A Resource Access Decision Service for CORBA-based Distributed
Systems

Konstantin Beznosov* Yi Deng! Bob Blakley* Carol Burt$
FIU FIU DASCOM 2AB
John Barkley!
NIST
May 28, 1999

Abstract

Decoupling authorization logic from application logic al-
lows applications with fine-grain access control require-
ments to be independent from a particular access con-
trol policy and from factors that are used in authoriza-
tion decisions as well as access control models, no mat-
ter how dynamic those polices and factors are. It also
enables elaborate and consistent access control policies
across heterogeneous systems. We present design of a
service for resource access authorization in distributed
systems. The service enables to decouple authorization
logic from application functionality. Although the de-
scribed service is based on CORBA technology, the de-
sign approach can be successfully used in any distribut-
ed computing environment.

1 Introduction

Traditional access control mechanisms [1] provide lim-
ited capabilities for authorization decisions to be based
on factors that are specific to the application domain.
The complexity of access control policies in such appli-
cation domains as healthcare requires exercising access
control policies that are more sophisticated and of fin-
er granularity than the general ones used in security
services of such distributed environments as CORBA.!
This complexity leads application designers to embed

*School of Computer Science, University Park, Miami, FL
33199, beznosov@Qcs.fiu.edu

tSchool of Computer Science, University Park, Miami, FL
33199, deng@Qcs.fiu.edu

IDASCOM Research Park, 3004 Mission Street, Santa Cruz,
CA 95060, blakley@dascom.com

§3178-C Highway 31 South,
cburt@2ab.com

YGaithersburg, MD 20899-0001, jbarkley@nist.gov

LCommon Object Request Broker Architecture

Pelham, AL 35124,

domain-specific authorization logic inside their applica-
tions. Some even document patterns of designing “ap-
plication security” [2].

CORBA environment, including the CORBA Securi-
ty Service, provides a general-purpose infrastructure for
developing distributed object systems in a broad range
of specialized vertical domains. The CORBA Security
service defines the interfaces to a collection of objects
that provide a versatile set of services for enforcing a
range of security policies using diverse security mech-
anisms. Some of these mechanisms require application
systems to be aware of security. Such security models
currently require application system designers to imple-
ment complex access control decisions based on content
and context of interactions between client and target
objects.

Security requirements in such a domain as health-
care mandate domain-specific factors (e.g. relationship
between the user and the patient, emergency contex-
t) to be used in access control policies. At the same
time, commonality of business domain tasks and securi-
ty requirements across an enterprise computing infras-
tructure requires exercising fine-grained access control
policies in a uniform and standard way.

This paper describes a CORBA-based authoriza-
tion service, utilization of which allows fine-grain
application-level access control in such a way that the
functional design of application systems is separated
from complexity and idiosyncrasies of particular enter-
prise access control policies. We show how decoupling
of the authorization logic from application logic can be
done if the described authorization service is used. In
addition, our approach allows having a multi-policy au-
thorization model, and it permits security administra-
tors and application developers to maintain a clear sep-
aration of responsibilities.

The authorization service is by no means a replace-
ment or substitution of standard CORBA Security ser-

http:jbarkley�nist.gov
http:deng��s.fu.edu
http:beznosov��s.fu.edu

vice [3]. In fact, the concrete design proposed in this pa-
per assumes existence and takes advantage of CORBA-
compliant security infrastructure. More over, our so-
lution is of general value and it is applicable to any
distributed computing environment such as Sun RPC,
DCOM, DCE or Java.

The design of the authorization service provides a
way to have any level of access control granularity,
allows integration with existing authorization model-
s and systems, and supports such dynamic attributes
as patient—caregiver relationships using existing autho-
rization models. To achieve these benefits, our design
requires application-level enforcement of authorization
decisions and assumes agreement on semantics of re-
source names between the application developer and the
owner.

This paper shows that decoupling of authorization
logic from application can be done without complicat-
ed interactions between an application and the autho-
rization service and without significant communication
overhead. Factors specific to the application domain can
be supported by authorization systems using the tradi-
tional access matrix as an underlying implementation.
The body of the work described in this paper has been
served as a foundation of the recently voted specification
[4] of Resource Access Decision Facility from the Object
Management Group. The initial design was prototyped
and the current design has been implemented.

The rest of the paper is organized as follows: the next
section provides an overview of CORBA security model
and describes its access control model; Section 3 dis-
cusses the problems that we address in this paper; the
service design is presented in Section 4; pros and cons
of the design are discussed in Section 5; our approach is
compared to related work in Section 6; the implementa-
tion status is reported in Section 7; we draw conclusions
and discuss future work in Section 8.

