
Composing and Combining Policies
under the Policy Machine

David F. Ferraiolo, Serban Gavrila*, Vincent Hu, D. Richard Kuhn
National Institute of Standards and Technology

Gaithersburg, MD 20899
+1 301-975-3046

dferraiolo@nist.gov, serban.gavrila@nist.gov, vhu@nist.gov, kuhn@nist.gov

ABSTRACT
As a major component of any host, or network operating system,
access control mechanisms come in a wide variety of forms, each
with their individual attributes, functions, methods for configuring
policy, and a tight coupling to a class of policies. To afford
generalized protection, NIST has initiated a project in pursuit of a
standardized access control mechanism, referred to as the Policy
Machine (PM) that requires changes only in its configuration in
the enforcement of arbitrary and organization specific attribute-
based access control policies. Included among the PM’s
enforceable policies are combinations of policy instances (e.g.,
Role-Based Access Control and Multi-Level Security). In our
effort to devise a generic access control mechanism, we construct
the PM in terms of what we believe to be abstractions, properties
and functions that are fundamental to policy configuration and
enforcement. In its protection of objects under one or more policy
instances, the PM categorizes users and objects and their
attributes into policy classes, and transparently enforces these
policies through a series of fixed PM functions, that are invoked
in response to user or subject (process) access requests.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection –Access
controls, Information flow controls. C.2.0 [Computer-
communication Networks]: General – Security and protection.

General Terms
Security, Standardization, Theory.

Keywords
Access control, role based access control, separation of duty,
multi-level security.

1. INTRODUCTION
Access control is the administrative and automated process of
defining and limiting which system users can perform which
system operations on which system resources. Pertaining to each
organization is a unique set of policies that dictate the
circumstances and conditions under which specific users are

Copyright 2005 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SACMAT’05, June 1–3, 2005, Stockholm, Sweden.
Copyright 2005 ACM 1-59593-045-03/05/0006...$5.00.
* contracted from VDG, Inc. Chevy Chase, MD

permitted access to specific resources. Access control policies are
enforced through a mechanism consisting of access control
functions and access control data that together map a user’s
access request to a decision whether to grant or deny access. The
ability of an organization to enforce its access policies directly
impacts its ability to execute its mission – by determining the
degree in which its volumes of data may be protected and shared
among its user community. Whether in regard to the
Government’s war on terror or a company’s formation of a
strategic partnership, the focus on sharing and protecting
information is becoming increasingly acute [1]. Unfortunately,
when it comes to access control mechanisms one size does not fit
all. Access control mechanisms come in a wide variety of forms,
each with their individual (and often proprietary) attributes,
functions, and methods for configuring policy, and a tight
coupling to a class of policies.

For instance, in response to the need to protect classified
information, there are mechanisms to enforce Multi-level Security
(MLS) policies and mechanisms to enforce need-to-know
policies, and in recognition of the needs of industry, Role-based
Access Control (RBAC) mechanisms enforce commercial
policies. While these and other mechanisms may meet broad
policy requirements within their respective user domains, there is
also a need to address specific and often ad hoc organization
requirements. These requirements may, for example, pertain to
controlling access based on: a user’s membership within an
organizational entity; the inclusion of a resource within a
geographical region, or facility; the relative importance of data
(e.g., ordinary, important, critical); or even something as esoteric
as a user’s affiliation to a political party. In addition,
organizational policies can and often do pertain to combinations
of two or more policies. For example, to gain access to a
classified medical record may require the enforcement of an MLS
policy (to prevent direct and indirect compromise of classified
data), the enforcement of an RBAC policy (to ensure the user is
qualified), and the enforcement of an Identity-based Access
Control (IBAC) policy (to protect patient privacy).

Towards affording generalized protection, NIST, under the
request and support of the Department of Homeland Security
(DHS), has initiated a project in pursuit of a standardized
attribute-based access control mechanism (excluding for the time
being environmental factors such as time and location), referred
to as the Policy Machine (PM). Core features, and the subject of
this paper, is the PM’s ability to configure and enforce arbitrary
attribute-based access control policies and its ability to protect
resources under multiple instances of these policies. (This paper
assumes that readers have a basic familiarity with common access
control models and policies). Other PM features not included in

mailto:dferraiolo@nist.gov
mailto:serban.gavrila@nist.gov
mailto:vhu@nist.gov
mailto:kuhn@nist.gov

this paper pertain to the configuration and enforcement of safety
invariants, static separation of duty, and multi-state policies (also
referred to as history-based policies). Although in some respects
the PM is similar to existing models and mechanisms, and the
techniques deployed could afford improvements to those
technologies, in our effort to devise a generic access control
mechanism, we have resisted the temptation of extending any
model or mechanism. At the same time it is not our intent to
devise a completely new model, but instead, we attempt to
redefine access control in terms of what we believe to be
elements, abstractions, properties and functions that are
fundamental to the configuration and enforcement of attribute-
based policies in general. In building from these primitives, we
believe that the PM is generic in its support of well-documented
models, while also accommodating the need for ad hoc attribute-
based policy requirements. Considered among these requirements
are policy combinations. In its protection of objects (e.g., files)
under one or more policy instance, the PM includes a capability to
categorize user and object attributes into their respective classes
of policies, and appropriately enforcing subsets of these policies
in response to each user and subject (process) access request.

We define the PM as a mechanism rather then a model, by
making its functions and functional interfaces explicit. At the
same time the PM is also abstract and general. It is abstract
because properties not relevant to access control are not included;
and it is general because many architectural and implementation
choices could be valid interpretations of the prescribed
mechanism.

