

TABLE OF CONTENTS

Title Page

Risk Analysis Methods Adapted to Computer Security (Revised Paper)
Rex V. Brown • . • • • • . • . . . 1

A Proposed Policy for Dynamic Security Lattice Management
c. T. Fe~guson & c. B. Murphy . . . • • . . . 	 15

Gould 	Computer Systems Division Secure Unix Program status

Gary Grossman . • • • . • . . • • • • • • • • 27

RISK ANALYSIS METHODS ADAPTED TO COMPUTER SECURITY

Rex V. Brown

Decision Science Consortium, Inc.

7700 Leesburg Pike, Suite 421

Falls Church, Virginia 22043

(703) 790-0510

Abstract

Risk analysis is an established field, but it is not yet well adapted to the needs of computer

security evaluation. This paper reviews deficiencies in the state-of-the-art and proposes some

promising directions for remedying them.

Introduction

Risk analysis as a methodological area was originally developed to handle the purely monetary

and well-documented risks of accident and life insurance, and could rely on established statistical

techniques1 . It was then extended to cover multiple, poorly documented (but still well-defined)
3risks to health and safety, especially in the context of regulating new technologies2
• • This

required consideration of subjective uncertainty and of tradeoffs between conflicting objectives

such as the dollar value of human life. It had to draw on the concepts of personal probability
6and decision theory4

• • More recently, it has been extended to cover more diffuse risks such as

the environmental impact of major proposed projects (as required by the ·National Environmental

Protection Act) and this has required the use of multiattribute utility theory, involving intangible

effects6
.

The emergence of computer security as a major risk management area has surfaced a new level of

complexity, due to its unusually diffuse effects and to the source of the risk being a human ad­

versary. The diffuseness of computer security risk stems from the fact that the interests of

several different constituencies are being served (e.g., the nation's security, the facility operator's

cost, the government's bureaucratic convenience) and that any specific consequences are difficult

to enumerate, much less measure. In fact, computer security represents a larger category of risk

management problems typified by diffuse risks from adversarial sources, which also includes

risks of terrorism, nuclear theft, espionage, and nuclear proliferation.

Risk analysis problems can be thought of as varying along two dimensions: diffuse versus

focused effects; and adversarial versus non-adversarial sources. As Figure I shows, many kinds

of computer security problems, particularly those which have to do with safeguarding of informa­

tion, rate high on both dimensions, and therefore appear in the top right of the figure. They

1

N

Diffuse

RISK
EFFECT

•
F~~d

e Computer Information Security
e Espionage

e Terrorism

e Nuclear Theft

Environmental Risk

Computer Reliability

Health & Safety Risk

Insurance Risk Computer Theft .
Non-Adversariol Malevolent Adversary

SOURCE OF RISK

Figure 1: Categorization of Risk Management Problems
by Effect and Source of Risk

have diffuse risks and adversarial sources, and for simplicity, we will call such problems DR/AS.

Note, however, that computer theft has highly focused risks--mainly money; and computer

reliability, on the other hand, though somewhat diffuse in effect, usually stems from a non­

adversarial source. This is reflected in their locations in the figure.

In this paper, I am mainly concerned with discussing methodology to be developed for aiding

DR/AS problems, and computer information security problems in particular.

In stating that DR/AS is a new methodological area, I do not wish to imply that no serious or

high-quality risk analysis has been done on computer security or other DR/AS problems. The

one-day computer security risk analysis conference preceding this one provided some interesting

examples. However, I do suggest that the state-of-the-art is very primitive, either based largely

on some ill-fitting adaptations of risk analysis techniques developed for other, less complex

purposes; or that it has been developed, ad hoc, for specific problems, usually not in computer

security, but in some other DR/AS area such as 'nuclear safeguards. In any case, I would agree

with Lance Hoffman, in the talk preceding mine, that major work is needed to develop general­

purpose risk analysis methodology, including the basic data to feed such methodology7•

I will now suggest some innovative directions for DR/AS risk analysis methodology to be

developed, and the role that the practitioners and managers in the field of computer security (as

contrasted with risk analysis specialists) can play in its development.

General Princioles

A promising conceptual framework which has guided several of the more successful DR/AS

studies is personalized decision analysis (PDA) which is a well established technique for quantify­

ing the judgments of uncertainty and value that go into any decision4" We call it "personalized" to

distinguish it from the many other approaches to analyzing decisions.

For those of you who are familiar with decision trees, Figure 2 gives a schematic representation

of a hypothetical case, where some national computer security policy alternatives are being

evaluated in terms of their ultimate impact on the interests of relevant constituencies (such as

society as a whole, facility operators, and the central government). In principle, such a tree could

be fleshed out with relevant branches spelled out in detail, with uncertainties measured by prob­

abilities, and with values represented by a utility function. If the tree properly captures all the

policy maker's data, perceptions, and judgments, his preferred option would be the one with the

highest "expected" utility (i.e., a probability weighted average). In practice, such an ideal and

3

~

POLICY

OPTIONS

• Stronger
Encryption
Standards

• Coordination
by NCSC

DIRECT

IMPACT ON

FACILITIES

•Cost
• Security

Practices

RESULTING
AFTERMATH
SCENARIOS

• Prevention
• Mitigation

ConMquenoee 01..-cUy
Attrfbutable to FoolliW •

Coneequenoee DINC:tly
Attrtbutoble to Regulation

OUTCOMES

Info IAa"-d. eto.

~~~ 

Degnlded Perfonnonoe. etc 

~~~ 

Hoeale, Admlnlatrattv.

eo.t.. .tc.

WHOSE

INTERESTS

AFFECTED

Socl.ty

Facility
Openrtor

Central

Govwnrnent

OVERALL

VALUE

Net Utility
ot Com.,W.

Sequence

Figure 2: Decision Tree Framework to Evaluate National

Policies on Computer Security

comprehensive analysis is not realizable, and probably should not be attempted, but it provides a

useful conceptual framework within which to construct a more manageable and useful analysis.

A more limited, and therefore more usable, analysis within this framework is indicated in Figure

3 where the current computer security risk for a particular facility is assessed. (A distinction is

made in risk analysis circles between "risk assessment" as referred to here, which assesses fac­

tually what the risks are, and "risk management," where specific measures to combat the assessed

risks are evaluated.)

A second general principle (in addition to PDA) I would advocate for computer security risk

analysis is plural analysis8
• By this, I mean developing multiple approaches to given problems

when no single approach can assure adequate confidence in the findings. This is certainly the

case with the current state-of-the-art of risk analysis for computer security. Two half -baked

approaches are likely to be more useful than one three-quarter-baked approach! I should warn

you that you are likely to find resistance to this idea from the research community, for reasons

that have to do with the parochial perspective of a technician, rather than the best interests of the

client. Your typical technician sets high store on avoiding technical criticism, and two half­

baked approaches present more tempting targets for a critic than one three-quarter-baked ap­

proach.

We will now discuss some specific avenues for developing appropriate methodology for DR/AS.

Analyzing Diffuse Risks

There are two critical problems with the diffuse risk aspect of DR/AS, formulating risk con­

sequences, and evaluating them.

The main problem with formulating consequences for diffuse risks is deciding at what level of

aggregation to describe them. One end of the scale would be to specify in great detail all possible

scenarios. This has the advantage of concreteness and ease of comprehension, but may pose an

unmanageably burdensome task and it runs the risk of being seriously incomplete. For this

reason, traditional Monte Carlo simulation is normally infeasible or inadequate. We have

developed an alternative, called "step-through simulation," which avoids having to prejudge and

anticipate the whole panoply of possible scenarios. However, it has not yet been developed very

far except for certain military combat cases9 . There have also been specific applied attempts at a

5

""

Possible Scenarios
with Probabilities

_.­

Measures of
Cons·equence

- Attempt
- Nature of threat
- Security response
- Outcome

- Information lost
- Casualties
- Damage
- Culprit caught
- System compromised

L_--~---~-~----- ------------- -­

!

Summary
Evaluation
Measures

Facility
Evaluated Utility or

Equivalent Cost

Figure 3: A Limited Facility Risk Assessment Model

- ..,

slightly more aggregated level to model societal consequences of malevolent acts against energy

facilities10
.

