
Public Comments Received on Draft NIST SP 800-186:
 Recommendations for Discrete Logarithm-Based Cryptography:

Elliptic Curve Domain Parameters
(January 29, 2020 deadline)

updated 3/19/2021

Adinolfi, Shailee
From: Shailee Adinolfi <shailee.adinolfi@consensys.net>
Sent: Monday, January 27, 2020 4:50 PM
To: fips186-comments <fips186-comments@nist.gov>
Cc: Oliver Terbu <oliver.terbu@consensys.net>; Delak, Katya M. (Fed) <katya.delak@nist.gov>
Subject: SP 800-186 and FIPS 186-5 Comments
 To whom it may concern,

Please find attached joint comments from ConsenSys, Decentralized Identity Foundation, Enterprise
Ethereum Alliance, W3C Credentials Community Group, Hyperledger and individual W3C member
companies regarding the SP 800-186 and FIPS 186-5. Thank you for your consideration.

Best, Shailee Adinolfi

mailto:shailee.adinolfi@consensys.net
mailto:fips186-comments@nist.gov
mailto:oliver.terbu@consensys.net
mailto:katya.delak@nist.gov

Joint Comments from
ConsenSys,
Decentralized Identity Foundation,
Enterprise Ethereum Alliance,
W3C Credentials Community Group,
Hyperledger and
individual W3C member companies
Comments on SP 800-186 and FIPS 186-5

Applicable Documents
SP 800-186, Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve
Domain Parameters: ​https://csrc.nist.gov/publications/detail/sp/800-186/draft

FIPS 186-5, Digital Signature Standard (DSS):
https://csrc.nist.gov/publications/detail/fips/186/5/draft

Joint Comments to the Applicable Documents by the
following Organizations:

● ConsenSys
● Decentralized Identity Foundation
● Enterprise Ethereum Alliance
● W3C Credentials Community Group
● Hyperledger
● Individual W3C Member Organizations

https://csrc.nist.gov/publications/detail/sp/800-186/draft
https://csrc.nist.gov/publications/detail/fips/186/5/draft

Executive Summary
Since the Bitcoin Genesis block in January 2009, Blockchain and more broadly Distributed
Ledger Technology (DLT), has seen exponential growth in its usage and applications. While
DLT applications were initially only available on public networks that anyone could join,
enterprise applications with their own requirements for security and privacy have become more
prominent, and there are now thousands of both public and enterprise projects, directly or
indirectly touching the lives of hundreds of millions of people.

One of the key technology foundations of DLT is public-key cryptography, in particular, elliptic
curve cryptography. The most widely adopted elliptic curve in the DLT space by far is
secp256k1 and the hash function keccak-256. Unfortunately, neither secp256k1 nor
keccak-256, are endorsed in SP 800-186 and FIPS 186-5. This is despite the fact that there are
no significant security differences between for example the NIST endorsed secp256r1 and
secp256k1 or the sha3-256 hash versus keccak-256.

The current decision by NIST will have a significant impact on business in this space. Since any
effort to cater to both the large global market for DLT applications based on secp256k1 and
keccak-256 and customers who require NIST-compliance in their systems necessitates a far
more complex programming effort in order to maintain multiple approaches to the same
problem. The likely outcome of the resulting competing business requirements and continued
technology uncertainty is increased slower development, reduced and delayed investment, and
increased cost in order to reach some level of industry convergence. Furthermore, these
developments could lead to either of two undesirable outcomes, market fragmentation into
technology silos or technology stack and, consequently, vendor monopolies. Either outcome
would lead to higher costs.

Most importantly, existing deployments of DLTs based on secp256k1 and keccak-256 already
affect hundreds of millions of people, and those currently under development will affect even
more, as detailed in the section on Industry Adoption and Impact below.

To minimize the damage to innovation and markets caused by the difference between the
standards being adopted by the world and those currently endorsed by NIST, we request that
NIST include the secp256k1 curve as part of the endorsed ECDSA schemes, and the use of
keccak-256 in the secp256k1 signature schemes.

About secp256k1 and keccak
The curve secp256k1 is an elliptic curve of Koblitz type, defined in the Standards for Efficient
Cryptography paper [SECG2]. It is currently used together with the ECDSA signature algorithm
in order to create digital signatures. Other signature types like Schnorr can also be used with
this curve, but these have not been widely deployed.

The security of general Koblitz type elliptic curves is covered in [SECG1], and the secp256k1
curve has a security level of 256 bits, which is considered secure.

The secp256k1 curve has been used extensively in the blockchain space, starting with the
launch of Bitcoin in 2009 and also used as a core feature of Ethereum, which enables
applications far beyond cryptocurrency. The security of this curve continues to be relied upon for
billions of dollars worth of blockchain transactions daily.

The core reference library libsecp256k1 [libsecp256k1] has been tested extensively and has
undergone thorough optimizations, which leads to the signature algorithm being very fast.
Ethereum uses a hash function called keccak-256 which is used with secp256k1 signatures.
This hash function was chosen due to the fact that it was the winner of the SHA3 competition.
However, the final version of the SHA3 standard included an extra padding byte to the message
before applying the keccak hash, which means that the keccak-256 hash function has a
different output than the FIPS-approved SHA3. The only difference between these functions,
however, is the extra padding of the message.

Industry Adoption and Impact
Below we will be delineating the extent and importance of the usage of secp256k1 and
keccak-256 across all industry verticals by detailing current and expected (2020) usage patterns
and user basis for the currently predominant industry verticals and cross-industry functions.

Decentralized Identity
Decentralized identity has the potential to become the first universal digital identity for
individuals, legal entities and things. It dramatically increases the user’s privacy while creating
new revenue channels for companies and government, and reducing costs for consumers of
digital identities. Incubated over a period of years and tested in numerous companies (including
Fortune 500) and consortia across many industry verticals around the world, the recently
approved W3C Verifiable Credentials standard [W3C.VC] paves the way for major adoption in
production systems.

We are very pleased that the United States, e.g., NIST [NIST], Department of Homeland
Security (DHS) [DHS], recognizes the great value of this new identity management paradigm
based on the W3C Verifiable Credentials standard [W3C.VC]. Other governmental and public
sector organizations/ initiatives are investing a lot of effort to explore these new technologies,
including the European Commission [EC][ESSIF], Spain’s national Alastria network [Alastria],
The UK’s Financial Conduct Authority [FCA] and the Government of British Columbia [VONX].

In addition, existing trust anchors such as the Global Legal Entity Identifier Foundation (GLEIF)
are partnering with decentralized identity platform providers to issue W3C Verifiable Credentials
to legal entities and their corporate officers [GLEIF]. Amongst others, some platforms anchor

DIDs on the Ethereum or Quorum network which is based on secp256k1/ keccak-256
cryptography.

Generally speaking, secp256k1 is very popular in the decentralized identity community for
authentication purposes. For this reason, support for secp256k1 is crucial to stay interoperable
in this open standards-driven ecosystem. Many decentralized identity projects use the
decentralized and immutable nature of blockchains in order to add integrity protection to
decentralized identifiers and their associated public keys. These projects mainly use hash
functions SHA2-256, RIPEMD-160 and keccak-256 as hash functions.

Without official endorsement, public sector applications will not be able to make full use of the
above efforts and systems.

Trade and Supply Chain
The trade industry is moving quickly to leverage blockchain for trade finance, shipping and
freight, digitization of documents, and maintaining expansive networks. One example of a
platform in production leveraging the Ethereum-based Quorum blockchain infrastructure is
Komgo, a decentralized commodity trade finance network. Investors and shareholders of the
company include Citi, ING, Credit Agricole CIB, BNP Paribas, Societe Generale, ABN Amro,
Macquarie, MUFG, Natixis, Rabobank, Gunvor, Mercuria, Koch, Shell, and SGS, which has
already channeled more than $1 billion of financing on the platform.

Within supply chain management - retail, manufacturing, and logistics - many companies have
begun using blockchain solutions for traceability, transparency, and efficiency in their
processes. Treum, which leverages the ethereum blockchain, builds asset and industry agnostic
supply chain solutions, including Food, Consumer Products, Oil & Gas, Healthcare, Luxury
Goods, Energy, Land, and Art. Companies that have tested supply chain solutions include
Glaxo Smith Kline, Proctor and Gamble, Johnson and Johnson, Mars, and many others.

