. 

When changes in the user interface are necessary, 
upward compatibility will be fostered by 
introducing changes as early as possible in the 
product line to permit users to make each change 
only once. For example, the TCB protection 
features that have been introduced in Gould's C2 
candidate system are expected to carry over all the 
way to Gould's A1 system. 

UTXI32S will support all of the same languages as 
UTX/32, as well as most applications, both UNIX 
commands and those supplied by third parties. 
Gould is encourage third parties to develop secure 
applications that take advantage of the UTX/32S 
architecture. For instance, Gould is currently 
investigating third-party development of secure 
DBMS and secure OA packages. 

Gould's secure UNIX systems will be compatible 
with its current PN6000 and PN9000 systems as 
well as systems now in development. As evide~ce 
of Gould's commitment to secure systems, 
memory management modifications have been 
made to the PN6000 and PN9000 lines. These 
modifications are gradually replacing the previous 
versions in the field. 

Gould's secure UNIX systems will support the 
same I/0 devices as its standard UNIX products. 

Performance 

Gould e.xpects its secure sy~tems to provide highly 
competitive performance m the secure systems 
marketplace. 
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For the most part, the performance of UTX/32S 
1.0 is the same as that of standard UTX/32. One 
exception to this is the I/0 bandwidth burden 
imposed by audit when many types events are 
enabled. There is also some additional loss due to 
the way that printer spooling is implemented. 

The performance burden imposed by security is 
expected to rise moderately for Oass B1 because 
of the introduction of mandatory access control, 
especially for those applications which depend 
heavily on repeatedly opening and closing files. 

A much greater increase in this burden is expected 
at Class B3 because of the overhead inherent in the 
kernelization of security-relevant functions. 
Because of the high raw power of Gould's 
systems, Gould expects even the kemelized 
systems to deliver good absolute performance even 
if relative performance were to be cut in half. 

UNIX and Class C2 

Standard UNIX systems,_ like UTX/32, meet many 
of the criteria for Class C2. 7 But a brief discussion 
of how well UNIX meets these criteria will show 
that there are a number of deficiencies8 that must 
be rectified. 

Security policy 

Discretionary Access Control. For the most 
part, standard UNIX meets the C2 discretionary 
access control (DAC) criterion. The UNIX DAC 
mechanisms consist of a set of permissions that 
controls read, write, and execute access to each flle 
by each of 

1. 	 a distinguished user called the file's 
"owner" (usually the creator of the file), 

2. 	 a distinguished group (usually the group 
under which the creator of the file was 
operating when the files was created), and 

3. 	 any other user of the system. 

For directories, the execute permission is 
interpreted as search permission. Only the owner 
of the file can change its DAC permissions. 

But there is one distinguished user, called the 
superuser, who is not subject to the DAC controls. 

The superuser can access any file and can also 
change the DAC permissions of any file. 

Object reuse. For most storage objects, UNIX 
conforms well to the C2 object reuse criterion. For 
removable media such as magnetic tapes, however, 
there is no mechanism for preventing any user 
from reading a tape that has been mounted for 
access by another user. 

Accountability 

Identification and authentication~ UNIX 
provides for a distinct user id for each user, which 
is authenticated during login via a password that is 
stored in encrypted form. This user id is 
associated with every process that is executed on 
behalf of the user. These provisions seem to 
amply meet the C2 identification and authentication 
criterion. 

But the existence of the superuser, and how it is 
used in practice in most UNIX systems, poses a 
problem. The superuser id is used to perform most 
system administration functions. The superuser 
password is therefore often known to more than 
one person; it is known and used by all those who 
fulfill the role of system administrator. This is in 
contradiction to the requirement that each user be 
uniquely identified and that the user's identity be 
associated with all auditable actions taken by that 
user. 

Audit. UNIX systems provide some audit 
capability in the form of accounting information 
down to the process level. They do not provide 
audit for many of the types of events required by 
the C2 audit criterion. In particular, they do not 
provide a record of events that involve access or 
deletion of storage objects, nor do they record 
failed attempts at login or file access. 

Assurance 

Operational assurance: system 
architecture. Most UNIX systems loosely meet 
the requirements of the C2 system architecture 
criterion: the elements of the system are protected 
through a combination of hardware memory 
management and the DAC mechanism, and all 
visible resources are under control of the system. 
But there are significant weaknesses inherent in the 
size of the TCB, the existence of the "setuid" 
mechanism, and the use ofDAC for protection. 