The other end of the scale is to work with broad, but comprehensive, attributes of interest. This

makes for a simple structure, but very difficult assessment. Figure 4 shows an attempt to list

general concerns to be addressed in evaluating national computer security policy options. It also

shows a set of importance weights designated to be general enough that they will fit a wide

variety of specific policy being evaluated. The weights indicated here, for example, that risks to

national security from defense data sources are considered five times as important as national

security risk from civilian sources, and ten times as important as economic loss to the govern­

ment. This apparently simple structure masks some very subtle and important issues, such as how

exactly you define the importance weights and how you handle interactions between different at­

tributes, which we will not go into here.

A simple and largely qualitative version of multiattribute utility analysis is shown in Figure 5 (it

relates to some organizational options for managing and coordinating national computer security

policy, which were considered in a study conducted for the congressional Office of Technology

Assessment11
• The plusses and minuses in the body of the table indicate the assessed impact on

each of the attributes listed across the top of each of the options listed down the left. The as­

terisks in the "weight" row represent the relative importance of each attribute.

Since my purpose is to discuss methodology rather than substance, I will leave you to guess at

what the specific options under consideration (cryptically abbreviated here) may have been! In

any case, the inputs here are to be treated as purely hypothetical. They could have been gen­

erated in any of a number of ways: as the personal judgment of a single expert (or a collection of

complementary experts); or as the consensus of a group workshop; or as the product of any of a

number of ad hoc studies, addressing particular parts of the input.

The Figure 5 chart, with its inputs, can then be used simply as a compact summary of "pros and

cons" on the basis of which a policy maker makes up his own mind informally. Alternatively, the

plusses and minuses can be totted up (with due account for differential weighting) as done here

in the right-hand column (which suggests the three middle options are best). It might be argued

that this is a hopelessly "unscientific" risk analysis, which no reputable risk analyst would sully

his reputation with. I would argue, on the other hand, that this is often as far in the direction of

scientific rigor as you will want to go in presenting the case to a busy, non-technical decision

maker; and it is the naive analyst who will burden him with erudite findings! Indeed, I have

been involved in studies where a sophisticated quantitative analysis was done first and then trans­

7

RISKS AND VULNERABILITIES 	 WEIGHTS*

National Security (vs. Foreign Threat)
Defense Source of Data (1 00) 10
Civilian Source (1 00) 2

Economic Loss Risk (e.g., Via Comp. Crime)
Government ($1 B) 1
Business ($1 B) .2
P.ublic ($1 B) .5

Other Risks
Public Privacy (1 00) 2
Gov't Services (e.g., Reliability) (100) 2

$ COSTS OF OPTIONS

Direct $ Cost (Out-of-Pocket)
Government ($1 B) 1
Business ($1 B) .2
Public ($1 B) .5

Indirect Cost (e.g., Impaired Service) ($1 B) 	 1

OTHER IMPACTS

Bureaucratic Upset (1 00)
Democratic Values (Civil Liberties, Open

Government, etc.) (1 00) 1

• 	EQUNALENCE IN BIWONS OF FEDERAL DOLLARS A YEAR FOR THE VALUE SWING IN PARENTHESES
(EITHER $1 B A YEAR OR 100. DEPENDING ON WHETHER SCALE IS MONETARY OR QUAUTATJVE).

THE 1 00 PT. SCALES ARE DEFlNED AS FOLLOWS:·

0 = STATUS QUO FROZEN INDEFlNITELY {NOT THE SAME AS THE "DO NOTHING" OPTION. WHICH CAN

GET WORSE).

-100 = MAXIMUM PLAUSIBLE DETERIORATION {DEFINE ARBITRARILY. BUT BE CONSISTENT).

+1 00 = AS MUCH BETTER AS -1 00 IS WORSE.

Figure 4: Attributes for Valuation of Consequences
with Importance Weights

8

ATIRIBUTES

WEIGHTS

OPTIONS

0. Do Nothing
1 . Cancel 1 45
2. lmpl. 145

1 . Modify 145
1. Civil. Input

2. Civil. Agency
1. NBS+
2. New

3. Govt.-wide Ag.
1. CSC+
2. Brooder

Risks Addressed Option Costs Other Attributes

Not. Sec. Econ. Loss Priv- Serv Direct Ind. Bur. Democ.
Def. Civ. Gov. Bus. Pub. ocy ices Gov. Bus. Pub. 'tax' Upset Value

*** ** ** * • • ** ** * **

- -
+ - + - + - - - -

+ - + - + +

+ + - +
++ ++ + + -­ -

- . + + - -­ +
- + + ++ -­ -­

-

Net
Evaluation

-3
-7

+3

+3
+3

-2
-3

~

Figure 5: Qualitative Evaluation of Organizational Options for
Information Security

lated into a more digestible qualitative form for the decision maker. (For example, a decision

analysis on U.S. export policy was turned into a qualitative argument for Henry Kissinger, who

was known to dis.trust numbers.) This is another case where the researcher should be discouraged

from doing what he likes best (doing fancy mathematics), if something simpler to present is more

useful to the client.

Figure 6 shows a similar, but one degree more quantified, analysis of another set of policy op­

tions, but using the same attributes of value. The case addressed here has to do with civilian

telecommunications security options. It suggests that, if the numbers and analysis are accepted,

the option of performing R&D on encryption is the option to be preferred.

Although both Figures 5 & 6, in fact, reflect a particular individual's preliminary reflections on

the issues concerned, they could easily serve as "macro models" which are a distillation of more

intensive studies, possibly involving many expert judgments, field surveys or mathematical

models12• By using a ma_cro model as the primary link with the decision maker, we reap several

important advantages. It simplifies communication with the decision maker (who may not have

the time or inclination or competence to evaluate a fine-grained micro model). It permits plural

analysis by allowing the user to consider and merge alternative inputs to the chart, including his

own intuition. It can also be used to guide further analytic effort, by indicating, through sen­

sitivity analysis, where firming up inputs is most likely to affect conclusions. (This can help

counteract a tendency among researchers to want to do new research on those topics that they al­

ready know most about--rather than where it is most needed.)

There is an important point to be made in using such analyses to guide a decision maker. There

will typically be considerations (like "bureaucratic upset" in this set of attributes), which the deci­

sion maker may not want to make public. In such cases, any formal analysis will either be em­

barrassing (if made public) or may lead to unwelcome conclusions (if the factor is omitted).

Whether this is a good or a bad feature of formal analysis for risk management problems depends

on whether you want to discourage the decision maker from taking into account considerations

which he does not want to announce publicly. ·

Advers-arial Source of Risk

The above macro model examples were at such a high level of aggregation that no specific risk

event was assessed probabilistically. In a micro analysis they would be, for which a well­

developed array of Probabilistic Risk Assessment (PRA) methods are available13• However, the

fact that the source of risk may be a human adversary calls for some distinctive methodology. It

10

ATTRIBUTESb Nat. Sec.

Def. Civ.

WEIGHTSC

OPTIONSd

0. Do Nothing

1 . Encryption
1. DES
2. Stronger

2. R&D on Encryp

3. Drop
Satellite &
Microwave

4. Dedicated

Lines

Notes

10 2

0

0
0

-30

+20
+25

0 +20

0 +20

0 +20

Risks Addressed

Econ. Loss

Bus. Pub.Gov.

.21 .5

-10-20 0

0 0+5
0+10 0

+10 +20 0

-10+10 0

-10+10 0

a. See guidelines on completing form.
b. Dimensions of concern to government.
c. Relative importance of stakes under
each attribute. or of $18 swing for costs &
losses .

......

......

Priv.

2

-50

+20
+20

+20

+20

+20

Gov.

Serv.

2

-30

0
0

0

0

0

Option Costs

Gov.

Direct

Bus. Pub.
Ind.
•tax•

1 .2 .5 1

0

-20
-50

0

-10
-20

0

0
0

0

-30
-35

-30 -:10 0 -15

-40 -20 0 -10

-60 -20 0 -10

Bur.

Upset

.5

0

0

-101

0

-10

-10

d. Scores are 7. of potential deterioration
from present.
e. Weighted sum of scores.

Figure 6: Quantitative Evaluation of Civilian
. a

Telecommunications Security Options

Other Attributes

Democ.

Value

1

0

0

0

0

0

0

Comments

z. NSA upset.

Net 8

Evaluation

-2.41

+.33
-.30

+.47

-.27

+.09

is not only_that the source is human, and therefore involves considering psychological issues.