The remainder of this paper is organized as follows. In the
following section we describe access control’s basic and salient
elements, relationships, properties, and functions that are
conformed to in the formulation the PM’s relations and functions
as described in subsequent sections. Section 3 describes the PM
method for instantiating arbitrary user and object attributes. In
section 4 we begin to describe the PM’s basic functions in terms
of the abstractions and relations presented in prior sections.
Section 5 demonstrates by example the PM’s ability to configure
three different classes of policies. Section 6 extends the PM’s
functionality to include the dynamic and constrained activation of
subject attributes, and section 7 describes and demonstrates the
PM’s ability to specify and enforce policy combinations over user
and subject access requests. Section 8 contrasts the PM to related
models, and mechanisms, and section 9 concludes the paper.

2. ACCESS CONTROL BASICS
Classically access control models and mechanisms are defined in
terms of authorized users (U), subjects (S), system operations
(Op), and named objects (O). Authorized users are humans, each
with a one-to-one mapping (as a consequence of authentication)
to a unique user identifier (typically established at user account
creation time). An authorized user (hereafter, simply referred to as
a user) is unable to execute access requests directly, but instead
must submit a request through a subject—a system process (with
memory) that operates on behalf of the user. Objects are names
(with global meaning) given to system entities that must be
protected, and perhaps shared, under one or more policies. The set
of objects may pertain to processes, files, or exhaustible system
resources such as printers. The selection of entities included in
this set is a matter of choice determined by the protection
requirements of the system. Essential properties of subjects are

that they have exclusive access to their own memory and none to
any others, they have potentially different access to objects than
other subjects, and that they are semi-autonomous. In addition to
issuing user requests, a subject may maliciously (through a Trojan
horse), or by system error, issue requests that are independent of,
and perhaps unknown to its user.
In associating subjects and users, we denote by subj_user(s) the
user, u∈U, associated with subject s∈S. In distinguishing their
requests we denote by <ops, o>u a legal user access request, and
by <op, o>s a subject access request, where u∈U, op∈Op,
ops⊆Op, o∈O, and s∈S. Note that a user’s request may include
more then one operation. For example, a request to “open” a
document is often interpreted (in many operating systems) to
mean “open for read and write.” On the other hand, subject
requests are issued serially. In response to an “open” request a
subject may read a document and present an image of the
document to its user. After modifying the image, the user may
issue a request to “save” the document (interpreted as write) to his
subject.

Included in the access control data of a mechanism is a set of
permissions P and included among its functions is a reference
mediation function [2]. In a very primitive form permissions may
be represented as a list of triples of the form (u, op, o) indicating
that a user u∈U is potentially able to perform operation op∈Op
on the contents of object o∈O [3]. Associated (perhaps by virtue
of a search routine) with each user is a set of capabilities {(op, o)
∈ Op × O}, and with each object is a set of access control entries
{(u, op) ∈ U × Op}[2]. Although permissions are defined in terms
of users, the reference mediation function controls access in terms
of subjects. Ultimately, a subject’s request, <op, o>s is granted by
the reference mediation function, if there exists a permission (u,
op, o)∈P, where u is the subject’s user, and (op, o) is a capability
of u, otherwise the request is denied.

Regarding practical mechanisms, permissions are not individually
managed, but instead permissions are organized in terms of, and
derived from, a set of policy specific user and object attributes,
providing a strategy for organizing, managing and reviewing
permission data, and controlling the access requests of subjects.
The attributes of users and objects are established through
administrative or system assignments. Regarding their mappings
to permissions, user attributes in one form or another are
associated (by rules or administrative assignments) with a defined
set of capabilities. Thereby assigning a user to an attribute
indirectly associates the user with the capabilities of the attribute.

In addition to an access control mechanism’s reference mediation
function are two other basic functions—a function to create
subjects and associate these subjects with their users, and a
function to associate a subject with a subset of attributes that are
assigned to its user. Regardless of its implementation, and the
type of attributes that are deployed, reference mediation
effectively constrains the successful execution of subject and user
requests to the capabilities that are associated with a subject’s
attributes. Although a number of access control mechanisms
associate a subject with each and every attribute of its user, in
order for an access control mechanism to support the principle of
least privilege [4], as well as the properties of a variety of access
control models (e.g., one-directional information flow to defeat
Trojan horse attacks), constraints must be placed on the attributes

that may be associated with a subject. While in the absence of
these constraints, reference mediation limits the execution of a
subject request to the space of capabilities associated with its user,
subject attribute constraints further reduce this space of
permissible requests to a policy preserving and potentially small
subset of the capabilities of its user.

3. ABSTRACTING USER AND OBJECT
ATTRIBUTES
A principal benefit of the PM is its ability to abstract any attribute
under the observation that user attributes are effectively mappings
of defined sets of users to defined sets of capabilities and object
attributes are effectively mappings of defined sets of objects to
defined sets of access control entries. Also it is often the case that
the users/objects that are associated with an attribute1 are (inherit)
a subset of the users/objects that are associated with some
attribute2, while the capabilities/access control entries of the
attribute2 are (inherit) a subset of the capabilities/access control
entries of attribute1.