Financial Services
In ​Deloitte’s 2018 global blockchain survey​, which drew responses from 1,053 executives
across seven countries, 74 percent reported that their organizations see a “compelling business
case” for using blockchain technology. In 2019, JP Morgan created their stable coin, Fidelity
launched​ its digital asset custody service, and aims to roll out a ​crypto trading service​ for its
clients, State Street Bank is investing in research and development for digital assets,
stablecoins, custody, and the USC initiative [the Utility Settlement Coin being developed by
bank consortium Fnality. These are a few of the many banks globally working on solutions for
capital markets, investment management, payments and remittances, treasury liquidity and
foreign exchange, and insurance.

https://www2.deloitte.com/us/en/pages/consulting/articles/innovation-blockchain-survey.html
https://www.coindesk.com/fidelity-custody-service-launch
https://www.coindesk.com/report-fidelity-to-roll-out-crypto-trading-within-a-few-weeks

Government: Access Control and Credential Management
The US, UK, Canadian, the United Nations, and international non-governmental organizations
such as the World Bank and the Inter-American Development Bank are evaluating the use of
decentralized identity solutions for credential management, access control, and track and trace
of government-issued payments.

Telecommunication
A consortium of global telecommunications carriers comprising roughly 80% of global voice and
data traffic is creating a global DLT network in 2020 comprised of several DLT stacks including
Enterprise Ethereum which utilizes secp256k1 and keccak-256. The DLT network is to
financially settle inter-carrier voice and data transactions of their several billion clients and 1

provide an identity, compliance, and reputation layer for participating carriers and their
authorized delegates. Besides improving inter-carrier voice and data-on-demand settlement
speeds saving billions of dollars for carriers globally, the applications will allow for the 1st time to
introduce carrier reputation, battling global carrier fraud which impacts not only carrier bottom
lines globally to the tune of several billion dollars a year but also virtually every telecom
customer through dropped or not completed calls. While carrier customers are not directly using
secp256k1 and keccak-256, the carriers do so on behalf of their customers during inter-carrier
voice and data-on-demand settlements when utilizing voice and data-on-demand settlement
solutions.

In addition, telecom regulatory authorities around the world are starting to mandate the usage of
blockchain/DLT technology in their regulatory frameworks such as the Telecom Regulatory
Authority of India (TRAI) mandating the usage of DLT technology to prevent text messaging
spam in 2018 [TRAI].This directly impacts over 1 billion Indian mobile customers. In fact, the
Tech Mahindra implementation of the Anti-spam TRAI requirement currently reaching about 300
million indian mobile users is based on the Nexledger which is an Ethereum-compatible
Blockchain using secp256k1/ keccak-256.

Mobility
Similar to efforts in the telecom industry vertical, there is an effort underway in the mobility
industry vertical by members of the Mobility On the Blockchain Initiative (Mobi) to create a global
DLT network in 2020 consisting of global vehicle manufacturers such as GM, Ford, BMW,
Honda, etc. and vendor organizations such as Accenture as consultancies or Microsoft as
product companies. The global DLT network is intended to be comprised of several DLT stacks
including Enterprise Ethereum which utilizes secp256k1 and keccak-256. The network will first
provide verifiable identities and credentials of vehicles as well as an identity, compliance, and
reputation layer for participating carriers and their authorized delegates. This will enable

1 A voice call or data connection between a customer’s device and an endpoint such as a smartphone or
a website or mobile app server might traverse several carrier networks and incur charges on each leg of
the voice or data journey which

real-time registration and verification of vehicles saving billions of dollars in manual processes
globally. In addition, the DLT network intends to use utility tokens such as asset-backed stable
coins for service payments by a vehicle or tokens issued by municipalities representing access
rights for things such as neighborhood parking or congestion pricing.This will require vehicle
buyers to use secp256k1 and keccak-256 directly through tokens and indirectly through
verifiable vehicles identities and associated credentials. Given that there are over 1.2 billion
vehicles globally, 64 million connected cars are to ship in 2019 and mobility IoT services such
as Lime, Bird, Ofo or Blue Bike are rapidly increasing in popularity and thus the size of both fleet
and customer base at a global level -- Lime reached the 50 million trip mark in significantly less
than half the time (~ 2 years) than Uber did -- the DLT network is expected to reach over 100
million vehicle identities and several million token transactions in 2020.

Consumer Products - Entertainment, Music, Sports, Fashion, CPG and other Retail
Endconsumer focused products (B2C or B2B2C) are different to the B2B verticals discussed
above because of the very different problems they solve: Customers or Fans of brands demand
personalized and unique experiences any time, anywhere, on any device. In addition, we have
an increasingly fragmented and saturated advertising landscape which together with siloed
customer systems prevents brands from effectively reaching, engaging, and understanding their
target audience. New end consumer focused, blockchain enabled solutions such as Sorare,
Socios or Kapture are starting to address this need, albeit in very different ways though typically
it involves combining several technologies such as Augmented Reality, Machine Learning and
Social Media with DLT technologies. With very large brands in different verticals such as Sports
-- the NBA, the Los Angeles Dodgers, the Sacramento Kings, Juventus Turin, Manchester
United, FC Barcelona -- or Entertainment -- Warner Brothers, Capitol Records -- or retails
brands such as Anheuser Busch engaged in this area, the number of consumers directly
touched by these products, in particular through social media with influencer marketing, is
expected to reach 100M+ in 2020. For example, one anticipated pilot in India around a
well-known sports franchise can easily reach a few hundred thousands per mobile media event
through social media sharing, and, thus, the pilot could easily engage over a million sports fans.

Given that most of the above mentioned end consumer products are built on either Enterprise
Ethereum, public Ethereum or Ethereum-like chains, the situation in terms of impact of the
usage of secp256k1 and keccak-256 is very similar in terms of impact on end users as for the
above mentioned, primarily B2B verticals; in particular mobility, given the required usage of
wallets for digital assets such as stable coins, utility tokens, loyalty tokens or digital collectibles.

Industry Standards Adoption
The following is a non-exhaustive list of standards and specifications that recognize secp256k1:

- As a proof algorithm in W3C Verifiable Credentials Standard [W3C.VC]

- As a proof algorithm for DID for W3C Decentralized Identifiers [W3C.DID] (future

standard)

- As the signature algorithm of authenticators in the FIDO 2.0/ W3C WebAuthn Standard

[WebAuthn]

- Signature algorithm for the COSE/ JOSE family [JOSE]

- JSON-LD Linked Data Signature specification based on secp256k1 [JSON-LD]

- EEA Ethereum Enterprise Client Specification V4.0 [EEA.Client]

- EEA Off-Chain Trusted Compute Specification V1.1 [EEA.TC]

- ...

Independent Implementations

The following is a non-exhaustive list of independent cryptography and related libraries with

support for secp256k1:

- OpenSSL CLI tool and Open Source cryptography library [OpenSSL]

- Bouncy Castle cryptography library for JAVA applications [BouncyCastle]

- Node.js native cryptography library [Node.Crypto]

- Secp256k1 reference implementation in Bitcoin [libsecp256k1]

- “jose” which is a Node.js JOSE library [Node.JOSE]

- Nimbus JWT library for JAVA applications [Nimbus]

- JWT library based on Decentralized Identifiers in JavaScript [DID.JWT]

- JSON-LD Linked Data Signatures in JavaScript [JSON-LD.Lib]

- …

Please note that many of these libraries have significant industry adoption and use.

Organizations supporting this Letter

Consensys
Web: https://consensys.net/
ConsenSys is solving real-world problems with Ethereum blockchain solutions for organizations
of all sizes, from the local community to the global enterprise.

Decentralized Identity Foundation (DIF)
Web: ​https://identity.foundation/
DIF has approximately 90 member companies such as Consensys/ uPort, Microsoft,
Mastercard, Accenture, and many more. DIF and a lot of their members adopted secp256k1
and keccak-256 in their specifications in the area of decentralized identifiers, authentication and
verifiable credentials exchange. Endorsing secp256k1 and keccak-256 officially by FIPS 186-5

https://identity.foundation/

and SP 800-186 will allow many decentralized identity solutions to be adopted by the public
sector and it will ensure the public sector will be able to interact with decentralized identity
applications in the private sector in the future.