Predicting human error in the operation of a nuclear plant, for example, also has this property. It

is also that it involves deliberate (and hostile) intentions that themselves are changed by the

security measures taken (at least to the extent that the adversary knows about them). If you close

up one avenue of attack for him, it leads him (probabilistically) to try a different mode of attack.

An early DR/AS problem we worked on was in the area of nuclear proliferation. The task was to

assess the probability that the International Atomic Energy Agency would detect a country divert­

ing fissionable materials from peaceful uses, by analyzing each "diversion path" the proliferating

country might adopt. We had not only to take into account the probability of detection if the

country followed each diversion path, but also have the probability that he would choose that

diversion path, which is itself a function of the detection probability. Much the same would

apply to the behavior of a foreign agent seeking to breech a computer security system.

Distinctive tools for assessi~g adversarial behavior do exist in the literature, but, to our

knowledge, have not been very fully developed or applied. For example, game theory is logically

well-established, but the necessary assumptions needed in most versions of it are rarely found in

the real world, and I am not aware of any relevant successful applications14•

A more promising alternative is "imputed PDA," in which we model the adversary's behavior as

if he were using PDA to determine his decision. This approach has been used to predict non­

adversarial behavior, for example, to predict when NATO would mobilize ·in the event of an im­

pending (but unknown) Warsaw Pact attack 15• It is critically important, however, to allow for

"slippage" between the prescriptive PDA model and descriptive reality (which in the NATO case

led us to almost double the mobilization delay implied by PDA). Variants of this approach have

been developed by psychologists relating probability of action to relative expected utility16•

Conclusion

In this paper, there has not been space to do more than touch lightly on the current state-of-the­

art of risk analysis and some new developments, as they bear on the distinctive problem of com­

puter security. My overall conclusion is that existing risk analysis techniques need substantial

development and augmentation before the critical needs of computer security can be well served.

12

The pre_paration of this paper was supported, in part, by the Decision and Management Science

Program of the National Science Foundation, under Grant No. SES 8360335. The author wishes

to e.xpress appreciation to Lance Hoffman, who provided stimulus to work on this topic and· sug­

gested the idea fOf' Figure 1.; and to Granger Morgan for some valuable basic insights into the

problem.

References

t. Kendall, M.G., & Stuart, A. The advanced theory of statistics. Volume 2: Inference &
relationship. London: Charles Griffin & Company, 1961.

2. Lave, L.B. (Ed.). Quantitative risk assessment in regulation. Washington9 DC: Brookings In­
stitution, 1982.

3. Covello, V.T., and Menkes, J. Issues in risk analysis. Hohenemser, C., and Kasperson, J.X.
(Eds.). Risk in the technological society . .AAAS Selected Symposium 65. Boulder, CO: Westview
Press, 1982, 287-301.

4. Brown, R.V., Kahr, A.S., and Peterson, C.R. Decision analysis for the manager. New York:

Holt, Rinehart, and Winston, 1974.

5. Raiffa, H. Decision analysis. Reading, MA: Addison-Wesley, 1968.

6. Keeney, R.L., and Raiffa, H. Decisions with multiple objectives: Preferences and value

tradeoffs. New York: Wiley, 1976.

7. Hoffman, L.J., A research agenda for computer security risk analysis (draft). Report on a
DOD-sponsored workshop, Washington, DC: The George Washington University, Department of
Electrical Engineering and Computer Science, January 1986.

8. Brown, R.V., and Lindley, D.V. Plural analysis: Multiple approaches to quantitative research.
Theory and Decision, 20, 1986, 133-154.

9. Ulvila, J.W., and Brown, R.V. Step-through simulation. Omega: The International Journal

of Management Science, 1978, 6(1), 25-31.

10. Hill, G.A. Societal consequences of malevolent situations: Implications for safeguards policy
(Technical Report 81-8). Falls Church, VA: Decision Science Consortium, Inc., May 1982.

11. Brown, R.V. Personalized decision analysis as an expert elicitation tool: An instructive ex­
perience in information security policy (Report to OT A - Task 2) (Technical Report No. 85-9).
Falls Church, VA: Decision Science Consortium, Inc., February 1985.

12. Brown, R.V., and Feuerwerger, P.H. A macromodel of nuclear safeguard effectiveness

(Interim Report PR 78-6-80). McLean, VA: Decisions and Designs, Inc., March 1978.

13. Risk Analysis, Special issue on nuclear probabilistic risk analysis. Vesely, W.E. (Guest Ed.),
December 1984, 4(4).

14. Shubik, M. Game theory in the social sciences. Cambridge, MA: M.I.T. Press, 1982.

15. Brown, R.V., Kelly, C.W., III, Stewart, R.R., and Ulvila, J.W. A decision-theoretic approach
to predicting the timeliness of NATO response to an impending attach (U). Journal of Defense
Research, May 1977, Special Issue 77-1 (Crisis Management), 126-135.

16. Luce, R.D. Individual choice behavior: A theoretical analysis. New York: Wiley, 1959.

14

A PROPOSED POLICY

for

DYNAMIC SECURITY LATTICE MANAGEMENT

C. 1'. :&'erguaon
c. B. Murphy

Honeywell, Inc.

Secure Computing Technology Center

2855 Anthony Ln. So., Suite 130

St. Anthony, MN 55418

I. INTRODUCTION

In designing the System Security Officer (SSO) interface for the
Secure Ada Target (SAT) [1), it has become apparent that the
Trusted Computing System Evaluation Criteria (TCSEC) description
of security levels and the activities of an SSO is insufficient
and does not accurately reflect the intention of DOD security
policy in all application areas. This discussion will describe the
issues related to implementing a security lattice and SSO
functionality fo_r a Trusted Cpmput.ing Base (TCB) and will describe
a modified lattice model which permits arbitrary lattices to
evolve which represent a wider range of security environments.
The discussion will include a descriptive policy for controlling
the creation, deletion, and aggregation of security levels and
other level maintenance operations.

Complete Lattice After Category Addition

:&'igure 1

1 15

II. ISSUES

Lattice Configuration Issues

The TCSEC refers to the hierarchical levels and non-hierarchical
categories of a security lattice as though they were independent
and orthogonal attributes [2]. Hence, the TCSEC lattice is often
thought of as a complete lattice having exactly one SYSTEM-HIGH
security level and exactly one SYSTEM-LOW security level. The
,hierarchical levels form a linear ordered lattice arranged in
order of dominance. At each hierarchical level exists an identical
set of ncn-hierarchical categories. Dominance for these
categories is computed by means of set theory. Thus, the set of
categories is treated as a lattice of subsets. [3]

This description of a lattice does not correspond well to many
security lattices. In reality, many security lattices are not
complete in that there is not exactly one SYSTEM-HIGH.
Furthermore, the TCSEC' s concept of a non-hierarchical category
does not map straightforwardly into environments where the need to
know compartments available at each hierarchical level are not the
same for all levels. To exemplify the problem, one might consider
a complete security lattice having two hierarchical levels (TOP
SECRET and UNCLASSIFIED) and two non-hierarchical categories (A
and B) . A complete lattice would require there be three
UNCLASSIFIED non-hierarchical categories (A, B, and the aggregate
AB) as illustrated in Figure 1. These UNCLASSIFIED categories may
not be appropriate.

Complete Lattice with One Category
Figure 2

Another problem with the complete lattice model. is that i.t may
require the creation of undesirable compartments as a side' effect
of creating a new desired compartment. Consider a lcsttiee with

2 16

hierarchical levels consisting of UNCLASSIFIED and TOP SECRET. At
each level there exists one category, A, as in Figure 2. Addition
of another category, B, to the system would result in the creation
of four new compartments (TS.B, TS.AB, U.B, and U.AB) as
illustrated in Figure 1. Two of the newly created compartments
will be aggregations of A and B which may not be desirable.
Furthermore, it may have been desirable to create category B at
TOP SECRET but not at UNCLASSIFIED.

Many security lattices are more accurately described as partially
ordered sets (poset 's) than lattices. The organization of the
security poset is essentially arbitrary and there is no
SYSTEM-HIGH. In contrast, there are multiple maximal security
levels which can be thought of as local SYSTEM-HIGH's. Creation of
need-to-know compartments and aggregation of compartments into
dominating compartments in practice is under complete control of
the System Security Officer (SSO) or other poset administrators.
An example of such a poset is illustrated in Figure 3.