2 Overview of CORBA Access
Control Model

CORBA environment, including the CORBA Security
Service, provides a general-purpose infrastructure for
developing and deploying distributed object-based sys-
tems in a broad range of specialized vertical domains.
All entities in CORBA computing model are identified
with interfaces defined in the OMG Interface Defini-
tion Language (IDL). A CORBA interface is a collection
of three things: operations, attributes, and exception-
s. An implementation of a CORBA interface is called
a CORBA object.? Object functionality is exposed to

2Hence, we use “CORBA object” or just “object” to mean
“implementation of a CORBA interface”, where it does not cause

other CORBA-based applications only through the cor-
responding interfaces. Objects have object references
by which they can be referenced. An object reference is
a handle through which one requests operations on the
object.

CORBA Security service (CS) defines interfaces to a
collection of objects for enforcing a range of security
policies using diverse security mechanisms. It provides
abstraction from an underlying security technology so
that CORBA-based applications could be independen-
t from the particular security infrastructure provided
by user enterprise computing environment. Due to its
general nature, CS is not tailored to any particular ac-
cess control model. Instead, it defines a general mech-
anism which is supposed to be adequate for the ma-
jority of cases and could be configured to support var-
ious access control models. CS model comprises the
following functionalities visible to application develop-
ers and security administrators: identification and au-
thentication, authorization and access control, auditing,
integrity and confidentiality protection, authentication
of clients and target objects, optional non-repudiation,
administration of security policies and related informa-
tion.

One of the objectives of CS is to be totally unob-
trusive to application developers. Security-unaware ob-
jects should be able to run securely on a secure ORB
without any active involvement on the site of applica-
tion objects. In the meantime, it must be possible for
security-aware objects to exercise stricter security poli-
cies than the ones enforced by CS. In CS model, all
object invocations are mediated by the appropriate se-
curity functions in order to enforce various security poli-
cies such as access control. Those functions are part of
CS and are tightly integrated with the ORB because
all messages between CORBA objects and clients are
passed through the ORB.

CS uses the notion of principal. “A principal is a
human user or system entity that is registered in and
authentic to the system” [3]. In translation to the tra-
ditional security terminology, a principal is a subject.
CS manages access control policies based on the secu-
rity attributes of principals and attributes of object-
s as well as operations implemented by those object-
s. Objects that have common security requirements are
grouped in security policy domains. Access control poli-
cies control what principals can invoke what operations
on what objects in the domain the policies are defined
on. Policies can be enforced either by the ORB or by
the application. In the latter case, such an application is
called a security-aware application. Domains allow ap-
plication of access control policies to security-unaware

confusion.

objects without requiring changes to their implementa-
tions or interfaces.

As it can be seen in Figure ??, the client-side and
target-side invocation access policy governs whether the
client can invoke the requested operation on the target
object on behalf of the current principal. This policy
is enforced by the ORB in cooperation with the secu-
rity service it uses for all (security-aware and unaware)
applications. A client may invoke an operation on the
target object as specified in the request only if this is
allowed by the object invocation access policy.

A user uses a UserSponsor® to authenticate to the CS
environment. After the user is successfully authenticat-
ed, a new principal with locality constrained Creden-
tials object is created. The information in Credentials
constitute the identity of the new principal which initi-
ates requests on CORBA objects on behalf of the user.
Principal authenticated security attributes are part of
the information stored in Credentials object.

We provide an illustration of the following CS access
control (AC) description in Figure 1. The concept of a
user is absent from CS AC model. Instead a principal
represents the user completely. The notion of a ses-
sion is indistinguishable from the notion of a principal.
Thus multiple principals can act on behalf of a single us-
er. They all potentially have different sets of credentials
and therefore exist in CS as completely independent en-
tities. Among other data, principal credentials contain
security attributes. Hereafter, we understand attribute
to mean security attribute. From CS AC model point
of view, a principal is nothing but an unordered col-
lection of authenticated attributes. All attributes are
typed. Attribute types are partitioned into two fam-
ilies: privilege attributes and identity attributes. The
family of privilege attributes enumerates attribute types
that identify principal privileges: access identifier, pri-
mary and secondary groups the principal is a member
of, clearance, capabilities, etc. Identity attributes, if
present, provide additional information about the prin-
cipal: audit id, accounting id, and non-repudiation id,
reflecting the fact that a principal might have various
identities used for different purposes. Principal creden-
tials may contain zero or more attributes of the same
family or type.* An example of security attributes as-
signed to authenticated principals is provided in Table
1. Due to the extensibility of the schema for defining
security attributes, an implementation of CS can sup-
port attribute types that are not defined by CORBA
Security standard. Although the normative part of CS

3A UserSponsor is an implementation artifact which handles
user authentication process.

4This rule applies to all attribute types including access id,
although it is hard to foresee a useful implementation of CS where
a principal would have multiple or no access identities.

does not mandate the way attributes are managed, as-
signment of such attributes to users is meant to be done
by user administrators.

| Principal | Attributes |

y4! a

D2 a2, ag
Ps3 az, as
D4 a4, G5

Table 1: Security Attributes Possessed by Authenticat-
ed Principals

All a principal does in the CORBA computational
model is invoke operations on corresponding interface
implementations. Such implementations are also called
objects. Every object implements an interface. In order
to make a request one needs to know two things: ob-
ject reference, which uniquely identifies an object, and
operation name. CORBA interfaces can inherit from
other CORBA interfaces via interface inheritance. An
operation name is unique for an interface® the object is
implementing. Thus, any operation is uniquely identi-
fied by its name and by the name of the interface it is
defined in. In this paper, we use notation ixm,, to refer
to n-th operation on k-th interface.