The criterion implicitly requires that the Trusted 
Computing Base (TCB) - the security-relevant 
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parts of the system - be identifiable. In a 
standard UNIX system, security-relevant 
functions are. performed by a relatively large 
number of separate programs. Considerable 
analysis is required to delimit the TCB. 

Standard UNIX systems provide a feature called 
setuid that is used to implement a number of UNIX 
features. The setuid mechanism provides a 
controlled means for an untrusted user to perform 
trusted functions. It consists of a flag that can be 
set on an executable file. When the file is 
executed, the resulting process executes with the 
owner and group of the executable flle instead of 
the user id and group of the process that spawned 
it. This feature is useful for implementing trusted 
functions and subsystems such as database 
management systems. But this means expanding 
the number of programs that must be trusted. 
Keeping track of these tn:.sted programs on a site­
by-site basis presents a difficult administrative 
problem. 

Each element of the TCB must be correctly 
protected by DAC to prevent tampering. An 
incorrect DAC setting on any trusted program 
could provide an opportunity for penetration. 

Operational assurance: system integrity. 
This criterion is probably met, at least at the C2 
level, by the standard hardware diagnostics that are 
available for most hardware for which UNIX 
systems are targetted. 

Life cycle assurance: security testing. No 
test suite that specifically tests the security features 
of standard UNIX is available. 

Documentation 

Standarq UNIX systems provide almost none of 
the documentation required by the criteria. This 
holds not only for the Security Features User's 
Guide, the Trusted Facility Manual, and the test 
documentation, but also for the design 
documentation on which much of the security 
evaluation must be based. 

UTX/328 1.0 

UTX/32STM 1.0, targetted for Class C2, is a 
commercially available product. It is a security­
enhanced version of Gould CSD's standard 
UTX/32TM, which provides the functions of both 

Berkeley and AT&T System V UNIX .. UTX/32~ 
provides enhanced system protection, audit 
facilities, and access control. 

System Architecture 

The principal differences between UTX/32S 1.0 
and standard UNIX lie in the architectural features 
that protect the UTX/32S TCB9. 

Restricted Environments. The UNIX file 
system employs a hierarchical directory structure 
(see Figure 1). A file's pathname ("/usr/joe/fl" in 
the figure) consists of the concatenated names of 
the components on the path to the file from the root 
of the me hierararchy (denoted "f'), separated by 
"t"s. User processes can address any part of the 
file system, although they can be prevented fr?m 
unauthorized access by the UNIX file protection 
mechanisms. 

Since the standard UNIX file protection consists 
only of DAC, it is possible for any important 
element of the system to be made vulnerable to 
tampering if its DAC is. improperly set. F<?r 
instance, the flle from which the UNIX kernel 1s 
initialized is usually kept in the root directory as 
"/unix"; if its protection were improperly se~, a user 
program could alter the kernel program at will. 

A stronger protection mechanism is desirable for 
any system that is to provide security. UTX/32S 
provides such a mechanism, called restricted 
environments. 

/':c£root 

usr /I ' '""b·1n 

/1' I\ 

sue joe tom cc vi 

---.----. \ 
f2 

"/usr/joe/f1" 

Figure 1. The UNIX File System 
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usr bin 

/I' I\ 
cc vi 

virtual root 

Figure 2. A Restricted Environment 

A restricted environment {RE) is a subtree of the 
file system to which a process and all of its 
descendants is confined (see Figure 2). For the 
confined process, the base node of the subtree 
becomes the virtual root of the file system. Files 
outside the subtree cannot be addressed by the 
process. Because of the importance of the file 
system in UNIX, the RE mechanism is an 
important component of the protection of the 
elements of the UTXJ32S TCB. 

When a user logs into UTX/32S, the user's 
command interpreter process ("shell" in UNIX 
terminology) is confined to a restricted 
environment Since every action the system takes 
on behalf of the user, except for those performed 
by the TCB, is performed by the user's shell 
process or one of its descendants, all user actions, 
except for those performed by the TCB, are 
performed in the context of the RE. Thus no user 
action can directly access any element of the TCB. 

A process confined to an RE cannot exercise 
superuser privilege, even if it were able to 
somehow become labelled with the superuser id. 