Compartmented
Security

Level a

Collateral
Security

Levels

Typical Security Poset

Figura 3

Furthermore, some sites have been known to create· additional
hierarchical levels for a specific category. The configuration of
such a poset would have one level hierarchically dominating a
second level where both levels are of the same "conventional"
hierarchical level. This situation is illustrated in Figure 3 by
the levels TS.C and TS.Y.

System Security Officer CSSQ) Functionality Issuaa

Security policies for the pen and paper world compartmentalize
information for good reasons. Those reasons are equally valid
when the paper world policy is mapped into TCB policy. For this
reason, it is desirable for 4ll users of a TCB, including the SSO,

3 17

to be constrained by the principle of least privilege. Hence, the
System Security Officer (SSO) should not be cleared any higher
than would ordinarily be necessary for his pen and paper world
activities. Many SSO functions require access to objects and all
objects on a TCB should have a security level associated with
them. The SSO, as with any other user of the TCB, has a distinct
clearance lev'el. The actions of the SSO should be limited to
objects for which he has proper clearance and should be auditable.

Performing security level maintenance functions in a system
requiring a single SYSTEM-HIGH would require some personnel to
have a SYSTEM-HIGH clearance level. Such a requirement is
considered dangerous in many environments. For a system employing
a security poset with multiple maximal security levels, it would
be equally dangerous to require a single person to be cleared to
all maximal levels in order to perform level maintenance. Such a
design defeats the purpose of need to know compartmentalization
and introduces significant risks associated with SSO errors and
system faults.

Security Lattice Management Issues

The TCSEC specifies or implies numerous requirements on SSO
functionality and requires the SSO functions "shall be identified"
([2] section 4.1.3.4). Unfortunately, the TCSEC is silent on
functions relating to lattice maintenance such as control of
compartment aggregation, creation of new compartments, and
deletion of old compartments. Not surprisingly, most multi-level
TCB's to date have assumed the security lattice is static between
system regenerations.

III. KEY ELEMENTS OF PROPOSED POLICY

Summarizing the issues presented previously:

• 	 A complete lattice is ill-suited to actual DOD security
environments.

• 	 Requiring a single SYSTEM-HIGH is generally unacceptable for
compartmented security environments.

• 	 Requiring any personnel to be cleared to all compartments or
to a SYSTEM-HIGH is considered dangerous and defeats the
purpose of compartmentalization.

• 	 The TCSEC does not specify how security levels are to be
created, deleted, aggregated, or maintained.

' 18

The proposed remedy for the above issues is based upon the
following concepts:

• 	 Explicit Creation o~ Security Levels and Dominance
Relationships Realistic security posets will not
necessarily need or want identical category sets at each
hierarchical level. A method for explicit level creation
and explicit denotation of dominance relationships will be
defined and the capability of building completely arbitrary
security posets with numerous maximal security levels will
be provided.

• 	 Delegation o~ SSO Authority The SSO functionality
cannot conform to the requirement of least privilege if a
single SSO is required to perform all poset maintenance
functions. Therefore, the responsibilities of the SSO will
be delegated to other authorized personnel. A set of
distinguished users, referred to as Security Level
Administrators (SLA 's), will be designated by the SSO to
execute security maintenance functions on specific security
levels. The SSO will only be responsible for maintenance
functions on security levels at or below his or her
clearance level.

• 	 Two ltey Control - Critical functions, such as aggregation
or deletion of a security level, will require approval of
two authorized users. The authorized users will generally
be the SLA's, the SSO, or a combination of both.

IV. DESCRIPTION OF PROPOSED POLICY

In the proposed policy, a hierarchical level and a
non-hierarchical category set is replaced by a single entity
referred to as a security level. Dominance relationships between
security levels are designated explicitly. The collection of
security levels and dominance relationships forms a partially
ordered set (poset). The creation of new levels (vertices) or
dominance relationships (edges} will be by distinct auditable
action.

The maintenance of a security level is the responsibility of a
distinguished user who will be referred to as the Security Level
Administrator (SLA) . There exists at least one SLA for every
security level in the poset. The SSO is a distinguished SLA who
generally performs security level maintenance for all security
levels which are dominated by his or her clearance level.

Each security level is represented by a distinguished object whose
contents describe attributes of the security level. This object

5 19

is referred to as a Security Level Descriptor Object (SLDO). The
SLA is the only user authorized to modify the SLDO. The SLDO
contains the following information:

• 	 The names of security levels which this level immediately
dominates.

• 	 The number of security levels which immediately dominate
this level.

• 	 The names of the Security Level Administrators (SLA's) for
this level.

• 	 The names of all users cleared to this level.

• 	 The names of all devices cleared to this level and the
corresponding labels (if any) which represent this level on
those devices.

• 	 Names of devices and users that have been cleared to any
immediately dominating levels.

The SLDO of a security level is created at the time of level
creation and is classified at the level it represents.

Every security level contains at least one user that is designated
as the Security Level Administrator (SLA). A SLA is designated at
the time of level creation. This user is responsible for
maintaining the security level. Alternate SLA' s may be
designated.

One function of the SLA will be to maintain the list of cleared
users contained in the Security Level Descriptor Object (SLDO) for
the security level. This list will contain one entry for every
user cleared to the level. The entry will contain the user's name
and may contain other information about the user such as group
name, date of last password change, object ownership list, etc.
The SLA will be responsible for keeping the data in the list of
cleared users up to date. The SLA will be able to modify existing
user entries, delete users, and add new users.

The System Security Officer (SSO) is responsible for maintaining
an UNCLASSIFIED user database. All users are initially made known
to the system by the SSO and given a clearance level of
UNCLASSIFIED. The various SLA's of the system can grant clearance
to their security level to any user in the User Database who is
clea·red to all security levels immediately dominated by the SLA' s
security level. This requirement will insure that for all levels
a user dominates, the SLA of each level has properly approved the
user's access to the level.

The SLA will also be responsible for maintaining the list of
cleared devices contained in the security level's SLDO. Each
device cleared to the level will have an identifier in this list.
If the device is label preserving, the entry will contain

6
20

labelling information which when sent to the device will represent
the level. The label may be human readable. A device may have one
or more human readable labels such as the character strings 'TOP
SECRET' and 'TS'. Another human readable label might be an escape
sequence representing a color or special font. An attribute of
the labelling information in the cleared device list might be a
description of a labeller to be used in sending information to the
device.

Transferring ownership of objects is another function which must
be provided for the SLA. This function is accomplished via tools
which modify the object ownership lists for entries in the Cleared
User List. The SLA will want to transfer object ownership is when
it becomes known to the SLA that a user is no longer cleared to
the level (the user might have died, left the company, or sold out
to the Red hordes). In this case, all objects owned by the
problematic user will be removed from his ownership list and given
to another user cleared to the level.

The SLA is authorized to import, export, and downgrade objects.
The SLA has the capability of de~ignating a new SLA or co-SLA for
his level. The SLA may delegate a subset of his capabilities to
other users cleared to his level. Delegatable capabilities might
be the authorization to export and import objects to or from
non-label preserving devices or authorization to downgrade
objects.

V. SPECIAL LATTICE OPERATIONS

There are four lattice operations which modify the lattice
configuration significantly and require special treatment. These
operations are Fan-Out, Fan-In, Forced SLA Replacement, and
Security Level Deletion. Two key approval is required to perform
all these operations except Fan-Out.

Simple Fan-Out Complex Fan-out
l'!gur• 4a l'igure 4b

21

Fan-Out

The Fan-Out operation creates a new security level immediately
dominating the level from which it is created. A simple Fan-Out
operation is illustrated in Fi~ure 4a where level A has Fanned-Out
to create level X. A SLA can perform a Fan-Out by creating a new
Security Level Descriptor Object .(SLDO) and performing a TCB
operation which creates a new level from the object (activates the
SLDO). By performing repeated simple Fan-Out's, a SLA can create
a complex Fan-Out as illustrated in Figure 4b.

When the SLA of level A in Figure 4a Fans-Out to create level X,
the following steps will be executed:

1. 	SLA (A) creates a SLDO. The new security level exists at
this time but is inoperative.

2. 	 SLA (A) assigns a unique name to the new SLDO. This name
may be provided by the SLA or randomly generated by some
dictionary on the system. In this example, the new level
has been assigned the name X.