There is a global® set of rights (RequiredRights) for
each operation. This set, together with a combinator
(all or any rights), defines what rights a principal has
to have in order to invoke the operation. Table 2 pro-
vides an example of required rights for operations on
three interfaces iy, is, and i3. It is assumed that re-
quired rights are defined and their semantics are pre-
cisely documented by application developers who know
the best what each operation does. Depending on the
access policy (DomainAccessPolicy) enforced in a par-
ticular AC policy domain,” a principal is granted differ-
ent rights (GrantedRights) according to what Security-
Attributes it has.® Each DomainAccessPolicy defines
what rights are granted for what security attributes.
An example of a mapping between principal privilege
attributes and granted rights is provided in Table 3.
The upper index of attributes specifies delegation s-
tate (initiator or delegate) of the attribute. Security
administrators are responsible for defining what rights

5Interface inheritance in CORBA does not allow to inherit
from interfaces with operations of the same type. This rule re-
solves the problem of operation name overloading.

61.e. not dependent on a policy domain in which the object is
located.

7In CORBA security model, a security policy domain is just a
collection of objects.

8For the sake of brevity, we omit delegation state qualifier
for granted rights. This does not change the correctness of the
discussion, as we show below.

SecurityAttribute

Right a.x

GrartedRights

0.

etyne | AttributeType

#F amily : ExtensibleFamily +consists of +hased on #defining_authority © Opague
0 - \\D..1 #alue - Opague
- D..’T\
+oonsists of Seontain
0.* *
- - +granted 0.
ReguiredRights _ Cradentials
#Combinator: Rights Combinator +accarding
0.1 g.”
+requires +has
0.* 0. 111
Operation Hrwvokes | pgguest Principal
1.1 0.” 0. +makes 1.1
o= 0.+
: +on
+defined =
ginee n 0. +acts on behalf of
é'].l -
0. Interface -
71 DomainAccessPolicy
1.1
Hinherits— 0.7 | 1.1 0.1
+rmpl t i
implernents +applies User
0. A o=

; + i i
Interface Implementation associated with

SecurityPolicyDomain

0.

Figure 1: CORBA Access Control Model

Attributes Granted Rights
Domain
o | d
aj 1 T3
ab - 1
a§ 7“277“3 -
ajy T3 1,74
aé T,72,T3 72,73,T4
ag T 1

Table 3: Granted Rights per Attribute

are granted to what security attributes in what dele-
gation state on domain per domain basis. Whenever a
principal attempts an operation invocation, principal’s
effective rights are computed via operation AccessPol-
icy::get_effective_rights.® CS specification purposeful-
ly does not define how the operation combines rights
granted through different privilege attribute entries in
Table 3. The specifiers let CS implementers to define
the operation internal behavior ([3, p. 122]). A simplest

9Regular caching techniques can be used by an implementation
to avoid repetitive computations.

implementation of get_effective_rights could be when the
set of rights granted to a principal is a union of right-
s granted to every security attribute the principal has.
For our examples, we will assume exactly this imple-
mentation of the operation. If we use our example of
security attributes assigned to principals p1, ps, p3, and
ps (Table 1), and the examples of required (Table 2)
and granted (Table 3) rights, then Table 4 shows what
rights the principals are granted in each domain.

Principal Granted Rights
Domains
dy | ds
b1 1 T2
P2 T'e 1
D3 2,73 1
2 ri1,72,73 | "1,72,73,T4

Table 4: Granted Rights Per Principal

| Operations | Required Rights | Combinator || Meaning |

11my r1 all Only a principal who is granted right r;can invoke the
operation.

1Mo r1, Ty any Any principal who is granted either r; or ro right can in-
voke the operation.

Tomy ro, T3 all Only a principal who is granted both rsand 73 rights can
invoke the operation.

19M3 ro, T3, T4 all Only a principal who is granted all ro 3 4 rights can
invoke the operation.

i3my T1, To, T3, I'4 any Any principal who is granted either of r; 5 3 4 rights
can invoke the operation.

Table 2: Required Rights Matrix

3 Problem Description

This section shows why there is a need in security-
aware implementations of CORBA objects to enforce
their own access control policies, as well as problems
with embedding such control into application systems.

3.1 Why application-level access control

There are two main reasons for application-level access
control, namely the necessity in fine-grain access con-
trol and the need for authorization decisions based on
factors that can be “known” only to the application.

Fine-grain access control is necessary because some-
times the sensitivity of the information accessed via the
same operations'® of a CORBA service interface differs.
In healthcare for instance, different parts of the patient
medical record have different levels of sensitivity. Ob-
vious examples are patient name and HIV-related test
data.