5 

Figure 3. The Administrative 

Environment 


Administrative Environment. The file system 
outside the REs is protected from access by any 
user process. It is there that all trusted elements of 
the system reside, and where administrative actions 
are performed. This part of the file system is called 
the Administrative Environment. (See Figure 3.) 

Figure 4. The UTX/32S TCB 
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The UTX/32S TCB. The UTX/32S TCB 
consists of the kernel and a set of trusted server 
processes together with a corresponding set of 
program files, a set of data files (such as the 
password file), and the system spool files. (See 
Figure 4.) 

The process images of the kernel and the trusted 
servers are protected by the memory protection 
hardware. The other elements of the TCB are 
protected by the RE mechanism. 

Trusted Servers and Secure Sockets. The 
non-kernel active elements of the TCB are a set of 
trusted processes called trusted servers. The 
trusted servers perform all privileged operations in 
the system that are not performed by the kernel. 
Each trusted server is spawned at system 
initialization and is responsible for a specific set of 
operations. For instance, there are trusted servers 
that perform logins, printer spooling, mail, and 
device allocation. 

Figure 5. Trusted Server 

A user process ('client") that requires action from 
a trusted server requests the action via a secure 
communication path called a secure socket. (see 
Figure 5). When the client initiates the secure 
socket, the kernel guarantees that the client is 
connected to the specified trusted server. When the 
server receives the connection, the kernel provides 
to it information about the client, including user, 
group, process id, and RE id. (In Division B and 
A systems, the process' Mandatory Access Control 

label will also be supplied.) The kernel guarantees 
the correctness of this information, which is used 
by the server to make authorization decisions and 
to properly label objects and output on behalf of the 
user. 

System Administration. There are two steps 
by which an authorized user gains the access and 
the privileges necessary to perform system 
administration functions. First the user must log in 
to the administrative environment rather than into 
an RE. Then the user must specifically requrest 
superuser privilege. 

During the login sequence, a user signals the 
authorization server of intent to log in to the 
administrative environment by preceding his/her 
user name with the special character "*". If the 
user completes the login sequence properly, the 
authorization server checks the authorization data 
base to determine whether the user is an authorized 
system administrator, and completes the login 
successfully only if so. Once the user is logged in 
to the administrative environment, he/she is subject 
to the standard DAC rules for files within the 
administrative environment unless he/she 
specifically requests superuser privileges. 

A user requests superuser privileges via an audited 
command that creates a new command interpreter 
process with superuser privilege. This process and 
its descendants are all still tagged with the user's 
id, and all auditable events requested by the user 
are so tagged. 

No user can log in to UTX/32S as the superuser. 

Protected files and directories. UTX/32S 
provides a further mechanism for protecting against 
Trojan Horses within RE's. Any directory or file 
that is owned by the "superuser" cannot be 
modified, deleted, renamed, or its DAC changed, 
by non-privileged users, regardless of the DAC 
setting on the directory or file. Thus compilers, 
subprogram libraries, and system commands can 
be installed in an RE that is shared by many users, 
and be secure from tampering. This mechanism is 
not used to protect elements of the TCB. 

Device control. In standard UNIX, access to 
devices such as terminals and tape drives is 
provided via objects in the flle system called special 
files. When a process opens a special file, alll/0 
requests are handled by a corresponding device 
driver instead of the disk file system. For system 
maintenance, even the disks that contain the file 
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system are represented via special files (see Figure 
6). ·As with other elements of the file system, 
access to devices is controlled only by DAC. An 
incorrect DAC setting on a special file could lead to 
unathorized access to the entire ftle system. 

In UTX/32S, each device is allocated to one of 
three categories: privileged, owned, or 
discretionary. 

Privileged devices are accessible only by elements 
of the TCB. The system disks are privileged 
devices. They can be accessed only via the ftle 
mechanisms in the kernel. The line printer is also a 
privileged device. It can be accessed only by the 
printer spooling mechanisms of the TCB. 

Owned devices are allocated by a trusted server to 
at most one user at a time. Only processes initiated 
by that user can access the device. Terminals and 
tape drives are owned devices. 

Discretionary devices are protected only by the 
DAC and RE mechanisms. There are no standard 
UTX/32S devices in this category; it is provided 
for specialized devices. . 