Enterprise Ethereum Alliance (EEA)
Web: ​https://entethalliance.org/
The Enterprise Ethereum Alliance is a member-driven standards organization, with
approximately 200 organizations, whose charter is to develop open blockchain specifications
that drive harmonization and interoperability for businesses and consumers worldwide. The
global community of members is made up of leaders, adopters, innovators, developers, and
businesses who collaborate to create an open, decentralized web for the benefit of everyone.

W3C Credentials Community Group
Web: ​https://www.w3.org/community/credentials/
With approximately 320 members, the mission of the W3C Credentials Community Group is to
explore the creation, storage, presentation, verification, and user control of credentials. The
W3C CCG serves an important role in the incubation of new specifications and reference
implementations in the decentralized identity space.

Hyperledger
Web: ​https://www.hyperledger.org/
Hyperledger is an open source collaborative effort created to advance cross-industry blockchain
technologies. It is a global collaboration, hosted by The Linux Foundation, including leaders in
finance, banking, Internet of Things, supply chains, manufacturing and Technology.

Other W3C Member Organizations

Microsoft
Web. https://www.microsoft.com

Transmute
Web: https://transmute.industries

ArcBlock
Web: https://www.arcblock.ioTBD

References

[SECG1] http://www.secg.org/sec1-v2.pdf

[SECG2] http://www.secg.org/sec2-v2.pdf

https://entethalliance.org/
https://www.w3.org/community/credentials/
https://www.hyperledger.org/
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf

[NIST] A Taxonomic Approach to Understanding Emerging Blockchain
Identity Management Systems, NIST:
https://csrc.nist.gov/publications/detail/white-paper/2019/07/09/a-taxon
omic-approach-to-understanding-emerging-blockchain-idms/draft

[DHS] News Release: DHS Awards $198K for Raw Material Import Tracking
Using Blockchain, DHS:
https://www.dhs.gov/science-and-technology/news/2019/11/08/news-r
elease-dhs-awards-198k-raw-material-import-tracking

[TRAI] Tech Mahindra launched Blockchain solution to curb spam calls in
India:
https://telecom.economictimes.indiatimes.com/news/tech-mahindra-lau
nched-blockchain-solution-to-curb-spam-calls-in-india/69147376

[EC] Blockchain and Digital Identity, European Blockchain Observatory and
Forum:
https://www.eublockchainforum.eu/sites/default/files/report_identity_v0.
9.4.pdf?width=1024&height=800&iframe=true

[ESSIF] European Self-Sovereign Identity Framework:
https://www.eesc.europa.eu/sites/default/files/files/1._panel_-_daniel_d
u_seuil.pdf

[GLEIF] https://medium.com/uport/uport-partners-with-the-gleif-network-to-laun
ch-decentralized-corporate-identity-management-2a7a20be3354

[W3C.VC.UseCase] Verifiable Credentials Use Cases, W3C VC WG:
https://www.w3.org/TR/vc-use-cases/#legal-identity

[W3C.VC] Verifiable Credentials Data Model, W3C VC WG:
https://www.w3.org/TR/vc-data-model/

[W3C.DID] Decentralized Identifier Specification, W3C DID WG:
https://www.w3.org/TR/did-core/

[Alastria] Alastria ID: ​https://alastria.io/en/id-alastria/

[komgo] What is komgo? | Commodity Trade Finance Meets Blockchain
https://www.tradefinanceglobal.com/posts/what-is-komgo-commodity-tr
ade-finance-meets-blockchain/

[VONX] Verifiable Organizations Network, Government of British Columbia:
https://vonx.io/about/

https://csrc.nist.gov/publications/detail/white-paper/2019/07/09/a-taxonomic-approach-to-understanding-emerging-blockchain-idms/draft
https://csrc.nist.gov/publications/detail/white-paper/2019/07/09/a-taxonomic-approach-to-understanding-emerging-blockchain-idms/draft
https://www.dhs.gov/science-and-technology/news/2019/11/08/news-release-dhs-awards-198k-raw-material-import-tracking
https://www.dhs.gov/science-and-technology/news/2019/11/08/news-release-dhs-awards-198k-raw-material-import-tracking
https://telecom.economictimes.indiatimes.com/news/tech-mahindra-launched-blockchain-solution-to-curb-spam-calls-in-india/69147376
https://telecom.economictimes.indiatimes.com/news/tech-mahindra-launched-blockchain-solution-to-curb-spam-calls-in-india/69147376
https://www.eublockchainforum.eu/sites/default/files/report_identity_v0.9.4.pdf?width=1024&height=800&iframe=true
https://www.eublockchainforum.eu/sites/default/files/report_identity_v0.9.4.pdf?width=1024&height=800&iframe=true
https://www.eesc.europa.eu/sites/default/files/files/1._panel_-_daniel_du_seuil.pdf
https://www.eesc.europa.eu/sites/default/files/files/1._panel_-_daniel_du_seuil.pdf
https://medium.com/uport/uport-partners-with-the-gleif-network-to-launch-decentralized-corporate-identity-management-2a7a20be3354
https://medium.com/uport/uport-partners-with-the-gleif-network-to-launch-decentralized-corporate-identity-management-2a7a20be3354
https://www.w3.org/TR/vc-use-cases/#legal-identity
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/did-core/
https://alastria.io/en/id-alastria/
https://www.tradefinanceglobal.com/posts/what-is-komgo-commodity-trade-finance-meets-blockchain/
https://www.tradefinanceglobal.com/posts/what-is-komgo-commodity-trade-finance-meets-blockchain/
https://vonx.io/about/

[FCA] Regulatory sandbox - cohort 5:
https://www.fca.org.uk/firms/regulatory-sandbox/cohort-5

[WebAuthn] Server Requirements and Transport Binding Profile:
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd
-20180702.html

[JOSE] https://tools.ietf.org/html/draft-ietf-cose-webauthn-algorithms-03

[EEA.Client] https://entethalliance.org/wp-content/uploads/2019/11/EEA_Enterprise

_Ethereum_Client_Specification_V4.pdf

[EEA.TC] https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_

Trusted_Compute_Specification_v1.1.pdf

[OpenSSL] Command Line Elliptic Curve Operations, OpenSSL:

https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Ope

rations

[BouncyCastle] The Legion of the Bouncy Castle:
https://www.bouncycastle.org/

[Node.Crypto] https://nodejs.org/api/crypto.html

[Node.JOSE] https://www.npmjs.com/package/jose

[libsecp256k1] https://github.com/bitcoin-core/secp256k1

[Nimbus] https://connect2id.com/products/nimbus-jose-jwt/examples/jwt-with-es
256k-signature

[DID.JWT] https://github.com/decentralized-identity/did-jwt

[JSON-LD] https://w3c-dvcg.github.io/lds-ecdsa-secp256k1-2019/

[JSON-LD.Lib] https://github.com/digitalbazaar/jsonld-signatures

https://www.fca.org.uk/firms/regulatory-sandbox/cohort-5
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-server-v2.0-rd-20180702.html
https://tools.ietf.org/html/draft-ietf-cose-webauthn-algorithms-03
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Enterprise_Ethereum_Client_Specification_V4.pdf
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Enterprise_Ethereum_Client_Specification_V4.pdf
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
https://www.bouncycastle.org/
https://nodejs.org/api/crypto.html
https://www.npmjs.com/package/jose
https://github.com/bitcoin-core/secp256k1
https://connect2id.com/products/nimbus-jose-jwt/examples/jwt-with-es256k-signature
https://connect2id.com/products/nimbus-jose-jwt/examples/jwt-with-es256k-signature
https://github.com/decentralized-identity/did-jwt
https://w3c-dvcg.github.io/lds-ecdsa-secp256k1-2019/
https://github.com/digitalbazaar/jsonld-signatures

Bernstein, Dan/Lange, Tanja
From: D. J. Bernstein
Sent: Wednesday, January 29, 2020 11:58 PM
To: fips186-comments
Cc: Tanja Lange
Subject: Comment on FIPS 186

Please see attached PDF for comments from Daniel J. Bernstein and Tanja Lange.

Failures in NIST’s ECC standards, part 2

Daniel J. Bernstein1,2 and Tanja Lange3

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
djb@cr.yp.to

3 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org

Abstract. NIST has recently proposed an update to its ECC standards.
This update does not adequately account for (1) the long and continuing
history of real-world security failures in ECC implementations and (2)
analyses showing how next-generation ECC reduces the risk of failures.