Another crucial reason for application-level access
control is the need in using application domain-specific
factors in authorization decisions. Analyses made by
one of the authors and discussed elsewhere [6], [7] re-
veals the necessity of sophisticated access control poli-
cies in healthcare systems. They are due to the various
legal and liability requirements imposed by state and
federal legislation [8]. Ideally, authorization decisions in
the healthcare domain should be based on the following
factors [9]: subject affiliation, subject role, subject loca-
tion, access time, and relationship between the subject
and the patient whose records are to be accessed.

Relationship is a good example of an authorization
decision factor, which is specific to the healthcare ver-
tical domain. Its value ideally should be derived from

100peration is a synonym to method in OO terminology. We
use it according to the object management model [5] from the
OMG.

the information scattered across various clinical, billing,
and patient registration systems. Some types of rela-
tionships that need to be managed in the healthcare
context are: patient’s primary care provider; admit-
ting, attending, referring, or consulting physician of a
particular patient; part of the patient care team; health-
care staff explicitly assigned to take care of the patien-
t; patient’s immediate family; patient’s legal counsel or
guard; personal pastoral care provider. The relationship
factor is very dynamic and ideally it should be computed
dynamically every time a decision is made. We expect
that other vertical domains have similar requirements
in access control policies regulated by domain-specific
factors that cannot be modeled using groups, roles, or
identities.

3.2 Problems with Authorization Logic
Embedded in Application Systems

Since the application programmer understands the ap-
plication functionality most intimately, building autho-
rization logic into the application allows the application
to control access at an arbitrary granularity level and
to use authorization rules of an almost unlimited com-
plexity. However, authorization logic coupled with ap-
plication logic produces serious consequences. Embed-
ding authorization logic into application systems caus-
es problems that can be qualified as software engineer-
ing and information enterprise security administration.
This paper discusses problems related to operation and
administration of enterprise security.

With authorization logic embedded into application
systems, enterprise security administrators end up hav-
ing to configure such access logic on an application-by-
application basis, which brings tremendous administra-
tive overhead and highly increases chances of human er-
ror. Because each application system has its own access
control model, which is administrated via proprietary

interfaces, multiple inconsistent security authorization
models co-exist in the same information enterprise. It
is difficult to ensure consistency of authorization poli-
cies across the enterprise. Most of the time, security
administrators end up having no guarantee, whatsoev-
er, that access rules and, especially, changes to them are
consistent across all application systems as well as with
required company policies. In addition, an environment
with mixed authorization and application logic merges
an administrator’s responsibilities with an application
developer’s responsibilities and vice versa.

The approach presented in the next section permits
security administrators and application developers to
maintain a clear separation of responsibilities, as well as
to avoid most of the software engineering shortcomings
of embedding authorization logic in the application.

4 Resource Access Decision Ser-
vice

In this section, first we describe the scope of the autho-
rization service and the interactions between the service
and application systems. Then, we describe the design
of the authorization service.

As it was shown in Section 2, the granularity of COR-
BA access control mechanisms is at the level of opera-
tions on CORBA objects. The authorization service is
to make authorization decisions for access to those in-
formation and computational resources by CORBA ser-
vices that are not first class CORBA objects and their
operations, as shown in Figure 2. Thus, the service

operation 1
operation 2

=

Authorization Service Scope

operation 3

Object Interface

operation 4

CORBA Access Control Scope

Figure 2: Scope of the authorization service

complements CORBA security access model. It relies
on and uses CORBA security environment.

4.1 Interaction Between Application

Service and Authorization Service

The main objective of RAD is to decouple application-
level authorization logic from application logic. Autho-
rization logic is encapsulated into an authorization ser-
vice external to the application, which is traditionally
part of an application program. A simplified schema of
interactions among application client, application ser-
vice and an instance of authorization service is depicted
in Figure 3. To perform an application-level access con-
trol, an application requires an authorization decision
from such a service and enforces that decision. Simple
interfaces between the application and the authorization
service are used, where an application programmer only
needs to make a single invocation on the authorization
service in order to obtain a decision.

1. Application request 2. Authorization request

Resource
Access
Decision

Application

4. Reply to application request 3. Reply to authorization request

Figure 3: Interactions between client, application sys-
tem, and authorization service.

The sequence of the interaction, illustrated by Figure
3, is as follows:

1. An application client invokes an operation on the
application service (application, for short).

2. While processing the invocation, the application re-
quires an authorization decision from the RAD.

3. The RAD makes an authorization decision, which
is returned to the application.

4. The application, after receiving an authorization
decision, enforces it. If access was granted by the
RAD, the application returns expected results of
the invocation. Otherwise, it either returns partial
results or raises an exception.

An application obtains an authorization decision only
from one instance of RAD. It is the contract between
the application and its enterprise environment to re-
quest an authorization decision and to enforce it. Be-
fore we proceed with greater details on the design of
an authorization service, we will describe syntaxes and
semantics of a request for authorization decision.