"special" 

~process file 

Figure 6. UNIX Device I/0 

Multiple file system links. In the UNIX file 
system, a link is an entry in a directory that refers 
to a file or a subdirectory directly contained within 
the directory. Typically, there is only one link to 
each flle or directory, and the file system is thought 
of as a tree or a strict hierarchy. But it is possible 
for there to be more than one link to a given file; 
these links can be created by any user who has the 

appropriate access to the file and the directory 
involved. It is even possible in some versions of 
Berkeley UNIX for there to be more than one link 
to a given directory, although the creation of these 
links is restricted to the superuser and the 
documentation cautions against it. These 
properties make the UNIX file system a directed 
acyclic graph rather than a tree. Figure 7 illustrates 
a situation in which directory D4 is a subdirectory 
of both D 1 and D3, and D6 is a subdirectory of D 1 
and D4. The figure also shows ftle f7 in both D2 
and DS, and similar situations for files f9. and fll. 
(The way that file links work is somewhat 
simplified in this example.) 

One result of the possibility of multiple links is that 
some files may have many pathnames. fll, for 
instance, has pathnames "ID l/D4/D8/fll ", 
"/D3/D4/D8/fll ", and "/D3/D5/fll". . One 
implication of this for secure systems is that the 
TCSEC requires recording "the name of the object" 
in audit records at Class C2 and above. I 0 
Presumably, ambiguous names are not acceptable. 
The ambiguity of multiple pathnames could be 
circumvented by also including some unique 
identifier for each object in the audit record. In 
UNIX, each file has a unique data structure, called 
an inode, that describes the file's physical storage. 
Each inode is identified by a distinct integer. 
UTX/32S includes the inode identifier in the audit 
record to disambiguate multiple pathnames. 

~I 
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Figure 7. Multiple File System Links 
in UNIX 
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Figure 8. Multiple File System Links 
in UTX/32S 

More important for UTX/32S, the RE mechanism 
depends for its confmement properties on a strict 
hierarchy of directories (not necessarily of files). 
This is because the UNIX pathname rules include 
an operator(" ..") that permits processes to address 
files above a given directory. Thus, in Figure 8, if 
the links between D 1 and D4 or D4 and D6 were 
permitted, a process in the RE that had the 
appropriate DAC permissions could address Dl 
and the real root (via a pathname such as 
"ID4!D61..1.."), and thus ultimately the entire file 
system. This would obviate the RE mechanism. 
For this reason, multiple links to directories are not 
permitted in UTX/32S. (There is another 
UTX/32S mechanism, derived from Berkeley 
UNIX, called symbolic links, which is simply an 
indirect pathname mechanism; it has none of the 
above properties, and can be used between 
directories at will.) 

Using multiple links to flies does not pose the same 
problems as it does for directories, and so it is 
permitted both within an RE and between the 
administrative environment and an RE. But, as 
always, system administrators must exercise care 
not to base any security-relevant decisions on data 
that is contained in an object to which any 
untrusted user has had write access. 

"setuid" eliminated. In addition to the 
administrative burden r~presented by the setuid 
mechanism (see Operational assurance: 
system architecture above), it permits an 
untrusted user to execute trusted software in an 
environment that has been defined by the user. 
This presents opportunities for the user to "spoof' 
the trusted software. 

A further objection to setuid (and setgid - an 
analogous mechanism for groups), is based on 
Gould's goals of upward compatibility and of 
introducing changes, when necessary, as early as 
possible. The Class A 1 criteria require, under 
Design Specification and Verification 11, a formal 
model of security policy and a formal top level 
specification; the model must be proven consistent 
with its axioms and the specification must be 
shown to be consistent with the model. Class 
B312- and even Class B213 -have weaker 
versions of this requirement. In a system with 
many processes per user that are dynamically 
created and destroyed, it would be useful to be 
able to make a simple universal statement about the 
inheritance of privileges from a process to its 
descendants, in order to be able to meet these 
requirements. 

Without the setuid feature, it is possible to state that 
once a process' privileges have been established, 
that process' privileges and those of its 
descendants monotonically decrease. The setuid 
feature makes it impossible to make this assertion. 

For these reasons, setuid is not a part of UTX/32S 
1.0. The system features that depend on it have 
been reimplemented using the trusted server 
mechanism. 

/dev/kmem, /dev/mem. UNIX provides two 
special files for debugging and to implement certain 
utilities. "/devlkmem" provides the ability to read 
and write in the kernel's virtual address space. 
"/dev/mem" provides the ability to read and write in 
the physical address space of the machine. These 
capabilities are dangerous, to say the least, in a 
secure system. They have been changed to provide 
read access only, only to superusers in the 
administrative environment. They will be 
eliminated in subsequent versions of the system. 