1 Introduction

A ZDNet article in October 2019 [25] said “Minerva attack can recover private
keys from smart cards, cryptographic libraries”. Minerva exploited timing leaks
to break the implementations of NIST’s ECDSA standard in a FIPS-certified
Athena IDProtect card and in four software libraries: libgcrypt, MatrixSSL,
JDK, and Crypto++.

Three of these libraries (libgcrypt, MatrixSSL, and Crypto++) also include
implementations of EdDSA, specifically Ed25519. But Minerva—despite being
introduced in [38] as an attack against “implementations of ECDSA/EdDSA”—
did not break any of these EdDSA implementations. See [10] for an analysis of
how the differences between ECDSA and EdDSA led directly to EdDSA holding
up better than ECDSA against Minerva.

In November 2019, the TPM-FAIL attack [42] announced exploits of ECDSA
timings in “trusted platform modules” from ST and Intel, and stated that “the
certification has failed to protect the product against an attack that is consid-
ered by the protection profile”—unlike the Minerva FIPS-certified target, which
turned out to have excluded side-channel attacks from consideration.

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was supported by the U.S. National
Science Foundation under grant 1913167, by the Cisco University Research Program,
and by DFG Cluster of Excellence 2092 “CASA: Cyber Security in the Age of Large-
Scale Adversaries”. “Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation” (or other funding agencies). Permanent ID
of this document: 21bee85333e1b25850ce93dfde2c83f53c38ea4a. Date: 2020.01.29.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Daniel J. Bernstein and Tanja Lange

In January 2020, CVE 2020-0601 revealed that ECDSA signature verification
in Windows 10 allowed forgeries. This turned out to be the result of (1) support
for a broad run-time choice of elliptic-curve parameters and (2) inadequate au-
thentication of those parameters; see, e.g., [4] and [5]. For comparison, our paper
“Failures in NIST’s ECC standards” [15] four years earlier had said that “un-
necessary complexity in ECC implementations” creates “ECC security failures”,
that allowing run-time curve choices causes “obvious damage to implementation
simplicity”, and that one must “securely authenticate this choice” along with
authenticating the ECC key.

Later in January 2020, Aldaya and Brumley [2] announced a single-trace soft-
ware side-channel attack against the mbedTLS implementation of ECDSA. This
attack exploits a leak inside the mbedTLS implementation of modular inver-
sion in ECDSA signing, combined with a seemingly minor bug in surrounding
mbedTLS code that was intended to blind the inversion. For comparison, EdDSA
signing skips modular inversion.

Some ECC software has been formally verified, guaranteeing that the software
works correctly and is immune to broad classes of timing attacks. This body of
work has made some progress for NIST’s ECC standards but much more progress
for next-generation ECC: see, e.g., [49]. We had already commented in [15]
that “this work is targeting X25519 implementations precisely because those
implementations are so simple”, and that “unnecessary complexity . . . interferes
with verification”.

1.1. Moving NIST ECC beyond NSA ECC. On 31 October 2019, four
weeks after the Minerva attack was announced, NIST published draft FIPS 186-
5 [45], draft SP 800-186 [23], and a formal “Request for Comments” [46] re-
garding these drafts. If these drafts are adopted then they will update some of
NIST’s ECC standards.

The release of these documents was an opportunity for NIST to quote Rivest’s
comment

The poor user is given enough rope with which to hang himself—something
a standard should not do.

from 1992 [51] regarding the NIST/NSA “DSA” proposal; to cite the Sony PS3
hanging itself [22]; to admit that this was a mistake in DSA; to admit that
this was also a mistake in ECDSA, which copied the relevant technical details
from DSA; and, more broadly, to take responsibility for the way that NIST’s
ECC standards have predictably produced real-world security failures. Explicitly
recognizing the security impact of

design choices
implementation processes // implementations

would have helped motivate the adoption of next-generation ECC in updated
standards, and would have helped guide decisions regarding the details.

Unfortunately, the Request for Comments categorically denies responsibility
for any security failures:

Failures in NIST’s ECC standards, part 2 3

NIST is not aware of any vulnerabilities to attacks on these curves when
they are implemented correctly and used as described in NIST standards
and guidelines.

Minerva and older security failures are not cited and are not even acknowledged.
There is no indication that predictable implementation security failures were
considered as a design issue in draft FIPS 186-5 and draft SP 800-186. In other
words, NIST appears to have limited its scope to

design choices

magical subset of
implementation processes // secure

implementations

without even asking whether the “poor user is given enough rope with which to
hang himself”.

The Request for Comments goes on to state the following description of next-
generation ECC:

Advances in the understanding of elliptic curves within the cryptographic
community have led to the development of new elliptic curves and algo-
rithms, and their designers claim that they offer better performance and
are easier to implement in a secure manner than previous versions.

The Request for Comments does not cite any of the literature demonstrating the
performance benefits and security benefits of next-generation ECC compared to
NIST’s ECC standards. Instead it downgrades the benefits to a mere “claim”
by the “designers”. Furthermore, the description of security benefits is limited
to the ease of secure implementation; there is no mention of the likelihood and
consequences of insecure implementation.

1.2. Transparency and auditability. NIST made a series of changes from
FIPS 186-4 to draft FIPS 186-5 (plus draft SP 800-186). Standard editing tools
make it easy to keep logs of all changes, and if NIST had posted such logs then
readers familiar with FIPS 186-4 would have been able to efficiently see all of
the changes, rather than painfully comparing the two documents.

Unfortunately, NIST does not seem to have made any such logs available.
There is a half-page list of revisions at the end of draft FIPS 186-5, but a reader
seeing, e.g., “Aonstructing [sic] primes with congruence conditions mod 8 are
allowed” has to figure out which lines have been edited and what the edits were
to those lines.

Presumably NIST also had a rationale for each of its changes. NIST could
have kept a log of this rationale along with the log of each change. This would
have taken some work to type but would have saved far more work for reviewers
trying to figure out why NIST did what it did. This in turn would have helped
reviewers identify and correct mistakes. Again no such logs are available.

NIST has posted [44] various submissions that it received in response to a
previous request for comments regarding FIPS 186-4. For example, a submis-
sion from BSI claimed, incorrectly, that some of the Brainpool curves had been

4 Daniel J. Bernstein and Tanja Lange

“standardised in RFC 5639”. Did this incorrect information regarding previous
standardization contribute to NIST’s decision to include the Brainpool curves
in draft SP 800-186? If NIST had posted a rationale for each of its changes then
we would already have the answer.

More broadly, it is not clear how NIST handled the inputs it received. Con-
sider, for example, the following claim in FIPS 186-4: “For efficiency reasons,
it is desirable to take the cofactor to be as small as possible.” This claim was
originally from [1], distributed by NIST and reportedly written by NSA. Our
own input to NIST disputed this claim.4 The same claim turns out to appear
in draft SP 800-186. Did NIST not take the time to evaluate our input? Or did
NIST evaluate our input and decide to continue endorsing NSA’s claim for some
reason? If so, what is that reason?

Our own review of these NIST documents has not been comprehensive. Our
lack of comment on any particular aspects of the documents should not be taken
as endorsing those aspects.

1.3. Previous analyses of NIST’s ECC standards. We incorporate our
January 2016 paper “Failures in NIST’s ECC standards” [15] by reference into
these comments to NIST. “Incorporate by reference” means that we ask NIST
to read that paper in the context of the “Request for Comments on FIPS 186-5
and SP 800-186”, just as if we were repeating the contents as comments to NIST
now.5

That paper incorporated the following further documents by reference:

• “High-speed high-security signatures” [13].
• “How to design an elliptic-curve signature system” [7].
• “EdDSA for more curves” [14].
• “Break a dozen secret keys, get a million more for free” [9].
• “How to manipulate curve standards: a white paper for the black hat” [11].
• “SafeCurves: choosing safe curves for elliptic-curve cryptography” [16].
• “Things that use Curve25519” [20].
• “Things that use Ed25519” [21].

We incorporate the latest versions of these documents by reference here. Note
that the web site [16], the web page [20], and the web page [21] were updated
after [15].