Under the standard RBAC model [5], roles are associated with
capabilities through administrative assignments. For instance,
Nurses may be assigned the capabilities to append new entries to
a patient’s history of treatments. Although RBAC does not
formally recognize object attributes and hierarchies, their
existence offers dual benefits as those of user-role assignments.
For instance, the role Doctor might be assigned the capabilities to
read all objects currently assigned to the Medical Records
attribute. Assigning a new object o to Medical Records potentially
enables a large number of users (in the Doctor role, and
potentially other roles) access to object o. Under the Bell &
LaPadula model [6], users and objects are associated with
attributes by administrative or system assignment and
capabilities/access control entries are associated with attributes by
virtue of a set of rules. In consideration of these rules, for
example, the Secret user attribute is associated with the
capabilities to read the set of Unclassified, Confidential and
Secret objects and write to the set of Secret and Top Secret
objects. Associated with each object attribute are access control
entries. For instance, the set of objects that are classified at the
Secret level can be read by the set of users that are cleared to the
Secret or Top Secret level.

In consideration of these observations, we define the sets of user
attributes (UA), and object attributes (OA), with mappings to
permissions expressed in terms of users, objects, operations, and
assignment relations denoted by “→”. Note that we consider an
object (name) as an object attribute, i.e., O⊆OA.

We define the user-to-attribute assignment as a binary relation on
U×UA, denoted by “→”. Intuitively, for a user u∈U and an
attribute ua∈UA, u→ua would mean that user u has the properties
denoted by the attribute ua. On the set of UA we define the
function users:UA→2U that associates each attribute with the set
of users possessing that attribute.

In addition, we define attribute assignment as a binary relation on
the set UA, also denoted by “→”(→ ⊆ UA×UA). Note that we
overload the symbol “→” without any danger of confusion; its
meaning will be clear from the type of its operands.

The user-to-attribute assignment, the function users, and the
attribute assignment must satisfy the following properties:

1. ∀u∈U, ∀ua∈UA, u→ua ⇒ u∈users(ua). Note that the
reverse implication is not necessarily true.

2. ∀ua∈UA, ¬(ua→+ua): the attribute assignment relation
has no cycles.

3. ∀ua1∈UA, ∀ua2∈UA, ua1→ua2 ⇒ users(ua1) ⊆
users(ua2).

4. ∀u∈U, ∀ua∈UA, u∈users(ua) ⇒ ∃ua0∈UA:
u→ua0→

*ua.

(We used +, respectively * to denote the transitive, respectively
transitive and reflexive closure of a binary relation).

On the set OA we define a function objects:OA→2O. Intuitively,
objects(oa) is the set of objects possessing the attribute oa. We
also define the attribute assignment as a binary relation on OA
denoted by “→” (→ ⊆ OA×OA). The function objects and the
attribute assignment must satisfy the following properties:

1. ∀o∈O ⊆ OA, objects(o) = {o}.

2. ∀oa∈OA, ¬(oa→+oa).

3. ∀oa1∈OA, ∀oa2∈OA, oa1→oa2 ⇒ objects(oa1) ⊆
objects(oa2).

4. ∀o∈O, ∀oa∈OA, o∈objects(oa) ⇒ o→*oa.

We define the assignment between user attributes and operation
sets as a binary relation on UA×2Op, denoted by “→”. Similarly,
we define the assignment between operation sets and object
attributes as a binary relation on 2Op×OA, also denoted by “→”.
As we will see below, these two assignment relations indirectly
specify the set of access control entries (u, op) for an object
attribute oa assigned to an operation set ops such that op∈ops;
and the set of capabilities (op, o) for a user attribute ua assigned
to an operation set ops such that op∈ops.

Let us define the access control entries of an object attribute oa as
the access control entries derived from operation sets assigned to
that object attribute. Formally:

aces(oa) = {(u, op) | ∃ ua∈UA, ∃ ops∈Ops: u∈users(ua) ∧
op∈ops ∧ ua → ops ∧ ops→oa}

Let us define the capabilities of a user attribute ua as the
capabilities derived from that user attribute’s assignments to
operation sets. Formally,

caps(ua) = {(op, o) | ∃ ops∈Ops, ∃ oa∈OA: op∈ops ∧
o∈objects(oa) ∧ ua → ops ∧ ops→oa}

Depending on one’s perspective, the set of permissions P that
exist in the PM system may be represented and reviewed either in
terms of assignments between user attributes and capability sets
ua → caps(ua) forming capability lists, or in terms of assignments
between object attributes and access control entry sets oa →
aces(oa) forming access control lists, as the following relation
shows:

P = {(u, op, o) | u∈U, op∈Op, o∈O, ∃ua∈UA, ∃ua1∈UA: (op,
o)∈caps(ua) ∧ u→ua1 ∧ ua1→

*ua}

 = {(u, op, o) | u∈U, op∈Op, o∈O, ∃oa∈OA, (u, op)∈aces(oa) ∧
o→*oa}.

4. PM BASIC FUNCTIONS
With respect to our uniform representation of attributes we begin
to define PM access control functions that are consistent with
those described in section 2.

Let us first define the function attrs:S → 2UA that associates a
subject with its set of attributes, with the property that any subject
attribute is an attribute of the subject’s user. Formally,

∀s∈S, attrs(s) ⊆ {ua∈UA | subj_user(s) ∈ users(ua)}
Reference mediation: The PM applies subject attributes in
restricting the space of permissible subject access requests. The
reference mediation function grants the subject s the permission to
execute a request <op, o>s if and only if the pair (op, o) is a
capability of an attribute ua of subject s. Formally,

∀s∈S, ∀op∈Op, ∀o∈O:

reference_mediation(<op, o>s) = grant ⇔ ∃ua∈attrs(s): (op,
o)∈caps(ua)

Although a user may ultimately be authorized for a wide range of
capabilities, we impose subject attribute constraints to further
limit the capabilities that can be exercised by a subject to a policy
preserving subset of the user’s capabilities.