3. 	SLA (A) assigns at least one interactive console type device
to security level X. This device is also given exactly one
human readable label. This device should be one, such as a
CRT terminal, which will allow the SLA for the new level to
perform security level maintenance functions.

4. 	 SLA (A) designates a user to be the Security Level
Administrator for level X -- SLA (X) . This user is the sole
user cleared to level X at this time.

5. 	SLA(A) executes the TCB Let-Dominate operation and the level
becomes operative.

The new security level X will not become operative until all five
steps have been completed. SLA (X) is now responsible for adding
more users and devices to his level. SLA (A) can repeat the above
operations to create a complex Fan-Out similar to that in Figure
4b.

ran-In

The Fan-In operation creates a level which is an aggregation of
two existing levels. A simple Fan-In is illustrated in Figure Sa
where level A and level B have Fanned-In to create level X. The
Fan-In operation requires the approval of both aggregating SLA's
-- either SLA can veto the operation.

8 22

Simple Fan-In 	 Complex Fan-In
l'igure Sa 	 l'igure Sb

When the SLA's of levels A and B of Figure Sa decide to aggregate,
following steps are executed to perform the operation:

1. 	SLA (A) and SLA (B) agree to Fan-In.

2. 	 It must be decided between the SLA' s of the aggregating
levels which SLA will initiate the aggregation. For this
example, SLA (A) will initiate.

In the following steps, that level which initiates the
aggregation will be referred to as the first aggregating
level. That level which does not initiate the aggregation
will be referred to as the second aggregating level.

3. 	 The first aggregating level performs a Fan-Out to create the
new level. In our example, SLA (A) Fans-Out creating level
X.

4. 	 The first aggregating level will communicate the name of the
Fanned-Out level to the second aggregating level. In our
example, this operation requires the SLA (A) to communicate
the name of Level X to SLA(B).

5. 	The SLA of the second aggregating level will communicate a
name representing his level to the SLA of the new level. In
our example, SLA (B) communicates the name for security
level B to SLA(X).

6. 	 The SLA of the second aggregating level in!tiates the
creation of a dominance relationship with the Fanned-Out
level by executing a Let-Dominate TCB function. The name of
the new level is a parameter to this function. In our
example, SLA (B) will execute the Let-Dominate function
using the name of level X.

7. 	 The SLA of the Fanned-Out level completes the creation of
the dominance relationship by executing the Dominate TCB
function.· The name of the second aggregating level is a
parameter to this function. In our example, SLA (X) executes
the Dominate function using the name for security level B.

23

The new security l.evel becoJIIe.s operative after step 4 the
Fan-Out step. However, the aggr.egatio.n ll.s not complete unt.i.l the
Dominate and Let-Dominate functions are performed. B!Y this
procedure, the SLA of either t~b..e ~e.co:nd agsu:egating level or the
new level can veto the a.ggr.egatJ.,on by refusing to perform his
Let-Dominat# or Do.ll.ti..tUJt:~ ope.ratioa,.

There will be occa:aions in which an SLA of a level t~~ust be
replaced l!lithout bis or her cott.sent. This operation .is referre.d
to as Force,d $LA Replacement a.nd requires the approval o~ two
different authorize~ uBer•. Authorized users may include a
combination of the following:

• 	 A Co-SLA, if one e~iats.

• 	 The SLA of any level immediately dominated by the level of
the problematic SLA.

• 	 One of the System Security Officers (SSO' s). Two SSO' s
should not be allowed to replace an SLA except for levels
which immediately dominate the SSO's level.

To illustrate the procedure for replacing a SLA, suppose that in
Figure 4a it has been determined that the SLA of level X must be
replaced. To do so the following steps will be performed:

1. 	Two of the above authorized users are 'made aware' that SLA
(X) must be replaced.

2. 	Each of these users independently performs the Replace-SLA
TCB operation.

3. 	 If there were no Co-SLA' s at level X, then the SLA of the
immediately dominated level will designate a new SLA for
level X as a parameter to the Replace-SLA operation.

4. 	 The newly designated SLA will correct any deficiencies noted
at the level.

In this operation, the SLA's provide a two key control function.
Either SLA can veto the operation by refusing to execute the
Replace-SLA TCB operation.

Security Leyel Qeletion

The capability to delete levels from the security poset is also
required. A security level can not be deleted if it is dominated
by any other level, hence, the SLDO for each level contains a
count of the number of security levels which immediately dominate
the level. This operation will require the approval of the SLA of
the level to be deleted and the SLA' s of all levels immediately
dominated by the level to be deleted.

10
24

http:Do.ll.ti

A security level can not be deleted if it is dominated by any
other level. Once this requirement is met, the following steps
may be performed to delete the level.

1. 	All objects existing at the level to be deleted must be
removed from the level.

2. 	All users cleared to the level to be deleted must lose their
clearance. When the SLA removes a user's clearance, the
user maintains his clearances to levels immediately
dominated by the SLA's level.

3. 	All devices cleared at the level to be deleted must have
their clearances downgraded to levels immediately dominated
by the level to be deleted.

4. 	 The SLA of the level to be deleted executes the Delete-Me
TCB operation. For example, in Figure 4a, security level X
is to be deleted. After downgrading the clearance of all
users at X and downgrading all devices cleared at X, SLA (X)
will execute the Delete-Me TCB operation.

5. 	 The SLA's of the levels immediately dominated by the level
to be deleted each execute the Delete-Up TCB operation. In
our example, SLA (A) will execute this command.

The security level is not deleted from the system until both the
Delete-Me and Delete-Up functions are performed by all SLA's
involved. In this way, the SLA of either the deleting level or the
ievel being deleted can veto the deletion by refusing to perform
his Delete-Up or Delete-Me operation.

VI. SUMMARY

The proposal described above provides a capability to design
arbitrary security posets which can reflect the exact desire of a
specific site. The delegation of a subset of the SSO's authority
to Security Level Administrators allows a practical SSO interface
to be designed which adheres to the principle of least privilege.
The special operations for creation and deletion of new levels
provide the capability for the SSO designated SLA's to customize
the poset configuration to his or her needs without the need for
SSO oversight. The two key control features of the design prevent
potentially hostile poset JJtodifications from occurring unchecked.

VII. REFERENCES

1. 	Boebext, W. E., Ka . .in, R. Y., Young, W. D., and Hansohn, s.
A., "Secure Ada Taxget: Issues, System Design, and
Verifi.cation,,. Pxoc. 1985· Symp. on Computer Security and
Privacy, 176-183, April 1gss.

25

2. Department of Defense, "Trusted Computer Systems Evaluation
Criteria," CSC-STD-001-83 Auqust 15, 1983.

3. Denning, D. E. "A Lattice Model of Secure Information
Flow," in Communications of the ACM, vol. 19, no. 5 (May
1976), pp. 236-243.

12

26

GOULD COMPUTER SYSTEMS DIVISION

SECURE UNIX® PROGRAM

STATUS

Gary Grossman
Gould,

ABSTRACT

Gould Computer Systems Division is
committed to an intensive development
program whose goal is to produce a
system with UNIX® functionality that is
evaluated at Class Al by the National
Computer Security Center (NCSC). To
satisfy customers' needs for security in
the short term, Gould is producing a
graded series of secure UNIX products.
The first product, called UTX/32STM 1.0,
is in formal evaluation by the NCSC as a
candidate for Class C2. This paper
explains Gould CSD's goals for its secure
UNIX products, discusses standard UNIX
in the light of the C2 criteria, describes
the characteristics and features provided
by UTX/32S 1.0, reviews Gould's
experience in producing its first product
for evaluation, and gives a preview of
future products.

Inc.

INTRODUCTION

Gould Computer Systems Division (CSD) is
committed to an intensive development program to
meet DoD and industry needs as expressed in the
National Policy on Telecommunications and
Automated Information Systems Security.l The
goal of this program is to produce a system with
UNIX® functionality that is evaluated at Class A 1
by the National Computer Security Center
(NCSC). To satisfy customers' needs for security
in the short term, Gould is producing a graded
series of secure UNIX products. The first product,
called UTX/32S™ l.Q2,3,4,5, is in formal
evaluation by the NCSC as a candidate for Class
C2. This paper discusses Gould CSD's goals for
its secure UNIX products, informally evaluates
standard UNIX from the point of view of security,
describes the characteristics and features provided
by UTX/32S 1.0, reviews Gould's experience in
producing its firSt product for evaluation, and gives
a preview of future Gould security products.