4 “This extreme cofactor requirement actually produces a slowdown: the NIST curves
are considerably slower than Edwards curves at similar (or even somewhat higher)
security levels, despite the fact that Edwards curves always have cofactor at least 4.
For DH this slowdown was already clear from the literature predating NSA’s claim.”

5 We had also sent an earlier version of the paper as comments to NIST in December
2015 regarding a previous request for comments. The final paper has extra references,
clarifications, etc.

Failures in NIST’s ECC standards, part 2 5

2 Nonce attacks

Write r for the secret nonce used in ElGamal signatures, Schnorr signatures,
DSA, ECDSA, EdDSA, etc. Write n for the prime group order. There have been
several lines of attack exploiting visible non-randomness in r mod n:

• ElGamal pointed out in [29] that it is disastrous for a signer to reuse r for
another signature. This reuse is what happened in [22] and in various Bitcoin
attack papers cited in [19].

• Visible biases in r mod n enable various attacks surveyed in, e.g., [19] and
[10]. For example, Bleichenbacher broke the original version of DSA using a
“workfactor of 264” and “222 known signatures”, according to [43, page 72].
The problem is that DSA chose n ≈ 0.7 · 2160 and generated r as a uniform
random 160-bit integer; r mod n is then biased towards small values.

• Even if r mod n is generated uniformly at random, side-channel attacks can
leak bits of r mod n, creating visible biases and reenabling the attacks. This
is what happened in, e.g., the recent Minerva and TPM-FAIL timing attacks.

Regarding the third problem, one can blame implementors for leaking infor-
mation through timing, but it is also useful to design signature systems so that
implementors are less likely to leak information through timing. See [7] for a
detailed comparison of the Ed25519 design to the ECDSA-P-256 design from
this perspective. Minerva illustrates the success of this approach: case studies
#2 through #9 in [10] are eight crypto libraries that claim to use constant-time
Ed25519 implementations, while ECDSA-P-256 implementations are less likely
to be designed to be constant-time.

Regarding the second problem, two obvious defenses are

• to choose n very close to a power of 2 (as in Curve25519 and P-256, but not
the original DSA and not Brainpool) and

• to obtain r as a double-length hash.

A double-length hash r makes it more likely that implementors will use the entire
hash—why would an implementor bother reducing r modulo n if applications
have not asked for the extra performance?—and then a timing leak of the top
bits of r does not compromise security. Case study #1 in [10] is a variable-time
Ed25519 implementation that was saved from Minerva by the double-length r
in this way. This scenario had been described in [8] five years earlier, illustrating
the predictability of implementation problems.

Implementors might ignore the specification of r and substitute their own
“random” r, perhaps a biased r. The analysis in [19] shows that visible biases
occurred in thousands of Bitcoin signatures. One can blame implementors for
this, but it is also useful to specify an easily testable r-generation process, in-
creasing the chance that deviations from the process will be caught and fixed.

The remaining problem is the possibility of r being reused. This is not neces-
sarily the fault of the signature implementor: sometimes RNGs fail catastroph-
ically. One can try to dismiss this by saying “there is no hope of security when

6 Daniel J. Bernstein and Tanja Lange

the RNG fails”, but sometimes a key is generated on a master device with a
good RNG and then a signature is generated on a slave device with a bad RNG.

2.1. Hashing output from a stateful PRNG. Starting with (presumably)
good randomness from a key-generation device, one can build a PRNG running
in the signing device. Use, e.g., AES-256 or SHA-512 to expand a secret PRNG
seed into a block of randomness; use part of the block as the hash input to
create r, and a separate part of the block to overwrite the PRNG seed for the
next signature.

The problem with this approach is that it is stateful. This limits deployability
in some environments. More importantly, it raises security concerns regarding the
possibility of state updates failing (e.g., because virtual machines are restarted).
Langley [39] described stateful signatures as a “huge foot-cannon”. Stateful sig-
natures are also somewhat more difficult to test than stateless signatures.

From an engineering perspective, rather than designing a signature system
with a PRNG and then another signature system with a PRNG, one should
design a central device PRNG and have both signature systems use it. This
factorization relabels the state problems as being the responsibility of the central
device PRNG; however, it does not make the problems disappear. The security
system remains stateful, and failed state updates will compromise security.

2.2. Hashing the message and a secret seed. As pointed out by Barwood [3]
and Wigley [56], a stateless signing system can avoid reusing r:

• Include the message being signed as a hash input. The hash output r will
not repeat unless the message repeats—and in that case the entire signature
will repeat, so the repetition of r is not a problem.

• Include a secret seed as a hash input. Each hash output r is then secret, as
required.

From a mathematical security perspective, what one needs here is that r is the
output of a strong PRF applied to the message. Standard hash functions appear
to be massive overkill as PRFs, but it is simplest to reuse the hash function
used elsewhere in signing, and it is difficult to find verifiable examples where
message-hashing time inside signing is a cost issue for the ultimate user.

2.3. Hashing further inputs. More generally, one can take r as a hash of a
string that begins with the secret seed and the message. The rest of the string
consists of additional hash inputs.

Examples of additional inputs mentioned in [7] include PRNG output and a
counter of the number of messages signed. These inputs are stateful, limiting
deployability and complicating tests, but failed state updates (or other PRNG
failures) no longer produce catastrophic failures: as above, the secrecy of the
seed ensures the secrecy of r, and r will not repeat unless the message repeats.
Similarly, on a device with a supposedly stateless RNG, including the RNG
output as an additional hash input will not break the system if the RNG gets
stuck.

Failures in NIST’s ECC standards, part 2 7

Of course, in environments that support the writable state for a PRNG, one
can merge that state with the state used for the initial seed, using some cipher
or hash output to overwrite the seed as before. One can also merge this update
with the message processing: hash the seed together with the message, use part
of the output for r, and use another part of the output to overwrite the seed.
As a concrete example, for Ed25519, one can hash a 32-byte seed together with
the message using SHA-512, take the first 32 bytes of output as a new seed, and
hash the other 32 bytes of output to generate a 64-byte r.

2.4. Evaluating security tradeoffs between options. There appears to be
no dispute that r should be computed as a hash.

Having the hash input include the message being signed, along with a secret
derived from key-generation randomness, is essential for maintaining security
when state updates (including the device RNG) fail. This is not very complicated,
and it is justified by its undisputed ability to stop real-world security failures.

Having the hash input limited to a long-term seed and the message being
signed has advantages and disadvantages. The main objection is that this makes
the long-term seed an attractive target of, e.g., power attacks in environments
where power consumption is visible to the attacker. See, e.g., [52]. The bigger
picture is that there is an extensive literature

• breaking a wide range of cryptographic computations via power attacks,
electromagnetic attacks, etc., and

• designing countermeasures to protect against these attacks.

There are, for example, papers advertising protections for SHA-2, and papers
advertising lower-cost protections for SHA-3. General protection strategies in-
clude randomization and state updates. In particular, one can try to stop attacks
against the long-term seed in signatures by including separate randomness in the
hash or updating the seed, as in Section 2.3. On the other hand, this compli-
cates testing, and it needs to be accompanied by further complications to protect
(e.g.) arithmetic modulo n. In environments that have other protections against
side-channel attacks, the simplicity of Section 2.2 is preferable. Similar comments
apply to fault attacks.

This simplicity argument justifies standardizing an easily testable stateless
signature-generation method that hashes just two inputs: a long-term seed and
the message being signed. This does not prevent subsequent standardization of
an alternative signing procedure that uses randomization and/or state updates
as countermeasures against side-channel attacks. Note that arbitrary variations
in the signer’s computation of r are compatible with the specified procedure for
signature verification.

2.5. Using the message input to promote good practices. Section 7.8.3
of draft FIPS 186-5, “Differences between EdDSA and HashEdDSA”, complains
about EdDSA’s requirement to have a long message “either buffered or read from
storage twice” during signing (once during the generation of r and once later).
It is correct to conclude that HashEdDSA “will have better performance” since

8 Daniel J. Bernstein and Tanja Lange

it allows long messages to be streamed through signing. This is what prompted
the development of HashEdDSA in the first place.

However, this section of draft FIPS 186-5 fails to note the security impact of
applications signing long messages:

• Signatures on long messages put verifiers under performance pressure to
support streaming interfaces.

• These streaming interfaces generally allow attackers to pass forged message
prefixes directly to unwitting applications, before the verification procedures
have been invoked.