From RAD perspective, any application requesting an
authorization decision is an RAD client. From now on,
we will use the term “RAD client” to refer to any entity

of the distributed system that requested an authoriza-
tion decision from an RAD.

A nominal amount of data is passed between the ap-
plication and the authorization service in order to make
authorization decisions. When making a request for an
authorization decision, an RAD client passes the follow-
ing three parameters:

e a sequence of name-value pairs representing a name
of the resource to be accessed on behalf of the clien-
t,

e name of access operation (e.g. “create”, “read”,

“write”, “use”, “delete”),

e authenticated security attributes of the subject on
behalf of which the client is requesting access to the
named resource.

Security attributes here are regular attributes of the cur-
rent user session. The interesting parameters passed by
RAD client are the first two: resource name and access
type. They are described below.

We introduce an abstraction called “protected re-
source name” or just “resource name.” Resource name
is used to abstract application-dependent semantics and
syntaxes of entities under application-level access con-
trol. A resource name can be associated with any valu-
able asset of an application owner, which is accessed by
a client on behalf of a subject using it, and access to
which is to be controlled according to the owner’s inter-
ests. For example, electronic patient medical and billing
records in a hospital are usually its valuable assets. The
hospital administration is interested in controlling ac-
cess to the records due to various legal, financial and
other reasons. Therefore, the hospital administration
considers such records as protected resources. More-
over, different information in those records count as dif-
ferent resources. Examples of different resources can be
records from different visits or episodes for one patient.
At the same time, a resource name can be associated
with less tangible assets, such as computer system re-
sources, including CPU time, file descriptors, sockets,
etc. The RAD does not attempt to interpret semantics
of the resource name. We will show in the discussion
of the RAD design that it uses the resource name on-
ly to obtain additional security attributes and to look
up a set of policies that govern access to the resource
associated by an application system with the resource
name.

Access operation abstracts semantics of access to re-
sources associated with resource names. An application
may manipulate with patient records on behalf of dif-
ferent care-givers, or may provide different hierarchies
of menus to different technicians of the hospital lab. In

either case, it is up to the application system develop-
ers and the enterprise security administrators to agree
on semantics of the operation name used for each ac-
cess. The RAD does not interpret semantics of access
operation as it is shown in the description of the RAD
design.

Before an application requests an instance of RAD for
authorization decision, it is supposed to identify what
the resource name and the access operation name are
associated with servicing the client request. There is not
any particular algorithm defined for performing such an
association. For every application, or at least for every
application domain, the way of associating protected
entities with abstract resource names can be different.

4.2 Design of the Service

RAD service is composed of the following objects!!:

o AccessDecisionObject (ADO) receives requests on
authorization decisions from RAD clients.

e Zero or more PolicyFvaluators provide evaluation
decisions for those policies that govern access to
the given resource. If a policy evaluator does
not have any policy associated with the given re-
source name, the evaluator returns a result mean-
ing “don’t know,” therefore delegating the decision
combinator to apply its combination policy while
combining results from potentially several evalua-
tors, depending on the combinator configuration.

e PolicyEvaluatorLocator keeps track of and provides
references to potentially several policy evaluators.

e DynamicAttributeService provides dynamic at-
tributes of the principal in the context of the in-
tended access operation on the given resource as-
sociated with the provided resource name.

e DecisionCombinator combines results of the evalu-
ations made by policy evaluators into a final deci-
sion by resolving evaluation conflicts and applying
combination policies.

Figure 4 shows the interaction among the parts of the
authorization service. Once the authorization service
received a request via the ADO interface:

1. ADO obtains object references to those PolicyEval-
uators that are associated with the resource name

gince in OMA a service entity can implement multiple inter-
faces, and objects are nothing else but implementations of inter-
faces, we refer here to an object to signify a particular interface
implementation. An implementation of the authorization service
described here can implement any number of the specific inter-
faces in one entity of the CORBA environment.

a Combinator = |

an Application © an Access Decision aLocator : Policy
Systermn i Ohbject: Access Evaluatorlocator
B |

access aIIowed(ResourceNaere Operation, Aftributelist) |

1]

get_policy_decision evaluaﬂors (ResourceMarme)

et_dynamic_attributes|, AttrlhluteLlst ResourceMamge, Operation)

Decision

n Attribute Serice:|
DynarnicAttribute

an Evaluator
PolicyEvaluator

ombine_decisions(ResourceMame, Operation, AttnhulteList, PolicyEvaIuat_orL|st)

* evaluate{ResoupceMame, Operation, Attributelist)

Figure 4: Interaction Diagram of the Authorization Service Components

in question and an object reference for the Deci-
stonCombinator which will combine the decisions.

2. ADO obtains dynamic attributes of the principal in
the context of the resource name and the intended
access operation on it.