GOALS

Gould CSD has adopted four primary goals for its
secure 1JNIXTM products:

1. 	 The security. of each product must be
fonnally evaluated by the NCSC.

2. 	The security features of each product must
be convenient and easy to use.

3. 	 Each product must be as compatible as
possible with UNIX standards and with
other Gould CSD products.

4. 	Each product should maintain Gould's high
standard of performance.

27

Formal evaluation

Gould's goal is to produce a graded series of
secure UNIX products leading to a product in the
early 1990's that is evaluated as Qass A 1 under the
DoD Trusted Computer Systems Evaluation
Criteria6 (TCSEC) by the National Computer
Security Center. Each product will be developed
under a developmental evaluation and will be
submitted for formal evaluation once development
is complete.

Gould's first secure UNIX product, UTX/32S
1.0, was developed under a developmental
evaluation and was submitted for formal evaluation
in June 1986. Gould hopes to complete formal
evaluation by the end of calendar 1986.

Gould is presently developing a system targetted at
Class B 1, also under developmental evaluation,
and expects to submit it for formal evaluation
sometime in calendar 1987.

Gould plans to continue work on systems aimed at
the higher Division B classes, with an eye toward
reaching A 1 in the early 1990's.

User-friendliness

As with any system, the easier it is to use and
administer a secure system, the more successful it
is likely to be. One of Gould's goals is to make the
security of the system transparent to the ordinary
user who is operating at a single level. Where
users must interact explicitly with the secure
features of the system, the security-relevant
commands will be made to look like analogous
UNIX commands wherever possible.

The TCSEC define the minimum requirements for
the evaluation of the security of a system. They are
not a prescription for how the system is to look or
what features will make the system most useful
from a security point of view in any given context.

Gould is investigating integrating features into its
secure systems that increase the security of
terminals, as well as features that increase the
power of administrators and decrease the
probability of administrative error.

Compatibility

UNIX systems are coming to represent a
substantial segment of the U.S. Government
computer market, both within the DoD and within

civilian agencies. This is primarily due to the
relative ease of software portability _between
different versions of UNIX, even across hardware
vendors. This portability, in tum, is due to the
standardization of the interface to UNIX systems.
To be competitive in this market place, a hardware
vendor like Gould must keep track of the
developing UNIX standards and ensure that its
products are compliant. Gould's UTX/32 is
compatible with both AT &Ts System V Interface
Definition and with the University of California at
Berkeley's 4.3 BSD release.

Just as Gould has been tracking the UNIX
standards with UTX/32, UTX/32S will remain
compatible with UTX/32 to the fullest extent
possible consistent with security. There will be no
change in the user interface that is not dictated by
compliance with the TCSEC.

When changes in the user interface are necessary,
upward compatibility will be fostered by
introducing changes as early as possible in the
product line to permit users to make each change
only once. For example, the TCB protection
features that have been introduced in Gould's C2
candidate system are expected to carry over all the
way to Gould's A1 system.

UTXI32S will support all of the same languages as
UTX/32, as well as most applications, both UNIX
commands and those supplied by third parties.
Gould is encourage third parties to develop secure
applications that take advantage of the UTX/32S
architecture. For instance, Gould is currently
investigating third-party development of secure
DBMS and secure OA packages.

Gould's secure UNIX systems will be compatible
with its current PN6000 and PN9000 systems as
well as systems now in development. As evide~ce
of Gould's commitment to secure systems,
memory management modifications have been
made to the PN6000 and PN9000 lines. These
modifications are gradually replacing the previous
versions in the field.

Gould's secure UNIX systems will support the
same I/0 devices as its standard UNIX products.

Performance

Gould e.xpects its secure sy~tems to provide highly
competitive performance m the secure systems
marketplace.

2
28

For the most part, the performance of UTX/32S
1.0 is the same as that of standard UTX/32. One
exception to this is the I/0 bandwidth burden
imposed by audit when many types events are
enabled. There is also some additional loss due to
the way that printer spooling is implemented.

The performance burden imposed by security is
expected to rise moderately for Oass B1 because
of the introduction of mandatory access control,
especially for those applications which depend
heavily on repeatedly opening and closing files.

A much greater increase in this burden is expected
at Class B3 because of the overhead inherent in the
kernelization of security-relevant functions.
Because of the high raw power of Gould's
systems, Gould expects even the kemelized
systems to deliver good absolute performance even
if relative performance were to be cut in half.

UNIX and Class C2

Standard UNIX systems,_ like UTX/32, meet many
of the criteria for Class C2. 7 But a brief discussion
of how well UNIX meets these criteria will show
that there are a number of deficiencies8 that must
be rectified.

Security policy

Discretionary Access Control. For the most
part, standard UNIX meets the C2 discretionary
access control (DAC) criterion. The UNIX DAC
mechanisms consist of a set of permissions that
controls read, write, and execute access to each flle
by each of

1. 	 a distinguished user called the file's
"owner" (usually the creator of the file),

2. 	 a distinguished group (usually the group
under which the creator of the file was
operating when the files was created), and

3. 	 any other user of the system.

For directories, the execute permission is
interpreted as search permission. Only the owner
of the file can change its DAC permissions.

But there is one distinguished user, called the
superuser, who is not subject to the DAC controls.

The superuser can access any file and can also
change the DAC permissions of any file.

Object reuse. For most storage objects, UNIX
conforms well to the C2 object reuse criterion. For
removable media such as magnetic tapes, however,
there is no mechanism for preventing any user
from reading a tape that has been mounted for
access by another user.

Accountability

Identification and authentication~ UNIX
provides for a distinct user id for each user, which
is authenticated during login via a password that is
stored in encrypted form. This user id is
associated with every process that is executed on
behalf of the user. These provisions seem to
amply meet the C2 identification and authentication
criterion.

But the existence of the superuser, and how it is
used in practice in most UNIX systems, poses a
problem. The superuser id is used to perform most
system administration functions. The superuser
password is therefore often known to more than
one person; it is known and used by all those who
fulfill the role of system administrator. This is in
contradiction to the requirement that each user be
uniquely identified and that the user's identity be
associated with all auditable actions taken by that
user.

Audit. UNIX systems provide some audit
capability in the form of accounting information
down to the process level. They do not provide
audit for many of the types of events required by
the C2 audit criterion. In particular, they do not
provide a record of events that involve access or
deletion of storage objects, nor do they record
failed attempts at login or file access.

Assurance

Operational assurance: system
architecture. Most UNIX systems loosely meet
the requirements of the C2 system architecture
criterion: the elements of the system are protected
through a combination of hardware memory
management and the DAC mechanism, and all
visible resources are under control of the system.
But there are significant weaknesses inherent in the
size of the TCB, the existence of the "setuid"
mechanism, and the use ofDAC for protection.

The criterion implicitly requires that the Trusted
Computing Base (TCB) - the security-relevant

3
29

parts of the system - be identifiable. In a
standard UNIX system, security-relevant
functions are. performed by a relatively large
number of separate programs. Considerable
analysis is required to delimit the TCB.

Standard UNIX systems provide a feature called
setuid that is used to implement a number of UNIX
features. The setuid mechanism provides a
controlled means for an untrusted user to perform
trusted functions. It consists of a flag that can be
set on an executable file. When the file is
executed, the resulting process executes with the
owner and group of the executable flle instead of
the user id and group of the process that spawned
it. This feature is useful for implementing trusted
functions and subsystems such as database
management systems. But this means expanding
the number of programs that must be trusted.
Keeping track of these tn:.sted programs on a site­
by-site basis presents a difficult administrative
problem.

Each element of the TCB must be correctly
protected by DAC to prevent tampering. An
incorrect DAC setting on any trusted program
could provide an opportunity for penetration.

Operational assurance: system integrity.
This criterion is probably met, at least at the C2
level, by the standard hardware diagnostics that are
available for most hardware for which UNIX
systems are targetted.

Life cycle assurance: security testing. No
test suite that specifically tests the security features
of standard UNIX is available.

Documentation

Standarq UNIX systems provide almost none of
the documentation required by the criteria. This
holds not only for the Security Features User's
Guide, the Trusted Facility Manual, and the test
documentation, but also for the design
documentation on which much of the security
evaluation must be based.