The conclusion of [14, “Security notes on prehashing”] is that it is “safest for
protocol designers to split long messages into short messages to be signed; this
splitting also eliminates the storage issue”. Of course, each signed message needs
to explicitly state enough of its context to avoid being taken out of context, but
this is true whether or not messages are split.

We recommend adding the following text to the section:

EdDSA should be used in preference to HashEdDSA, except in appli-
cations that cannot afford EdDSA.

Our rationale for this text is as follows. First, some applications will have no
problem buffering and hashing messages for EdDSA, and in these applications
EdDSA is preferable to HashEdDSA for two reasons:

• EdDSA is collision-resilient while HashEdDSA is not.6

• EdDSA is slightly simpler than HashEdDSA.

Second, some applications with limited buffer sizes will nevertheless be able
to use EdDSA by splitting long messages into short messages to be signed.
The recommendation to use EdDSA encourages these applications to limit mes-
sage lengths being signed, and helps discourage dangerous streaming interfaces.
Third, applications that really cannot afford EdDSA are better with HashEd-
DSA than with nothing (or with ECDSA). Fourth, we have written “should”
rather than “shall” to accommodate the possibility of other reasons for HashEd-
DSA. The text does not prohibit HashEdDSA; it merely specifies EdDSA as the
default and asks for documentation of deviations from the default.

6 The current text in draft FIPS 186-5 disputes the value of collision resilience: it
claims that “the risk of collisions using either SHA-512 or SHAKE256 is considered
negligible”. Who exactly considers the risk to be “negligible”? No citations are given
to the relevant cryptanalytic literature. NIST’s call for SHA-3 submissions in 2007
used very different language: “Although there is no specific reason to believe that a
practical attack on any of the SHA-2 family of hash functions is imminent, a suc-
cessful collision attack on an algorithm in the SHA-2 family could have catastrophic
effects for digital signatures. NIST has decided that it is prudent to develop a new
hash algorithm to augment and revise FIPS 180-2.” How much of the cryptanalytic
community since then has been studying SHA-512, rather than splitting effort across
>100 candidates for a series of competitions in symmetric cryptography?

Failures in NIST’s ECC standards, part 2 9

3 Selecting fields and curves

The selection of fields and curves in SP 800-186 is different from the selection in
FIPS 186-4. The changes are clear but not all of the changes have clear rationales.

3.1. Removing multiplicative groups. One change in SP 800-186 is that now
only elliptic curves are allowed: multiplicative groups (DSA) are removed. This
change has a clearly stated rationale:

Industry adoption of DSA was limited, and subsequent versions of FIPS
186 added other signature algorithms that are in broad use within prod-
ucts and protocols, including ECDSA and RSA-based signature algo-
rithms. At this time, NIST is not aware of any applications where DSA
is currently broadly used. Furthermore, recent academic analysis ob-
served that implementations of DSA may be vulnerable to attacks if
domain parameters are not properly generated. These parameters are
not commonly verified before use.

This rationale has two components: one regarding the unpopularity of DSA,
and another regarding the vulnerability of DSA “if domain parameters are not
properly generated”.

It is interesting to observe that these arguments are not tied to multiplicative
groups. The unpopularity of DSA seems to be connected to DSA’s inefficiency,
which in turn has been created by attacks exploiting the structure of multiplica-
tive groups,7 but there are also inefficient elliptic-curve groups with similarly
limited industry adoption.

As for improper generation of domain parameters: Elliptic curves are also
vulnerable to attacks if domain parameters are not properly generated. This was
spectacularly illustrated by CVE 2020-0601: Microsoft added code to support
many different elliptic curves, and a bug in this code turned out to allow forged
signatures using forged domain parameters. Properly tying domain parameters to
certificates would have prevented this particular ECDSA disaster, but in general
elliptic-curve parameters are more complicated to verify than DSA parameters.
This component of NIST’s rationale does not seem to be a valid argument for
elliptic curves compared to multiplicative groups; instead it is an argument for
standardizing a limited selection of well-vetted parameters.

3.2. Deprecating curves over binary fields. Another change in SP 800-186
is that elliptic curves over binary fields are deprecated. This also has a clearly
stated rationale:

Finally, based on feedback received on the adoption of the current elliptic
curve standards, the draft standards deprecate curves over binary fields
due to their limited use by industry.

7 A separate issue is that these attacks are very complicated, with a long history of
improvements and many unexplored avenues for further improvements. We would
recommend against multiplicative groups for this reason even if multiplicative groups
were as fast as elliptic-curve groups.

10 Daniel J. Bernstein and Tanja Lange

Again this is a statement regarding the level of deployment.

3.3. Evaluation of adoption of added curves. The draft SP 800-186 in-
cludes Edwards coordinates for Curve25519 and Curve448, as stated in the Re-
quest for Comments. It also includes Weierstrass coordinates for Curve25519
and Curve448 to use in ECDSA. Not mentioned in the Request for Comments
is that the draft also allows Brainpool curves “to be used for interoperability
reasons”.

Given the prominent role that “industry adoption”/“use by industry” has
played in NIST’s decisions regarding multiplicative groups and binary fields, pre-
sumably it is also important to understand the levels of adoption of Curve25519,
Curve448, and the Brainpool curves. For example, if the Brainpool curves are
less popular than DSA and binary curves, then why are the Brainpool curves
being added?

From this perspective, it is troubling to see, within the standardization pro-
cess, misinformation regarding levels of adoption. For example:

• Draft SP 800-186 claims that “The most widely used curves are usually ex-
pressed in short-Weierstrass format”. The NIST curves are usually expressed
in short-Weierstrass format, but no evidence is provided for the implicit claim
that the NIST curves are “the most widely used curves” at the time of writ-
ing. The next sentence refers to other curves as having “garnered academic
interest” without mentioning (e.g.) more than a billion users of WhatsApp.
See generally [20] and [21] regarding usage of Curve25519.

• Draft SP 800-186 refers to “other standards-setting organizations, such as the
Crypto Forum Research Group (CFRG) of the IETF”. IETF is a standards-
setting organization but CFRG is not.

• As noted in Section 1, BSI claimed, as part of official input to NIST, that
some Brainpool curves were “standardised in RFC 5639”. This claim is false.
RFC 5639, like RFC 7748, is an Informational RFC, not a standards-track
document. Furthermore, the review process for RFC 5639 was minimal—
whereas RFC 7748 was the conclusion of an open two-year CFRG analysis
occupying thousands of email messages, and says “This RFC represents the
consensus of the Crypto Forum Research Group of the Internet Research
Task Force (IRTF).” TLS 1.3, which is on the IETF standards track, allows
the RFC 7748 curves and not the RFC 5639 curves.

More broadly, the lack of a stated rationale and supporting data regarding the
addition of curves makes it unnecessarily difficult to evaluate and comment upon
NIST’s choices.

3.4. Evaluation of verification of added curves. Given NIST’s statement
that DSA “parameters are not commonly verified before use”, it is also troubling
to see that the 160-bit, 192-bit, 224-bit, 256-bit, 320-bit, and 384-bit Brainpool
curves published in October 2005 were not generated by the Brainpool curve-
generation procedure that was published in the same document and that was
claimed to have been used to generate those curves. This observation appears to

Failures in NIST’s ECC standards, part 2 11

Core Xeon Microarchitectures P-256 Curve25519

1 Nehalem (2008), Westmere (2010) 226872
2 v1 Sandy Bridge (2011) 311000 159068
3 v2 Ivy Bridge (2012) 313000 157192
4 v3 Haswell (2013) 228000 156052
5 v4 Broadwell (2014) 177000 120000
6 v5 Skylake (2015) 171000 116000
7 v6 Kaby Lake (2016) 171000 116000

Table 3.6. Variable-base-point scalar-multiplication times, in cycles (smaller is better),
for P-256 and Curve25519 on various Intel Core microarchitecture generations. The
“Core” column lists the generation number in Intel Core CPU numbers. The “Xeon”
column lists the generation number in Intel Xeon CPU numbers. The year listed is the
year when the microarchitecture was introduced; e.g., Intel introduced its first Haswell
CPUs in June 2013, so Haswell is listed as “2013” in the table. For P-256: 311000,
313000, 228000, 177000, 171000, and 171000 are measured by OpenSSL 1.1.1; 228000
is an improvement over the 291000 from [35]. For Curve25519: 226872 is reported
in [13]; 159068, 157192, and 156052 are measurements from SUPERCOP of the software
from [24]; 120000, 116000, and 116000 are measured by OpenSSL 1.1.1. Measurements
are on an Intel Xeon i3-2310M, Intel Xeon E3-1275 v2, Intel Xeon E3-1220 v3, Intel
Xeon E5-2609 v4, Intel Xeon E3-1220 v5, and Intel Xeon E3-1220 v6 respectively.

have been first published in [11] ten years later, along with further observations
regarding the Brainpool curves.