3. ADO delegates an instance of DecisionCombinator
for polling PolicyFvaluators (selected in step 1)

4. A DecisionCombinator obtains decisions from Pol-
icyFvaluators and combines them according to the
combination policy.

5. The decision is returned to ADO.

6. The ADO returns the decision to the application.

4.3 Dynamic Security Attributes

One of the significant points of the design is handling
the factors specific to the application domain in the
manner neutral to their semantics. All such factors are
handled as dynamic'? attributes. They are obtained
from the enterprise environment via specialized dynam-
ic attribute services. An authorization service does not
interact with such services directly. It delegates the
generic dynamic attribute service to collect all dynam-
ic attributes from specialized services. The semantic
of a particular application domain (patient — care-giver
relationship) can be expressed in the form of dynam-
ic attributes. This allows utilization of already existing

12As opposed to regular privilege attributes of the subject,
which we call “static attributes” here.

authorization mechanisms such as the traditional access
matrix [10].

Dynamic attributes are those attributes that express
properties of a principal but are not administrated by
security administrators. A user usually has dynamic at-
tributes due to the various activities the user perform-
s in the enterprise work-flow. Dynamic attributes are
so called because their values usually change more fre-
quently than traditional user privilege attributes. Tra-
ditional “static” security attributes are used for describ-
ing relatively fixed properties of users and/or resources.
The values of static attributes are typically set by secu-
rity administrators and are obtained by an application
in an environment specific manner, e.g., from a princi-
pal’s credentials in case of CORBA environment. While
the use of a dynamic attribute in an access decision is
determined by a security administrator, the values of
dynamic attributes are usually set as part of normal
processing, i.e., dynamic attribute values are usually
part of information content not separately maintained
security meta-data. Consequently, dynamic attribute
values must be obtained at the time an access decision
is required. This is in contrast to traditional “static”
privilege attributes whose values are usually obtained
when a session is established. The values of dynamic
attributes may change during a session as a result of
normal work-flow processing.

Consider the following example of a dynamic security
attribute. Physician John Smith attends patient B. The
physician has an attribute specifying such a relationship
when principal with access_id=johnsmith (speaking for
John Smith) is accessing resources associated with med-

ical records of patient B. This relationship attribute is
an example of a dynamic attribute in our model. It has
the value “attending physician” returned by a gener-
ic DAS only when John Smith accesses B’s records.
The generic DAS obtains the value of this relationship
attribute by consulting a specialized DAS, which has
capabilities’® to compute the value of relationship at-
tribute. When John Smith is accessing resources not
associated with any patient, this dynamic attribute of
type relationship is not returned by the corresponding
specialized DAS and consequently it is not returned by
generic DAS.

4.4 Policy Evaluators

Another significant design element is encapsulation of
authorization policies and their evaluators into sepa-
rate entities in the computational environment. Policy
evaluators can be considered either as distinct author-
ities each representing a different set of authorization
policies, or they can be considered as policy evaluation
machines each supporting a particular policy language.
Such design insulates representation and interpretation
of policies from the authorization service. It also al-
lows adding and removing policy evaluators dynamical-
ly. By encapsulating the evaluation of those policies in
PolicyEvaluator objects, the design supports implemen-
tation of arbitrary authorization policies.

4.5 Separation of Concerns

Separation of concerns among various stake-holders'*
involved in the authorization process enables control of
different factors in the authorization process by appro-
priate parties:

Application developers decide what functions of
their application map into what access operations.

User administrators control what users (or roles) are
assigned what static security attributes.

Implementors of the authorization services and oth-
er third party vendors control quality, performance
and other properties of the authorization service
implementation.

Work-flow administrators indirectly control what
dynamic attributes are assigned to what users in
the context of what resources.

13For instance, by looking at the corresponding fields of B’s
patient record which contains a list of B’s attending physicians.

14 Application developers, enterprise security administrators,
authorization service developers.

Security administrators administrate what access
control policies govern what access to what named
resources.

5 Discussion

Our solution has the following advantages:

Simplicity: Simple interfaces between the application
and the authorization service are used. An appli-
cation programmer is required to make a single in-
vocation on the authorization service in order to
obtain a decision. All required information is repre-
sented by such simple structures as resource names,
operation names, and principal security attributes.
A nominal amount of data is passed between the
application and the Authorization Service in order
to make authorization decisions.

The programming model of the Authorization Ser-
vice described by Algorithm ?7 is simple. The pro-
gramming complexity of making authorization de-
cisions for an individual policy is encapsulated in
PolicyEvaluatorLocator, DynamicAttributeService,
and PolicyFvaluator objects. Thus, simple policies
allow overall simplicity of the model. The com-
plexity increases only by introducing complex type-
s of authorization policies and sophisticated spe-
cialized DynamicAttributeServices. PolicyFvalua-
torLocator can be as simple as an implementation
of relational table indexed by resource name.

Generality: Due to the design, the authorization ser-
vice can be utilized in various application domains.
It introduces the notion of resource name, which
in its turn allows arbitrary granularity of protected
resources. The application system decides, depend-
ing on the application domain, how small the unit
of access control is. The resource name, principal
security attributes as well as request dynamic at-
tributes, and the intended operation name should
communicate any semantic information that can be
used for applying reasonable!®authorization poli-
cies. The design supports arbitrary authorization
policies by encapsulating the evaluation of those
policies in PolicyFEvaluator objects.