Subject attribute constraints: A subject attribute constraint is a
list of disjoint user attribute sets: sac = (uas1, …, uasn), where
n∈N1 ∧ (∀i∈1..n, uasi ⊆ UA) ∧ (∀i, j∈1..n, i≠j ⇒ uasi ∩ uasj =
∅).

We denote by SAC the set of subject attribute constraints. For
example, SAC = {({Doctor, Intern}, {Consultant}), ({L}, {M},
{H})} contains two constraints; the first constraint is a list of two
user attribute sets {Doctor, Intern} and {Consultant}, the second
constraint is a list of three attribute sets, {L}, {M}, {H}.
Intuitively, if a subject s∈S, has an attribute ua1∈attrs(s)
belonging to one user attribute set of a subject attribute constraint
relation, then subject s cannot have a second attribute ua2∈attrs(s)
belonging to any other user attribute set of the same subject
attribute constraint relation.

For an arbitrary attribute set uas ⊆ UA, let
attribute_set_valid(uas) be the predicate specifying that uas does
not include two or more attributes from different attribute sets of
any subject attribute constraint:

attribute_set_valid(uas) ⇔
def

 ∀sac∈SAC, sac = (uas1, …, uasn),
∀i, j∈1..n, i≠j, uas ∩ uasi ≠ ∅ ⇒ uas ∩ uasj = ∅.

Now we can define the global predicate subject_attributes_valid
as follows:

subject_attributes_valid ⇔
def

 ∀s∈S, attribute_set_valid(attrs(s)).

For example, if ({L}, {M}, {H})∈SAC, and M∈attrs(s), then for
subject_attribute_valid to be true L∉attrs(s), H∉attrs(s).

5. EXAMPLE PM POLICY
EMBODIMENTS
Assuming the PM implements the reference mediation function
and subjects adhere to subject attribute constraints, as defined in
the preceding section, we are able to emulate a number of
different access control models, each affording its own class of
policies. In this section, we demonstrate by example three
different classes of policies (RBAC, MLS, and IBAC); each
achieved through different configurations of assignment and
subject constraint relations. In demonstrating the PM’s ability to
abstract attributes consider the assignment relations depicted in
figure 1, where the assignments between users and user attributes,
objects and object attributes, and attributes and attributes of the
same kind, are represented by the darker arrows, and assignment
relations between user attributes and operation sets, and operation
sets and object attributes are represented with lighter-dashed
arrows.

Figure 1(a) depicts an RBAC policy where Doctor and Intern are
user attributes and o1, o2, o3, Med_Record, and Development are
object attributes. The caps(Doctor) = {(w, o1), (w, o2)} which are
derived from the Doctor→{w}, {w}→Med_Record assignment
relations. The caps(Intern) = {(r, o1), (r, o2)} which are derived
from the Intern→{r}, {r}→Med_Record assignment relations.
The caps(Consultant) = {(r, o3), (w, o3)} which are derived from
the Consultant→{r, w}, {r, w}→Development assignment
relations.

In addition to these assignment relations assume the following
subject attribute constraint relation ({Doctor, Intern},
{Consultant})∈SAC, in support of a least privilege policy. Under
this constraint the reference_mediation function would grant
access requests issued by the subjects of user u1 that are contained
in either caps(Doctor) ∪ caps(Intern), or caps(Consultant).

Figure 1(b) depicts attributes in support of a Multi-level Security
Policy. Under the MLS policy [6], security levels are assigned to
users and objects, and associated with subjects. The security
levels are partially ordered under a dominance relation, often
written as “≥”. For example H ≥ M ≥ L. Figure 1(b) infers users
cleared to the levels of high (H), medium (M) and low (L) are
respectively assigned to H, M and L user attributes and objects
that are classified at the H, M and L levels are respectively
assigned to H, M, and L object attributes. With respect to the
security level of a subject and the security level of an object,
access control decisions are made according to two properties:
Simple Security Property – A subject is permitted read access to
an object if the subject’s security level dominates the security
level of the object and *-Property – A subject is permitted write
access to an object if the object’s security level dominates the
security level of the subject. Notice that the capabilities of each
user attribute preserve both the simple security property and *-
property. The MLS model dictates that a subject is to be limited
to a single attribute that is dominated by its user’s clearance. By
Imposing the following subject attribute constraint limits a subject
to a single attribute that is dominated by its user’s clearance and
ensures the adherence to the simple security and star properties:
({H}, {M}, {L})∈SAC.

MH

(a) Example RBAC policy attributes and assignments

(b) Example MLS policy attributes and assignments

(c) Example IBAC policy attributes and assignments

Figure 1: Three example policy attribute and assignment configurations

User u1 is assigned to H and as such the subjects of u1 are
capable of activating attributes H, or M, or L. Table 1
summarizes permissible subject access request with respect to
the object attributes and assignment relations of figure 2(b) and
subject attributes imposed under the before mentioned subject
attribute constraint relations.

The graph of figure 1(c) illustrates user and object attributes
pertaining to a simple identity-based access control policy. User
u1 is assigned to Smith. Recall that a user is not considered an
attribute, but an identifier such as the user’s name is. The Smith
attribute permits (assuming the reference_mediation function)
subjects to read and write objects with the Smith_Patients
attribute.