UTX/328 1.0

UTX/32STM 1.0, targetted for Class C2, is a
commercially available product. It is a security­
enhanced version of Gould CSD's standard
UTX/32TM, which provides the functions of both

Berkeley and AT&T System V UNIX .. UTX/32~
provides enhanced system protection, audit
facilities, and access control.

System Architecture

The principal differences between UTX/32S 1.0
and standard UNIX lie in the architectural features
that protect the UTX/32S TCB9.

Restricted Environments. The UNIX file
system employs a hierarchical directory structure
(see Figure 1). A file's pathname ("/usr/joe/fl" in
the figure) consists of the concatenated names of
the components on the path to the file from the root
of the me hierararchy (denoted "f'), separated by
"t"s. User processes can address any part of the
file system, although they can be prevented fr?m
unauthorized access by the UNIX file protection
mechanisms.

Since the standard UNIX file protection consists
only of DAC, it is possible for any important
element of the system to be made vulnerable to
tampering if its DAC is. improperly set. F<?r
instance, the flle from which the UNIX kernel 1s
initialized is usually kept in the root directory as
"/unix"; if its protection were improperly se~, a user
program could alter the kernel program at will.

A stronger protection mechanism is desirable for
any system that is to provide security. UTX/32S
provides such a mechanism, called restricted
environments.

/':c£root

usr /I ' '""b·1n

/1' I\

sue joe tom cc vi

---.----. \
f2

"/usr/joe/f1"

Figure 1. The UNIX File System

4
30

//I,,

usr bin

/I' I\
cc vi

virtual root

Figure 2. A Restricted Environment

A restricted environment {RE) is a subtree of the
file system to which a process and all of its
descendants is confined (see Figure 2). For the
confined process, the base node of the subtree
becomes the virtual root of the file system. Files
outside the subtree cannot be addressed by the
process. Because of the importance of the file
system in UNIX, the RE mechanism is an
important component of the protection of the
elements of the UTXJ32S TCB.

When a user logs into UTX/32S, the user's
command interpreter process ("shell" in UNIX
terminology) is confined to a restricted
environment Since every action the system takes
on behalf of the user, except for those performed
by the TCB, is performed by the user's shell
process or one of its descendants, all user actions,
except for those performed by the TCB, are
performed in the context of the RE. Thus no user
action can directly access any element of the TCB.

A process confined to an RE cannot exercise
superuser privilege, even if it were able to
somehow become labelled with the superuser id.

5

Figure 3. The Administrative

Environment

Administrative Environment. The file system
outside the REs is protected from access by any
user process. It is there that all trusted elements of
the system reside, and where administrative actions
are performed. This part of the file system is called
the Administrative Environment. (See Figure 3.)

Figure 4. The UTX/32S TCB

31

The UTX/32S TCB. The UTX/32S TCB
consists of the kernel and a set of trusted server
processes together with a corresponding set of
program files, a set of data files (such as the
password file), and the system spool files. (See
Figure 4.)

The process images of the kernel and the trusted
servers are protected by the memory protection
hardware. The other elements of the TCB are
protected by the RE mechanism.

Trusted Servers and Secure Sockets. The
non-kernel active elements of the TCB are a set of
trusted processes called trusted servers. The
trusted servers perform all privileged operations in
the system that are not performed by the kernel.
Each trusted server is spawned at system
initialization and is responsible for a specific set of
operations. For instance, there are trusted servers
that perform logins, printer spooling, mail, and
device allocation.

Figure 5. Trusted Server

A user process ('client") that requires action from
a trusted server requests the action via a secure
communication path called a secure socket. (see
Figure 5). When the client initiates the secure
socket, the kernel guarantees that the client is
connected to the specified trusted server. When the
server receives the connection, the kernel provides
to it information about the client, including user,
group, process id, and RE id. (In Division B and
A systems, the process' Mandatory Access Control

label will also be supplied.) The kernel guarantees
the correctness of this information, which is used
by the server to make authorization decisions and
to properly label objects and output on behalf of the
user.

System Administration. There are two steps
by which an authorized user gains the access and
the privileges necessary to perform system
administration functions. First the user must log in
to the administrative environment rather than into
an RE. Then the user must specifically requrest
superuser privilege.

During the login sequence, a user signals the
authorization server of intent to log in to the
administrative environment by preceding his/her
user name with the special character "*". If the
user completes the login sequence properly, the
authorization server checks the authorization data
base to determine whether the user is an authorized
system administrator, and completes the login
successfully only if so. Once the user is logged in
to the administrative environment, he/she is subject
to the standard DAC rules for files within the
administrative environment unless he/she
specifically requests superuser privileges.

A user requests superuser privileges via an audited
command that creates a new command interpreter
process with superuser privilege. This process and
its descendants are all still tagged with the user's
id, and all auditable events requested by the user
are so tagged.

No user can log in to UTX/32S as the superuser.

Protected files and directories. UTX/32S
provides a further mechanism for protecting against
Trojan Horses within RE's. Any directory or file
that is owned by the "superuser" cannot be
modified, deleted, renamed, or its DAC changed,
by non-privileged users, regardless of the DAC
setting on the directory or file. Thus compilers,
subprogram libraries, and system commands can
be installed in an RE that is shared by many users,
and be secure from tampering. This mechanism is
not used to protect elements of the TCB.

Device control. In standard UNIX, access to
devices such as terminals and tape drives is
provided via objects in the flle system called special
files. When a process opens a special file, alll/0
requests are handled by a corresponding device
driver instead of the disk file system. For system
maintenance, even the disks that contain the file

6
32

system are represented via special files (see Figure
6). ·As with other elements of the file system,
access to devices is controlled only by DAC. An
incorrect DAC setting on a special file could lead to
unathorized access to the entire ftle system.

In UTX/32S, each device is allocated to one of
three categories: privileged, owned, or
discretionary.

Privileged devices are accessible only by elements
of the TCB. The system disks are privileged
devices. They can be accessed only via the ftle
mechanisms in the kernel. The line printer is also a
privileged device. It can be accessed only by the
printer spooling mechanisms of the TCB.

Owned devices are allocated by a trusted server to
at most one user at a time. Only processes initiated
by that user can access the device. Terminals and
tape drives are owned devices.

Discretionary devices are protected only by the
DAC and RE mechanisms. There are no standard
UTX/32S devices in this category; it is provided
for specialized devices. .

"special"

~process file

Figure 6. UNIX Device I/0

Multiple file system links. In the UNIX file
system, a link is an entry in a directory that refers
to a file or a subdirectory directly contained within
the directory. Typically, there is only one link to
each flle or directory, and the file system is thought
of as a tree or a strict hierarchy. But it is possible
for there to be more than one link to a given file;
these links can be created by any user who has the

appropriate access to the file and the directory
involved. It is even possible in some versions of
Berkeley UNIX for there to be more than one link
to a given directory, although the creation of these
links is restricted to the superuser and the
documentation cautions against it. These
properties make the UNIX file system a directed
acyclic graph rather than a tree. Figure 7 illustrates
a situation in which directory D4 is a subdirectory
of both D 1 and D3, and D6 is a subdirectory of D 1
and D4. The figure also shows ftle f7 in both D2
and DS, and similar situations for files f9. and fll.
(The way that file links work is somewhat
simplified in this example.)

One result of the possibility of multiple links is that
some files may have many pathnames. fll, for
instance, has pathnames "ID l/D4/D8/fll ",
"/D3/D4/D8/fll ", and "/D3/D5/fll". . One
implication of this for secure systems is that the
TCSEC requires recording "the name of the object"
in audit records at Class C2 and above. I 0
Presumably, ambiguous names are not acceptable.
The ambiguity of multiple pathnames could be
circumvented by also including some unique
identifier for each object in the audit record. In
UNIX, each file has a unique data structure, called
an inode, that describes the file's physical storage.
Each inode is identified by a distinct integer.
UTX/32S includes the inode identifier in the audit
record to disambiguate multiple pathnames.