Discretionary Access Control 

Groups. In System V UNIX, a user operates in 
one group at a time, DAC decisions are made 
accordingly, and all files are created with the user's 
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current group. Berkeley UNIX permits a user to 
operate in multiple groups simultaneously, with 
frequent confusion as to which group newly 
created files will be labelled. UTX/32S uses the 
single group mechanism. 

Public DAC access. In UNIX, each user has a 
default DAC setting that is applied to newly created 
files, called the umask. · In standard UNIX, the 
initial setting of each user's umask permits the 
creation of files with automatic public read and 
execute access. In UTX/32S, it is not possible to 
set the umask to permit any automatic public 
access. Public access for each file must be set by 
explicit user action. 

Audit 

Audit trail file. UTXI32S provides an audit 
trail of security-relevant events. The audit trail can 
be written only by the UTX132S kerneL Records 

untrusted trusted 
process processes 

'® 
~= != tm: 

~~... 

Figure 9. Audit Trail 

are written to the audit trail file as a result of 
security-relevant system calls (such as file 
creation, file open, etc.) by both trusted and 
untrusted processes. Trusted processes can also 
directly request the kernel to write audit records 
based on events that are visible only to the non­
kernel parts of the TCB (such as logins). (See 
Figure 9.) 

Each audit record contains a time stamp, user and 
group id's, process id, and controlling terminal, as 
well as information determined by the .type of 
event, such as file pathname for file open. 

Events audited. 

Table 1gives a synopsis of the types of events that 
arc recorded in the UTX132S audit trail file. As the 
table indicates, some events are optional; these can 
be turned on and off at will by the system 
administrator. 

Eyent type Optional? 
Reboot system No 
System version and configuration Yes 
Changes to user/group definitions No 
Stop/change audit collection No 
Access to audit trail file Yes 
Start/stop/change accounting No 
Successfullogins No 
Unsuccessfullogins Yes 
Suppress printer labelling Yes 
Change mail source designation Yes 
Process creation/termination No 
Make process superuser No 
Change process user id No 
Change process working directory No 
File/device access failure Yes 
Create/open file Yes 
Cmue/delete file link Yes 
Create/remove directory Yes 
Create special file No 
Change file owner/access permissions Yes 
Change device owner No 
Rename file/directory/special file Yes 
Mount/unmount file system No 

Table 1. Auditable Events in 

UTX/328 
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Audit administrative operations. 

The system administrator can 

1. tum audit collection on and off 

2. direct the audit trail to any file or medium 

3. select the types of events to be audited 

EVALUATION EXPERIENCE 

U T X I 3 2 S TN 1.0 was developed under a 
developmental evaluation by the the NCSC. The 
NCSC appointed a developmental evaluation team, 
which met with project personnel at the early stages 
of the project and several times thereafter. Some 
weeks prior to each meeting, project personnel 
supplied the team with documentation that reflected 
the state of the project's design and 
implementation. Each meeting consisted of 
presentations by project personnel followed by a 
discussion period. 

Any development group must approach ongoing 
oversight by an outside agency with some anxiety. 
The opportunities for substantial communication 
overhead and project design backtracking pose real 
dangers for project schedules and budgets. 

These anxieties were not borne out. Instead, the 
effect of the evaluation was almost entirely 
beneficial. As one might expect, the evaluation 
team was helpful in interpreting the criteria and in 
evaluating potential approaches to meeting them. 
Further, the prospect of preparing for periodic 
review by a competent team of outsiders who were 
to evaluate it according to its primary goal ­
enhanc~d security that meets the criteria - served 
to focus the project efforts. 

Even a major change of team personnel (two of the 
four team members were replaced approaximately 
halfway through the effort) had little negative 
effect. Continuity was provided by the remaining 
team members with little observable burden on 
development. 

UTX/32S 1.0 was officially accepted for formal 
evaluation in June 1986. 

THE FUTURE 


UTX/32STN 1.0 will be succeeded by a system 
targetted at Class B 1. It will have all of the 
features of its predecessor, plus mandatory access 
control, discretionary access control based on 
access control lists, and further enhancements to 
system protection. Development has begun on this 
product, which is expected to be available in 
calendar 1987. 

Gould also plans to continue work on higher B 
level systems with an eye toward reaching A1 in 
the early 1990's. 
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