Flexibility: Due to the use of CORBA infrastructure
with object implementation location transparency
and its services such as Naming and Trader, the
proposed design enables implementations adapt-
able to changes in authorization policies and their
types as well as in the work-flow of the user orga-
nization via replacement of PolicyEvaluators and

specialized DynamicAttributeServices. New Poli-
cyFvaluators can be registered with the PolicyFE-
valuatorLocator and new specialized DynamicAt-
tributeServices can be registered with the Dynam-
icAttributeService object or obtained via CORBA
Naming or Trader services. The semantic of a par-
ticular application domain (patient—care-giver rela-
tionship) can be expressed in the form of dynamic
attributes. This allows utilization of already ex-
isting authorization mechanisms such as the tradi-
tional access matrix. Separation of concerns among
various stake-holders involved in the authorization
process enables control of different factors in the
authorization process by appropriate parties.

We can see the following outstanding issues with the
proposed approach:

e It is not clear whether it is possible to abstract
all protected resources into resource names. The
proposed solution requires such abstraction.

Matching in dynamic attribute semantics between
policy evaluators and specialized dynamic attribute
services has to be maintained.

One of the ways to reduce performance penalties
of obtaining a decision from an authorization ser-
vice is to co-locate an application system and an
authorization service. Simple co-location increas-
es the number of authorization service instances to
administrate. On the other hand, an optimum ad-
ministration solution would be such that it requires
to administrate only one instance of administra-
tion interfaces. Current design of the authorization
service does not provide ways to have a single set
of administration objects and multiple instances of
authorization services.

There are also implementation issues that have to be
addressed in order to develop an efficient and scalable
implementation. One of them is proper parallelization
in order to avoid bottlenecks. The back-end data needed
by PolicyEvaluators and DASs could become a bottle-
neck in accessing authorization service, when multiple
ADO clients consult instances of ADOs. This could de-
crease scalability of the system. Regular caching and
replication techniques should be sufficient for maintain-
ing system scalability.

15We do not define here what policies fall in the scope of reason-
able ones. We think it is the subject of separate research, which
we describe in Section 8.

10

6 Related Work

The ideas of discretionary access control (DAC) model
proposed by Lampson in [10] has led to the concept of a
reference monitor outlined by Anderson in [11]. When
an application enforces its own access control policies, a
reference monitor is embedded in the application. Our
authorization framework allows externalization of a ref-
erence monitor from an application without losing the
capability for an application to define its own space of
protected resources and its semantics.

Abadi et al. [12] and Lampson et al [13] developed
a unified theory of authentication and access control in
distributed systems. Practical implementations reflect-
ing some results of the theory have been implemented in
security architectures of such distributed environments
as DCE [14], DCOM, and CORBA [3]. Our work sug-
gests an authorization framework for implementing mul-
tiple fine-grain and workflow-dependent access control
policies in application systems developed for such envi-
ronments. Even though we present a concrete solution
that uses CORBA security infrastructure, the underly-
ing schema should be implementable for DCE and D-
COM, because the only requirement for the underlying
security infrastructure is the capability of an application
to query the infrastructure for the principal security at-
tributes of the client.

Multi-policy authorization paradigms and frame-
works have been proposed by a number of research
projects ([15], [16], [17], [18]). They use an object
method in Argos [17] or a database table record in [18]
as the finest level of access control decisions. In our ap-
proach, the authorization decision is obtained after the
method on the object is invoked. Hence, an application
can exercise access control of any granularity level by
associating a resource name with protected elements of
any size and semantics. One reference monitor (sup-
porting a particular policy) per request is used in Argos
to evaluate requested access. Due to introduction of
multiple evaluators and a combinator, we provide ways
for more than one policy (of different types), as in Berti-
no et al. [18], to govern authorization decisions for the
same request. Bertino and Jajodia in [18] define an ex-
plicit authorization model with conflict resolution and
overriding rules. Such rules have to be implemented
by a particular instance of decision combinator in our
framework. This is left as future work for our frame-
work.

The proposed concept of dynamic attribute service
gives enough flexibility in using enterprise-specific fac-
tors to support all implicit access rights that Argos does
as well as PICASSO’s [19] patient-specific roles of the
principal and other types of access rights. Our approach
allows Argos and PICASSO policy engines to be used as

one of the policy evaluators in the authorization service
described here. This would be similar, although not
exactly the same, to what Johnscher and Ditrich sug-
gest in [17] when they write that “Argos can be used
as an access control service for any application that is
connected to the corresponding object request broker.”

7 Implementation Status

A prototype of the first version of the authorization ser-
vice design has been implemented by 2AB, Inc. and is
available at http://www.omg.org/docs/corbamed/99-
01-19.zip. It includes the implementation of the au-
thorization service with interfaces as defined in [20],
a policy administration system necessary to allow re-
sources and policies to be defined, and a client program
to test sample policies. A functioning prototype of the
design outlined in this paper and specified in details in
[4] has been implemented at the Center for Advanced
Distributed Systems Engineering (CADSE)!¢ of Florida
International University.