Furthermore, like FIPS 186-4, draft SP 800-186 requires that ECDSA curves
be generated using SHA-2 or SHA-3. To justify making an exception for the
NSA curves, [23, Footnote 1] says that “SHA-1 was considered secure at the
time of generation” of the NSA curves. This exception does not appear to apply
to the Brainpool curves: Wang’s attack against SHA-1 appeared at Crypto 2005
in August 2005 and was already publicly announced, e.g., in Schneier’s blog post
“SHA-1 broken” in February 2005.

3.5. Evaluation of implementation properties of added curves. It is also
troubling to see misinformation regarding implementation properties such as
simplicity and efficiency: these properties have an impact upon adoption, and
adoption plays a role in NIST’s decisions.

Consider, e.g., the submission from Adalier to NIST included in [44]. This
submission claims that “recent high performance implementations of ECDSA P-
256 (OpenSSL—S. Gueron, taraEcCRYPT(tm)—M. Adalier) show that ECDSA
can be implemented as fast and securely as the other schemes.”

What Gueron and Krasnov actually reported in [35] for the software that
they contributed to OpenSSL was 291000 Haswell cycles for P-256 variable-
base-point scalar multiplication. For comparison, [13] had already reported just
226872 Westmere cycles for Curve25519 variable-base-point scalar multiplica-
tion. Westmere is three processor generations older than Haswell; see generally
Table 3.6.

12 Daniel J. Bernstein and Tanja Lange

P-256 implementations improved after [35]. For example, OpenSSL 1.1.1 takes
228000 Haswell cycles or 171000 Skylake cycles for P-256 variable-base-point
scalar multiplication. However, for Curve25519 variable-base-point scalar multi-
plication, the software from Chou [24] (optimized for an older microarchitecture,
Sandy Bridge) takes 156052 Haswell cycles or 135157 Skylake cycles, and newer
software in OpenSSL takes just 116000 Skylake cycles.

More broadly, Curve25519 implementations have consistently outperformed
P-256 implementations ever since the introduction of Curve25519. See, e.g., [6],
[31], [26], [13], [17], [40], [41], [53], [24], [27], and [37].

These performance comparisons between ECDH-P-256 and X25519 illustrate
the slowness of P-256 field operations and P-256 curve operations. It is safe
to predict that similar implementation effort will produce similar cost ratios
between ECDSA-P-256 and Ed25519, although not identical cost ratios (e.g.,
ECDSA has inversions that are not needed in EdDSA). Finally, there does not
appear to be any publicly verifiable evidence that “taraEcCRYPT” outperforms
OpenSSL.

Regarding implementation security, the original software from Gueron and
Krasnov used a “scatter-gather” table-lookup method that is a few percent
faster than the table-scanning method used in [13] but that also violates the
security rules stated in [6] and [13]. Scatter-gather lookups were later exploited
by the “CacheBleed” RSA attack [57], and presumably are also exploitable in
the ECDSA context.

It is of course possible to write variable-time Ed25519 software, and in partic-
ular scatter-gather Ed25519 software, which presumably would be exploitable in
the same way as scatter-gather ECDSA-P-256 software. But this does not end
the risk analysis. Because Curve25519 is faster than P-256, Curve25519 imple-
mentors are under less pressure than P-256 implementors to apply minor opti-
mizations such as scatter-gather lookups. Furthermore, in many applications, a
simple ladder provides acceptable speed for Ed25519 key generation and signing,
and the implementor does not need table lookups at all—whereas a P-256 ladder
is slower and more likely to be rejected for speed reasons. To summarize, insecure
Ed25519 implementations are possible, but insecure ECDSA-P-256 implementa-
tions (such as the implementations exploited by Minerva and TPM-FAIL) are
more likely.

The same issues are even more severe for ECDSA with the 256-bit Brainpool
curve, which appears to be much slower than Ed25519. See also the Brainpool-
specific implementation problems exploited in [55] related to the primes not
being close to powers of 2.

3.7. Interoperability impact. In [15] we explained how a profusion of stan-
dardized curves damages implementation simplicity and creates interoperability
problems. We concluded the analysis as follows:

For each of its existing curves, and for any new curves that are proposed,
NIST’s default assumption should be that having the curve standardized
is a bad idea.

Failures in NIST’s ECC standards, part 2 13

Obviously this default can, and occasionally should, be overridden. NIST
ECC is failing quite disastrously in practice, in ways that are fixed by
next-generation ECC, and there is already widespread adoption of next-
generation ECC. But the question for any particular curve shouldn’t
be “Does standardizing this curve have a benefit?”; it should be “Does
standardizing this curve have a large enough benefit to outweigh the
costs?”

It is worrisome to see so many curves in draft SP 800-186 without a clear expla-
nation, for each curve, of how the benefits outweigh the costs.

4 Further comments

See Appendices A, B, C, D, and E.
We repeat a warning from Section 1: “Our own review of these NIST doc-

uments has not been comprehensive. Our lack of comment on any particular
aspects of the documents should not be taken as endorsing those aspects.”

References

[1] — (no editor), Recommended elliptic curves for federal government use
(1999). URL: https://web.archive.org/web/20080917124637/http://csrc.

nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf. Citations in this
document: §1.2.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, When one vulnerable primi-
tive turns viral: Novel single-trace attacks on ECDSA and RSA (2020). URL:
https://eprint.iacr.org/2020/055. Citations in this document: §1.

[3] George Barwood, Digital signatures using elliptic curves, message 32f519ad.

19609226@news.dial.pipex.com posted to sci.crypt (1997). URL: https://

groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6. Citations in this
document: §2.2.

[4] Tal Be’ery, Win10 crypto vulnerability: cheating in ellip-
tic curve billiards 2 (2020). URL: https://medium.com/zengo/

win10-crypto-vulnerability-cheating-in-elliptic-curve-billiards-2-69b45f2dcab6.
Citations in this document: §1.

[5] Tal Be’ery, CurveBall’s additional twist: the certificate
comparison bug (2020). URL: https://medium.com/zengo/

curveballs-additional-twist-the-certificate-comparison-bug-2698aea445b5.
Citations in this document: §1.

[6] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006
[58] (2006), 207–228. URL: https://cr.yp.to/papers.html#curve25519. Cita-
tions in this document: §3.5, §3.5.

[7] Daniel J. Bernstein, How to design an elliptic-curve signature system (2014).
URL: https://blog.cr.yp.to/20140323-ecdsa.html. Citations in this docu-
ment: §1.3, §2, §2.3.

[8] Daniel J. Bernstein, Re: Mishandling twist attacks (2014). URL: https://

mailarchive.ietf.org/arch/msg/cfrg/8z3ZcujGRxFSGEBI-uE7C1tjw4c. Cita-
tions in this document: §2.

https://web.archive.org/web/20080917124637/http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://web.archive.org/web/20080917124637/http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://eprint.iacr.org/2020/055
https://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
https://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
https://medium.com/zengo/win10-crypto-vulnerability-cheating-in-elliptic-curve-billiards-2-69b45f2dcab6
https://medium.com/zengo/win10-crypto-vulnerability-cheating-in-elliptic-curve-billiards-2-69b45f2dcab6
https://medium.com/zengo/curveballs-additional-twist-the-certificate-comparison-bug-2698aea445b5
https://medium.com/zengo/curveballs-additional-twist-the-certificate-comparison-bug-2698aea445b5
https://cr.yp.to/papers.html#curve25519
https://blog.cr.yp.to/20140323-ecdsa.html
https://mailarchive.ietf.org/arch/msg/cfrg/8z3ZcujGRxFSGEBI-uE7C1tjw4c
https://mailarchive.ietf.org/arch/msg/cfrg/8z3ZcujGRxFSGEBI-uE7C1tjw4c

14 Daniel J. Bernstein and Tanja Lange

[9] Daniel J. Bernstein, Break a dozen secret keys, get a million more for free (2015).
URL: https://blog.cr.yp.to/20151120-batchattacks.html. Citations in this
document: §1.3.