Med_Record

o1 o2

Doctor

Intern

{r}

{w}

L

M

LMH

M

L

H

{r}
{r}

{r}

{w}

{w}

H

LM

{w}

Smith Smith_ Patients {r, w}

o1

o2

u1

u1 o1

u1
o2

Consultant
Development {r, w}

o3

Table 1: Permitted accesses for subjects with attributes H, or
M, or L, and objects assigned to H, or M, or L object attributes.

attrs(ua)\oa H M L

subject(H) r, w r r

subject(M) w r, w r

subject(L) w w r, w

6. ATTRIBUTE ACTIVATION
Before a user or subject is able to access information, the user’s
subject must first activate one or more attributes. In the face of
subject attribute constraints, a decision must be made as to
which legal attribute(s) are to be activated by a subject. For
instance, in support of RBAC, the SE Linux operating system
asks a user to select a role to be activated, or in its support of its
MLS policy to select a security level [7]. In the RBAC/Web
implementation [8], a user is presented with the largest subsets
of roles that do not violate a constraint relation, and asked to
choose. Regarding these systems, the attribute activation
decision is made by the user.

The PM takes a dramatically different approach. Through the
PM’s capability and access control entry review functions (i.e.,
caps(ua) and aces(oa)), the PM is able to calculate and
automatically activate a minimum subject attribute set that fits
the optimal need of the user’s access request. Subsequent user
access requests issued through the same subject may activate
additional attributes as long as the current set of attributes does
not violate a subject attribute constraint. This approach has the
advantage of access system transparency, strong support for
least privilege (attributes are incrementally activated to fit the
task at hand), and takes into consideration subject memory that
may have accrued under prior subject attribute states (the
attribute set is only augmented).

The PM’s dialog with a user (previously authenticated) begins
with the creation of a subject with an initial empty set of
attributes. The create_subject procedure/operation creates a
subject s for a user u:

create_subject(u) = success ⇔ s∉S, S’ = S ∪ {s}, subj_user(s) =
u, attrs(s) = ∅.

Note that if the predicate subject_attributes_valid was true
before the subject creation, it remains true after subject creation.

Once a user creates a subject the user may issue an access
request to the subject, automatically activating one or more
appropriate attributes.

Subject attribute activation: The subject_attr_activation
procedure/operation activates a set of attributes uas for a subject
s such that the subject is capable of performing the maximum
number of operations in ops of a request <ops, o>u of the user u
associated with that subject, where ops ⊆ Op and o∈O.

In our formalism, the newly activated attribute set will appear as
the range of a partial function that (a) maps an operation op in
ops to a user attribute ua that has the capability (op, o); (b) has a
maximal domain; and (c) the subject’s attribute set augmented

with the function’s range satisfies the PM’s subject attribute
constrains.

We first define the set of “valid” attribute selection functions for
subject s and request <ops, o>u, denoted by ASF(<ops, o>u , s),
as follows:

asf∈ASF(<ops, o>u , s) ⇔
def

 asf : ops →p UA ∧

 (subj_user(s) = u) ∧

 (∀op∈dom asf, ∀ua∈UA, ua = asf(op) ⇒ u∈
users(ua) ∧ (op, o) ∈ caps(ua)) ∧

 attribute_set_valid(attrs(s) ∪ ran asf) ∧

 dom asf ≠ ∅.

We now formally define the operation
subject_attr_activation(<ops, o>u , s):

subject_attr_activation(<ops, o>u , s) = success ⇔

∃ asf0∈ASF(<ops, o>u , s) :

 (∀asf∈ASF(<ops, o>u , s), dom asf ⊆ dom asf0) ∧

 (attrs’(s) = attrs(s) ∪ ran asf0).

Obviously, in the new state the predicate subject_attribute_valid
is true. Note that how the PM selects the attributes ua is
implementation-dependent and is not specified here. There are
also a number of implementation choices when
subject_attributes_valid evaluates to false. Included among
these choices is a message sent to the user or the creation of a
new subject with initial attribute(s) equal to attr’(s). Figure 2
illustrates the application of the three PM functions for a
sequence of user requests with respect to the RBAC policy
described in section 5 and illustrated in figure 1(a). Recall the
existence of the subject attribute constraint ({Doctor, Intern},
{Consultants})∈SAC, pertaining to the RBAC policy.
As another example, assume a user u3 that is assigned to Intern,
along with u3’s newly created subject s in the context of figure
1a, where u3 issues a request (<{r, w}, o2>u3) to s. As a
consequence of this request attrs(s)={Intern}, but u3 would only
be able to open o2 for reading.

7. COMBINING POLICIES
In section 5 we demonstrated the PM’s ability to configure
instances of RBAC, MLS and IBAC policies. Other instances of
these policies, as well as other entirely new classes of policy
instances (e.g., Biba integrity [9]) could be configured. In this
section we describe and demonstrate the PM’s ability to
configure policy combinations of different access control
policies and its ability to enforce these policy combinations in
response to user and subject access requests.

Consider the combination of the three access control policies
presented in section 5. Under these individual policies only
doctors can perform read and write operations on medical
records, only users that are cleared to the M level may read and
write objects classified at the M level, and only Smith may read
and write Smith Patients objects. Under combinations of these
policies only users that are Doctors, and are cleared to the M
level, and are Smith may perform read and write operations on
Med_Records that are classified at the M level, and are
Smith_Patients. In combining policies it is important to note that
in general not all classes of policies protect all objects and not
all user and subject requests are controlled under all policy
classes, nor are all user and object attributes relevant to all
classes of policies.