8 Conclusions

In this paper we presented an approach in decou-
pling authorization logic from application logic for those
CORBA-based application systems, which resort to
application-level access control in order to achieve fine
granularity of protection or to use factors specific to the
application domain in authorization decisions, or both.
We described the design of an authorization service that
allows any level of access control granularity, applying
authorization policies of different types and from differ-
ent authorities, as well as providing application domain-
specific factors for evaluating such policies.

The following two results are the main contributions
of the paper:

e Decoupling access control from applications can be
done without complicated interfaces and without
sending much information between an application
and the authorization service.

e Dynamic attributes, such as the patient—caregiver
relationship, can be supported using a traditional
access matrix as an underlying implementation.

The body of the work described in this paper has been
served as a foundation of the recently voted specification
[4] of Resource Access Decision Facility from the Object
Management Group.

L6http://cadse.cs.fiu.edu

11

We plan to show what types of policies can be sup-
ported by the proposed design effectively, to develop a
more precise specification of the authorization service,
and to obtain experimental data on performance and
scalability of the described solution.

References

[1] Ravi Sandhu and Pierangela Samarati. Access con-
trol: Principles and practice. IEEE Communica-
tions, 32(9), September 1994.

Joseph Yoder and Jeff Barcalow. Application secu-
rity. In Proceedings of The 4th Pattern Languages
of Programming Conference, 1997.

Object Managment Group. CORBAservices:
Common Object Services, July 1998. OMG doc-
ument number: formal/98-07-05.

Object Management Group. Resource Access Deci-
sion Facility, May 1999. OMG document number:
corbamed/99-05-04.

Richard Mark Soley and Christopher M. Stone. Ob-
ject Management Architecture Guide. John Wiley
& Sons, 3 edition, June 1995.

Wayne Wilson and Konstantin Beznosov. COR-
BAmed Security White Paper. Object Management
Group, November 1997. OMG document number:
corbamed/97-11-03.

Konstantin Beznosov. Issues in the security ar-
chitecture of the computerized patient record en-
terprirse. In Proceedings of Second Workshop on
Distributed Object Computing Security, Baltimore,
Maryland, USA, May 1998. The Object Manage-
ment Group and the United States National Secu-
rity Agency.

[8] Konstantin ~ Beznosov. Taxonomy of
CPR enterprise security concerns at Bap-
tist Health Systems of South Florida.

http://www.bhssf.org/IT /Projects/cpr/security /progress-

reports/categorize-requirements.html, December

1997.

Konstanantin Beznosov. Requirements for access
control: US healthcare domain. In Proceedings of
the Third ACM Workshop on Role-Based Access
Control, page 43. Fairfax, Virginia, USA, October
1998.

[10] Butler Lampson. Protection. In In 5th Princeton
Symposium on Information Science and Systems,

pages 437-443, 1971.

http://www.bhssf.org/IT/Proje�ts/�pr/se�urity/progress
http:http://�adse.�s.fu.edu
http://www.omg.org/do�s/�orbamed/99

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

James Anderson. Computer security technology
planning study. Technical Report ESD-TR-73-51,
Vols. T and II, Air Force Electronic Systems Divi-
sion, 1972. NTIS document number AD758206.

M. Abadi, M. Burrows, B. Lampson, and
G. Plotkin. A calculus for access control in dis-
tributed systems. Technical Report 70, DEC,
March 1991.

Butler Lampson, Martin Abadi, Michael Burrows,
and Edward Wobber. Authentication in distribut-
ed systems: Theory and practics. Technical Re-
port 83, DEC, February 1992.

Open Software Foundation, 11 Cambridge Center
Cambridge, MA 02142. OSF DCE Application De-
velopment Guide: Core Components, 1.2.1 edition,
1996.

Dobson J. and McDermid J. A framework for ex-
pressing models of security policy. In Proceedings of
IEEE Symposium on Security and Privacy, pages
229-239, May 1989.

Hosmer H. Multipolicy paradigm. In Proceedings
of the New Security Paradigm Workshop, Little
Compton, RI, 1992.

Dirk Jonscher and Klause R. Dittrich. Argos — a
configurable access control system for interoperable
environments. In Proceedings of the IFIP W(G11.3
Ninth Annual Working Conference on Database
Security, pages 39—66, Rensselaerville, NY, 1995.

Bertino E., Jajodia S., and Samarati P. Support-
ing multiple access control policies in database sys-
tems. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, Oakland, Cali-
fornia, May 1996. IEEE Computer Society Press.

Dixie B. Baker, Robert M. Barnhart, and Teresa T.
Buss. PCASSO: Applying and extending state-of-
the-art security in the healthcare domain. In Annu-

al Computer Security Applicatications Conference,
1997.

Object Management Group. Healthcare Resource
Access Control (Initial Submission), October 1998.
OMG document number: corbamed/98-10-02.

12