~I
01 / "-o2

,ljl~

03

04/'05

/ 06~1'/'---\ 08 \
I \ ts

f1 0 f11

Figure 7. Multiple File System Links
in UNIX

7 33

Figure 8. Multiple File System Links
in UTX/32S

More important for UTX/32S, the RE mechanism
depends for its confmement properties on a strict
hierarchy of directories (not necessarily of files).
This is because the UNIX pathname rules include
an operator(" ..") that permits processes to address
files above a given directory. Thus, in Figure 8, if
the links between D 1 and D4 or D4 and D6 were
permitted, a process in the RE that had the
appropriate DAC permissions could address Dl
and the real root (via a pathname such as
"ID4!D61..1.."), and thus ultimately the entire file
system. This would obviate the RE mechanism.
For this reason, multiple links to directories are not
permitted in UTX/32S. (There is another
UTX/32S mechanism, derived from Berkeley
UNIX, called symbolic links, which is simply an
indirect pathname mechanism; it has none of the
above properties, and can be used between
directories at will.)

Using multiple links to flies does not pose the same
problems as it does for directories, and so it is
permitted both within an RE and between the
administrative environment and an RE. But, as
always, system administrators must exercise care
not to base any security-relevant decisions on data
that is contained in an object to which any
untrusted user has had write access.

"setuid" eliminated. In addition to the
administrative burden r~presented by the setuid
mechanism (see Operational assurance:
system architecture above), it permits an
untrusted user to execute trusted software in an
environment that has been defined by the user.
This presents opportunities for the user to "spoof'
the trusted software.

A further objection to setuid (and setgid - an
analogous mechanism for groups), is based on
Gould's goals of upward compatibility and of
introducing changes, when necessary, as early as
possible. The Class A 1 criteria require, under
Design Specification and Verification 11, a formal
model of security policy and a formal top level
specification; the model must be proven consistent
with its axioms and the specification must be
shown to be consistent with the model. Class
B312- and even Class B213 -have weaker
versions of this requirement. In a system with
many processes per user that are dynamically
created and destroyed, it would be useful to be
able to make a simple universal statement about the
inheritance of privileges from a process to its
descendants, in order to be able to meet these
requirements.

Without the setuid feature, it is possible to state that
once a process' privileges have been established,
that process' privileges and those of its
descendants monotonically decrease. The setuid
feature makes it impossible to make this assertion.

For these reasons, setuid is not a part of UTX/32S
1.0. The system features that depend on it have
been reimplemented using the trusted server
mechanism.

/dev/kmem, /dev/mem. UNIX provides two
special files for debugging and to implement certain
utilities. "/devlkmem" provides the ability to read
and write in the kernel's virtual address space.
"/dev/mem" provides the ability to read and write in
the physical address space of the machine. These
capabilities are dangerous, to say the least, in a
secure system. They have been changed to provide
read access only, only to superusers in the
administrative environment. They will be
eliminated in subsequent versions of the system.

Discretionary Access Control

Groups. In System V UNIX, a user operates in
one group at a time, DAC decisions are made
accordingly, and all files are created with the user's

8
34

current group. Berkeley UNIX permits a user to
operate in multiple groups simultaneously, with
frequent confusion as to which group newly
created files will be labelled. UTX/32S uses the
single group mechanism.

Public DAC access. In UNIX, each user has a
default DAC setting that is applied to newly created
files, called the umask. · In standard UNIX, the
initial setting of each user's umask permits the
creation of files with automatic public read and
execute access. In UTX/32S, it is not possible to
set the umask to permit any automatic public
access. Public access for each file must be set by
explicit user action.

Audit

Audit trail file. UTXI32S provides an audit
trail of security-relevant events. The audit trail can
be written only by the UTX132S kerneL Records

untrusted trusted
process processes

'®
~= != tm:

~~...

Figure 9. Audit Trail

are written to the audit trail file as a result of
security-relevant system calls (such as file
creation, file open, etc.) by both trusted and
untrusted processes. Trusted processes can also
directly request the kernel to write audit records
based on events that are visible only to the non­
kernel parts of the TCB (such as logins). (See
Figure 9.)

Each audit record contains a time stamp, user and
group id's, process id, and controlling terminal, as
well as information determined by the .type of
event, such as file pathname for file open.

Events audited.

Table 1gives a synopsis of the types of events that
arc recorded in the UTX132S audit trail file. As the
table indicates, some events are optional; these can
be turned on and off at will by the system
administrator.

Eyent type Optional?
Reboot system No
System version and configuration Yes
Changes to user/group definitions No
Stop/change audit collection No
Access to audit trail file Yes
Start/stop/change accounting No
Successfullogins No
Unsuccessfullogins Yes
Suppress printer labelling Yes
Change mail source designation Yes
Process creation/termination No
Make process superuser No
Change process user id No
Change process working directory No
File/device access failure Yes
Create/open file Yes
Cmue/delete file link Yes
Create/remove directory Yes
Create special file No
Change file owner/access permissions Yes
Change device owner No
Rename file/directory/special file Yes
Mount/unmount file system No

Table 1. Auditable Events in

UTX/328

9

35

Audit administrative operations.

The system administrator can

1. tum audit collection on and off

2. direct the audit trail to any file or medium

3. select the types of events to be audited

EVALUATION EXPERIENCE

U T X I 3 2 S TN 1.0 was developed under a
developmental evaluation by the the NCSC. The
NCSC appointed a developmental evaluation team,
which met with project personnel at the early stages
of the project and several times thereafter. Some
weeks prior to each meeting, project personnel
supplied the team with documentation that reflected
the state of the project's design and
implementation. Each meeting consisted of
presentations by project personnel followed by a
discussion period.

Any development group must approach ongoing
oversight by an outside agency with some anxiety.
The opportunities for substantial communication
overhead and project design backtracking pose real
dangers for project schedules and budgets.

These anxieties were not borne out. Instead, the
effect of the evaluation was almost entirely
beneficial. As one might expect, the evaluation
team was helpful in interpreting the criteria and in
evaluating potential approaches to meeting them.
Further, the prospect of preparing for periodic
review by a competent team of outsiders who were
to evaluate it according to its primary goal ­
enhanc~d security that meets the criteria - served
to focus the project efforts.

Even a major change of team personnel (two of the
four team members were replaced approaximately
halfway through the effort) had little negative
effect. Continuity was provided by the remaining
team members with little observable burden on
development.

UTX/32S 1.0 was officially accepted for formal
evaluation in June 1986.

THE FUTURE

UTX/32STN 1.0 will be succeeded by a system
targetted at Class B 1. It will have all of the
features of its predecessor, plus mandatory access
control, discretionary access control based on
access control lists, and further enhancements to
system protection. Development has begun on this
product, which is expected to be available in
calendar 1987.

Gould also plans to continue work on higher B
level systems with an eye toward reaching A1 in
the early 1990's.

ACKNOWLEDGEMENTS

The author can take no credit for the work
described in this paper, although he took part at
several stages in the project review process. The
work was performed by the Gould CSD UTX/32S
1.0 development staff under Andreas Schuelke,
Project Manager, and Steve Sutton, Manager,
Secure Systems Development

The White House, National Policy on
Telecommunications and Automated
Information Systems Security, National
Security Decision Directive 145 (Unclassified
Version), 17 September 1984.

2 Usin~ Gould UTX/32S. Release 1.0, Gould,
Inc., Computer Systems Division, Ft.
Lauderdale, March 1986.

3 Product Definition for Gould UTX/32S.
Release 1.0, Gould, Inc., Computer Systems
Division, Ft. Lauderdale, March 1986.

4 System Administrator's Guide for Gould
UTX/32S. Release 1,0, Gould, Inc.,
Computer Systems Division, Ft. Lauderdale,
March 1986.

S 	 System Administrator's Guide for Gould
UTX/32S. Release 1,0, Gould, Inc.,
Computer Systems Division, Ft. Lauderdale,
March 1986.

10
36

6 	 National Computer Security Center,
Department of Defense Trusted Computer
System Evaluation Criteria. CSC-STD-00 1­
83, 15 August 1983.

7 	 Ibid, pp.15-17.

8 Grossman, G. "How Secure is 'Secure'?",
UNIX Review, August 1986, pp.S0-63.

9 	 Miller, G., Sutton, S., Matthews, M., Yip,
J., and Thomas, I., "Integrity Mechanisms
in a Secure UNIX: Gould UTX/32S",
accepted for presentation at the Aerospace
Computer Security Conference, McLean,
VA, 3-4 December 1986.

10 	 National Computer Security Center, p.16.

11 	 Ibid, p. 48.

12 	 Ibid, p. 39.

13 	 Ibid, p. 31.

® 	 UNIX is a registered trademark: of AT&T.

TM 	 UTX/32 and UTX/32S are trademarks of
Gould, Inc., Computer Systems Division.

11 37