To provide a mapping of users, user attributes, objects and
object attributes to their relevant policy classes we introduce the
notion of policy classes. Let PC be the set of policy classes. We
define an assignment relation between user attributes and policy
classes, denoted by the symbol → (→ ⊆ UA × PC) with the

property that every user attribute is “eventually assigned” to a
policy class through a chain of attribute assignments:

∀ua∈UA, ∃ua1, ∃pc∈PC: ua→*ua1→pc.

Similarly, between object attributes and policy classes we define
an assignment relation, → ⊆ OA × PC, with the property that
every object attribute is “eventually assigned” to a policy class
through a chain of attribute assignments:

∀oa∈OA, ∃oa1∈OA, ∃pc∈PC: oa→*oa1→pc.

For convenience, for ua∈UA and pc∈PC, let’s denote by
ua→+pc the fact that ∃ua1∈UA, such that ua→*ua1→pc.
Similarly, for oa∈OA and pc∈PC, let’s denote by oa→+pc the
fact that ∃oa1∈OA, such that oa→*oa1→pc.

For u∈U, ua, ua1, ua2∈UA, oa1, oa2∈OA, and pc∈PC, we use
the notation

pc
→ to denote attribute assignments within the

policy class pc:

create_sub

u1

s1 (u1, { })

subj_attr_acivation

s1(u1, {Intern, Doctor }), <r, o1>

<{r, w}, o1>u1, s1

reference_mediation

grant

subj_attr_acivation

s1(u1, {Intern, Doctor }), <w, o3>

<w, o1>u1, s1

reference_mediation

grant

subj_attr_acivation

Invalid

<{r, w}, o3>u1, s1

(a) As a consequence of
authentication user u1 creates
subject s1 with an initial
empty set of attributes

(b) User u1 next issues a
request to “open” (for read,
write) object o1 to his
subject s1. As a
consequence Intern, and
Doctor attributes are added
to the existing attributes of
s1, and s1 issues a request to
read o1, which is granted

(c) After modifying the
image of o1, user u1
next issues a request to
“save” (write) o1 to
subject s1. No
additional attributes are
required, and s1 issues
its user’s request,
which is granted

(d) Next u1 issues a request
through s1 to “open” o4. As a
consequence the Consultant
attribute is considered for
activation with the existing
Intern and Doctor attributes,
resulting in an invalid attribute
state.

Figure 2: Sequence of user requests per figure 2(a)

u
pc
→ ua ⇔

def
u→ua and ua→+pc

ua1
pc
→ ua2 ⇔

def
ua1→ua2 and ua2→

+pc

oa1
pc
→ oa2 ⇔

def
oa1→oa2 and oa2→

+pc

oa1
pc

*→ oa2 ⇔
def

oa1→*oa2 and oa2→
+pc

Figure 3 illustrates the combination of three policy classes—
RBAC, MLS and IBAC that were each individually presented in
section 5. The dotted arrows depict policy class assignments.
Note that u1, o1, and o2 are included in RBAC, MLS, and IBAC
policies (i.e., u1

RBAC
→ Doctor, u1

RBAC
→ Conslt, u1

MLS
→ H,

u1
IBAC
→ Smith, o2

RBAC
→ Med_Recds, o2

MLS
→ M,

o2
IBAC
→ Smith_Pats, o1

RBAC
→ Med_Recds, o1

MLS
→ L,

o1
IBAC
→ Smith_Pats) while o3 is only included in the RBAC

policy (i.e., o3
RBAC
→ Devlmt).

Now we can define the attribute set of a subject s within a given
policy class pc as follows:

 attrpc(s) = attrs(s) ∩ {ua ∈ UA | ua→+pc},

i.e., we consider only the attributes of subject s that are
“eventually assigned” to policy class pc.

Also, we define the set of capabilities of a user attribute ua
within a given policy class pc as follows:

capspc(ua) = {(op, o) | ua→+pc ∧ ∃ops⊆Op, ∃oa∈OA: op∈ops,
o

pc
→ *oa, ua→ops→oa}.

We modify the predicate subject_attributes_valid for multiple
policy classes by requiring the attribute set of each subject s
within each policy class pc to satisfy the condition of the former
subject_attributes_valid predicate. Formally:

subject_attributes_valid ⇔
def

 ∀s∈S, ∀pc∈PC,
attribute_set_valid(attrspc(s)).

The subject attribute activation operation for multiple
policy classes: Because an object may be protected under
multiple policies, a subject’s requesting access to the object
must satisfy all policies that protect the object. For a given user
request <ops, o>u and a subject s executing on behalf of u, the
subject attribute activation operation activates, for each policy
class pc, an attribute set uas ⊆ UA, such that subject s is capable
of performing the maximum number of operations in ops of the
request <ops, o>u.

In our formalism, for each policy class containing object o, the
newly activated attribute set will appear as the range of a partial
function that (a) maps an operation op in ops to a user attribute

ua that has the capability (op, o) in that policy class; (b) has a
maximal domain – in order to allow the subject to perform as
many operations of the request as possible; and (c) the subject’s
attribute set augmented with the function’s range satisfies PM’s
subject attribute constraints with each policy class.

We first define the set of “valid” attribute selection functions for
subject s and request <ops, o>u within policy class pc, denoted
by ASFpc(<ops, o>u , s), as follows:

asf∈ASFpc(<ops, o>u , s) ⇔
def

 asf : ops →p UA ∧

 (subj_user(s) = u) ∧

 (∀op∈dom asf, ∀ua∈UA, ua = asf(op) ⇒ u∈
users(ua) ∧ (op, o) ∈ capspc(ua)) ∧

 attribute_set_valid(attrspc(s) ∪ ran asf) ∧

 dom asf ≠ ∅.

We can now formally define the operation
subject_attr_activation(<ops, o>u , s):

subject_attr_activation(<ops, o>u , s) = success ⇔

∀pc∈PC, ∃ asf0,pc∈ASFpc(<ops, o>u , s) :

 (∀asf∈ASFpc(<ops, o>u , s), dom asf ⊆ dom asf0,pc) ∧

 (attrspc’(s) = attrspc(s) ∪ ran asf0,pc).

Obviously, the predicate subject_attributes_valid will be
satisfied in the new state.

For example consider the request <{r, w}, o2>u1 issued to a
newly created subject s, in the context of figure 3. Because o2 is
included in three policies (RBAC, MLS and IBAC) the subject
attribute activation operation (as originally defined in section 6,
and augmented above), would activate three attribute sets—
attrsRBAC(s)={Intern, Doctor}, attrsMLS(s)={M},
attrsIBAC(s)={Smith} where all attribute sets adhere to attribute
constraint relations (defined in section 5).

Reference Mediation Under Multiple Policies: The reference
mediation function grants the subject s the permission to execute
a request <op, o>s if and only if the pair (op, o) is a capability of
an attribute ua of subject s within each policy class that contains
the object o. Formally,

∀s∈S, ∀op∈Op, ∀o∈O:

reference_mediation(<op, o>s) = grant ⇔ (op,

o)∈  
pco

PCpc sattrua
pc

pc

uacaps
+→
∈ ∈)(

)(.

Assuming the attribute sets of subject s that were activated in
the proceeding example by the user request <{r, w}, o2>u1, the
following subject requests <r, o2>s, <w, o2>s, and <r, o1>s would
each be granted, while subject requests <w, o1>s, <r, o3>s, <w,
o3>s, would each be denied.

M

M
LM

MH

{r}
 {w}

o2

Med Record

Doctor

{r}

u1

H

MLS

RBAC

Figure 3: Example combination of RBAC, MLS, and IBAC Policies

o1

Smith Pats Smith {r, w}

IBAC

L

L LMH

Intern

{w}

{w}

Conslt Devlmt

o3

{r, w}

{r}

8. RELATED WORK
The basic objective of our research is to defining a standardized
access control mechanism (that we refer to as the Policy
Machine) that requires changes only in its configuration in
affording arbitrary and organization specific attribute-based
access control policy. The PM is not unique in this pursuit of
policy flexibility. The RBAC model of Sandhu, et al., often
referred to as RBAC96 [12] is considered policy neutral in its
ability to specify a large variety of policies. Although there are
many similarities between RBAC and the PM, important
differences exist.

In [10], Saunders formally analyzes and characterizes RBAC in
terms of the Access Control Matrix (ACM) and its closely
related derivatives (access control lists and capabilities) and not
surprisingly concludes that RBAC fundamentally shares the
administrative benefits and costs of a capability model. To apply
similar analysis we would expect the PM to be characterized as
both a capability and an access control list model (and would
enjoy the benefits of both, but none of the costs). In this
characterization the PM is similar to domain-type enforcement
mechanisms [11]. The PM is different from domain-type
enforcement and RBAC in the following ways. PM offers
partial ordering and inheritance between both user and object
attributes that can be achieved through its direct configuration.
RBAC only offers configurable inheritance among user
attributes. Domain-type enforcement offers neither of these two
features without adding to its implementation.

While there are clear structural differences between RBAC and
the PM as noted above, RBAC nonetheless has been
demonstrated to be flexible in its ability to configure multiple
policy classes. An important question is how efficient and how
natural is RBAC and the PM in configuring policy? To analyze
these differences we take a closer look at the Osborn, Sandhu,
and Munawer configuration of RBAC96 [12] in the emulation
of an MLS policy [13], and compare it to that of the PM’s
configuration of the same policy as presented in section 5.

In the construction of this policy Osborn et al., assumes the
existence of a lattice of security labels SC, {L1…Ln} with a
partially ordered dominance relation ≥ and a least upper bound
operator (e.g., H ≥ M ≥ L), two role hierarchies one for read,
consisting of roles {L1R…LnR}and the other for write,
consisting of roles {L1W…LnW} where the second hierarchy
has a partial order which is the inverse of the first. With respect
to the roles in these hierarchies there are a series of obligation
constraints (that are permitted but not specified in RBAC96)
that are defined to appropriately create capabilities (or
permissions per RBAC96) and capability-role assignments, to
create user-role assignments, and to activate subject attributes
(session roles per RBAC96). For each user in the policy the
user is assigned to two roles, xR and LW where x is the label
(clearance) assigned to the user and LW is the write role
corresponding to the lowermost security level according to ≥.
For each object o of label x (classification), there are two
capabilities created (o, r) and (o, w), that are assigned to xR and

xW roles respectively. In consideration of the above
constructions, a user establishes a logon session at level y where
roles yR and yW are activated, such that x ≥ y, and x is the users
clearance level and consequently permits user accesses that
conform to the simple security and *-property of [6].

In our configuration of the MLS policy each user was assigned
to just one user attribute (at the user’s clearance level), each
object was assigned to just one object attribute (at the objects
classification level), capabilities were not needed to be
dynamically created, and the user’s subject activated a single
attribute that was dominated by his/her clearance. This suggests
that the PM’s MLS configuration is more efficient (requires
fewer assignments) then that of RBAC’s configuration. We also
feel that the PM is more natural in its embodiment of the MLS
policy. Although RBAC96 includes provisions for a variety of
constraints, a standard implementation of RBAC96 would not
necessarily include the obligation constraints that were applied
in the construction of the MLS policy and if it were these
obligation constraints would not generally apply to other
policies.

The Flexible Authorization Framework [14] strategy for policy
flexibility exploits the hierarchical structures in which fixed
system components (objects, users, groups, and roles) are
organized. Groups define a grouping of people and roles define
groupings of capabilities, but only roles are allowed to be
activated. The PM’s user attributes abstracts away the difference
between groups and role, since either can be instantiated as a
user attribute instance, and as such both may be activated,
perhaps in support of different policies.

In its protection of objects under a multitude of policies, the PM
includes a capability to categorize users, objects and attributes
into their respective classes of policies, and appropriately
enforces these policies in response to a user’s access request.
Although products that protect objects under an MLS policy
traditionally also protect these same objects under a need-to-
know policy, such products afford these policy combinations
through the deployment of two separate mechanisms, one in
support of the MLS policy and the other in support of the need-
to-know policy. The PM is different in this regard in its ability
to enforce multiple arbitrary policies through the application of
a single mechanism.

9. CONCLUSIONS
In this paper we presented core features of the Policy Machine
that are capable of configuring, combining and enforcing
arbitrary attribute-based policies. The PM is not an extension of
any other access control model, but instead we have attempted
to specify the PM in terms of access control abstractions,
functions and properties basic to access control in general.
These features include the ability to generically represent
arbitrary user and object attributes, which are associated with
subjects and applied in mediating a subject’s request to access

objects. In its protection of objects under a multitude of policies,
the PM includes a capability to categorize users, objects and
attributes into their respective classes of policies, and
appropriately enforcing these policies in response to a user’s
access request.

10. REFERENCES
1. National Commission on Terrorist Attacks Upon the

United States. The 9/11 Commission Report, 2004.
2. Anderson, J.P., Computer Security Technology Planning

Study, Tech Report ESD-TR-73-51, US Air Force
Electronic Systems Div., Hanscom AFB, 1972.

3. B. Lampson. Protection. ACM Operating Sys. Reviews, 8, 1
(1974), 18-24.

4. Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems. Proc.
IEEE, 63, 9 (September 1975), 1278–1308.

5. ANSI INCITS 359-2004, Role-Based Access Control.
6. D. Bell and La Padula. Secure computer systems: unified

exposition and MULTICS. Report ESD-TR-75-306, The
MITRE Corporation, Bedford, Massachusetts, March 1976.

7. Peter A. Loscocco, and Stephen P. Smalley. Meeting
Critical Security Objectives with Security Enhanced Linux,
Proc. 2001 Ottowa Linux Symposium, 2001.

8. D.F. Ferraiolo, J. Barkley, D.R. Kuhn, A Role Based
Access Control Model and Reference Implementation
within a Corporate Intranet, ACM Transactions on
Information Systems Security, 1, 2 (February 1999), 34-64.

9. K. J. Biba. Integrity Considerations for Secure Computer
Systems. Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Hanscom Air Force Base,
Bedford, Massachusetts, (April 1977).

10. G. Saunders. Role-Based Access Control and the Access
Control Matrix. ACM SIGOPS Operating System and
Review, 35, 4 (2001), 6-20.

11. L. Badger, et al. A Domain and Type Enforcement
Prototype. Computing Systems, 9, 1 (1996), 47-83.

12. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
Based Access Control Models, IEEE Computer, 29, 2 (Feb.
1996), 38-47.

13. S. Osborn, R. Sandhu, and Q. Munawer. Configuring Role-
Based Access Control to Enforce Mandatory and
Discretionary Access Control Policies, ACM Transactions
on Information and Systems Security, 3, 2 (May 2002), 85-
106.

14. S. Jajodia, S. Pierangela, M. L. Sapino, V. S.
Sabrahmanian. Flexible Support for Multiple Access
Control Policies, ACM Transactions on Database Systems,
26, 2 (June 2001), 214-260.

	1. INTRODUCTION
	2. ACCESS CONTROL BASICS
	3. ABSTRACTING USER AND OBJECT ATTRIBUTES
	4. PM BASIC FUNCTIONS
	5. EXAMPLE PM POLICY EMBODIMENTS
	6. ATTRIBUTE ACTIVATION
	7. COMBINING POLICIES
	To provide a mapping of users, user attributes, objects and object attributes to their relevant policy classes we introduce the notion of policy classes. Let PC be the set of policy classes. We define an assignment relation between user attributes and...
	We modify the predicate subject_attributes_valid for multiple policy classes by requiring the attribute set of each subject s within each policy class pc to satisfy the condition of the former subject_attributes_valid predicate. Formally:
	The subject attribute activation operation for multiple policy classes: Because an object may be protected under multiple policies, a subject’s requesting access to the object must satisfy all policies that protect the object. For a given user request...
	Reference Mediation Under Multiple Policies: The reference mediation function grants the subject s the permission to execute a request <op, o>s if and only if the pair (op, o) is a capability of an attribute ua of subject s within each policy class th...

	8. RELATED WORK
	9. CONCLUSIONS
	10. REFERENCES