[10] Daniel J. Bernstein, Why EdDSA held up better than ECDSA against Minerva
(2019). URL: https://blog.cr.yp.to/20191024-eddsa.html. Citations in this
document: §1, §2, §2, §2.

[11] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing,
Eran Lambooij, Tanja Lange, Ruben Niederhagen, Christine van Vredendaal,
How to manipulate curve standards: a white paper for the black hat, in SSR 2015
(2015). URL: https://bada55.cr.yp.to/. Citations in this document: §1.3, §3.4.

[12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-
speed high-security signatures, in CHES 2011 [48] (2011), 124–142; see also newer
version [13]. URL: https://eprint.iacr.org/2011/368.

[13] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-
speed high-security signatures, Journal of Cryptographic Engineering 2 (2012),
77–89; see also older version [12]. URL: https://eprint.iacr.org/2011/368.
Citations in this document: §1.3, §3.5, §3.6, §3.6, §3.5, §3.5, §3.5.

[14] Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, Bo-Yin Yang,
EdDSA for more curves (2015). URL: https://eprint.iacr.org/2015/677. Ci-
tations in this document: §1.3, §2.5.

[15] Daniel J. Bernstein, Tanja Lange, Failures in NIST’s ECC standards (2016).
URL: https://cr.yp.to/papers.html#nistecc. Citations in this document: §1,
§1, §1.3, §1.3, §3.7.

[16] Daniel J. Bernstein, Tanja Lange, SafeCurves: choosing safe curves for elliptic-
curve cryptography (2017). URL: https://safecurves.cr.yp.to. Citations in
this document: §1.3, §1.3.

[17] Daniel J. Bernstein, Peter Schwabe, NEON crypto, in CHES 2012 [50] (2012),
320–339. URL: https://cr.yp.to/papers.html#neoncrypto. Citations in this
document: §3.5.

[18] G. R. Blakley, David Chaum (editors), Advances in cryptology, proceedings of
CRYPTO ’84, Santa Barbara, California, USA, August 19–22, 1984, proceedings,
Lecture Notes in Computer Science, 196, Springer, Berlin, 1985. ISBN 3-540-
15658-5. MR 86j:94003. See [28].

[19] Joachim Breitner, Nadia Heninger, Biased nonce sense: lattice attacks against
weak ECDSA signatures in cryptocurrencies, in FC 2019 [34] (2019), 3–20. URL:
https://eprint.iacr.org/2019/023. Citations in this document: §2, §2, §2.

[20] Nicolai Brown, Things that use Curve25519 (2020). URL: https://ianix.com/
pub/curve25519-deployment.html. Citations in this document: §1.3, §1.3, §3.3.

[21] Nicolai Brown, Things that use Ed25519 (2020). URL: https://ianix.com/pub/
ed25519-deployment.html. Citations in this document: §1.3, §1.3, §3.3.

[22] “Bushing”, Hector Martin “marcan” Cantero, Segher Boessenkool, Sven Peter,
PS3 epic fail (2010). URL: https://events.ccc.de/congress/2010/Fahrplan/
attachments/1780_27c3_console_hacking_2010.pdf. Citations in this docu-
ment: §1.1, §2.

[23] Lily Chen, Dustin Moody, Andrew Regenscheid, Karen Randall, SP 800-
186 (draft): recommendations for discrete logarithm-based cryptography: elliptic
curve domain parameters (2019). URL: https://csrc.nist.gov/publications/
detail/sp/800-186/draft. Citations in this document: §1.1, §3.4, §B, §B, §B,
§B, §B, §B, §B.

https://blog.cr.yp.to/20151120-batchattacks.html
https://blog.cr.yp.to/20191024-eddsa.html
https://bada55.cr.yp.to/
https://eprint.iacr.org/2011/368
https://eprint.iacr.org/2011/368
https://eprint.iacr.org/2015/677
https://cr.yp.to/papers.html#nistecc
https://safecurves.cr.yp.to
https://cr.yp.to/papers.html#neoncrypto
https://eprint.iacr.org/2019/023
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://csrc.nist.gov/publications/detail/sp/800-186/draft
https://csrc.nist.gov/publications/detail/sp/800-186/draft

Failures in NIST’s ECC standards, part 2 15

[24] Tung Chou, Sandy2x: new Curve25519 speed records, in SAC 2015 (2015).
URL: https://tungchou.github.io/papers/sandy2x.pdf. Citations in this doc-
ument: §3.6, §3.6, §3.5, §3.5.

[25] Catalin Cimpanu, Minerva attack can recover private keys from smart
cards, cryptographic libraries (2019). URL: https://www.zdnet.com/article/

minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/.
Citations in this document: §1.

[26] Neil Costigan, Peter Schwabe, Fast elliptic-curve cryptography on the Cell
Broadband Engine, in Africacrypt 2009 [47] (2009), 368–385. URL: https://

cryptojedi.org/users/peter/#celldh. Citations in this document: §3.5.
[27] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof

Paar, Ana Helena Sánchez, Peter Schwabe, High-speed Curve25519 on 8-
bit, 16-bit, and 32-bit microcontrollers, Designs, Codes and Cryptography
77 (2015), 493–514. URL: https://link.springer.com/article/10.1007/

s10623-015-0087-1/fulltext.html. Citations in this document: §3.5.
[28] Taher ElGamal, A public key cryptosystem and a signature scheme based on dis-

crete logarithms, in Crypto ’84 [18] (1985), 10–18; see also newer version [29].
MR 87b:94037.

[29] Taher ElGamal, A public key cryptosystem and a signature scheme based on dis-
crete logarithms, IEEE Transactions on Information Theory 31 (1985), 469–472;
see also older version [28]. ISSN 0018-9448. MR 86j:94045. Citations in this doc-
ument: §2.

[30] Pierrick Gaudry, Variants of the Montgomery form based on Theta func-
tions (2006); see also newer version [31]. URL: https://cr.yp.to/bib/2006/

gaudry-toronto.pdf.
[31] Pierrick Gaudry, Fast genus 2 arithmetic based on Theta functions, Jour-

nal of Mathematical Cryptology 1 (2007), 243–265; see also older version
[30]. URL: https://hal.inria.fr/inria-00000625/file/arithKsurf.pdf. Ci-
tations in this document: §3.5.

[32] Benedikt Gierlichs, Axel Y. Poschmann (editors), Cryptographic hardware and
embedded systems—CHES 2016—18th international conference, Santa Barbara,
CA, USA, August 17–19, 2016, proceedings, Lecture Notes in Computer Science,
9813, Springer, 2016. ISBN 978-3-662-53139-6. See [57].

[33] Diana Goehringer, Marco Domenico Santambrogio, João M. P. Cardoso,
Koen Bertels (editors), Reconfigurable computing: architectures, tools, and
applications—10th international symposium, ARC 2014, Vilamoura, Portugal,
April 14–16, 2014, proceedings (2014). ISBN 978-3-319-05959-4. See [53].

[34] Ian Goldberg, Tyler Moore (editors), Financial cryptography and data security—
23rd international conference, FC 2019, Frigate Bay, St. Kitts and Nevis, Febru-
ary 18–22, 2019, revised selected papers, Lecture Notes in Computer Science,
11598, Springer, 2019. See [19].

[35] Shay Gueron, Vlad Krasnov, Fast prime field elliptic curve cryptography with
256 bit primes, Journal of Cryptographic Engineering 5 (2013), 141–151. URL:
https://eprint.iacr.org/2013/816. Citations in this document: §3.5, §3.6,
§3.6, §3.5.

[36] Tim Güneysu, Helena Handschuh (editors), Cryptographic hardware and em-
bedded systems—CHES 2015—17th international workshop, Saint-Malo, France,
September 13–16, 2015, proceedings, Lecture Notes in Computer Science, 9293,
Springer, 2015. ISBN 978-3-662-48323-7. See [37].

https://tungchou.github.io/papers/sandy2x.pdf
https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/
https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/
https://cryptojedi.org/users/peter/#celldh
https://cryptojedi.org/users/peter/#celldh
https://link.springer.com/article/10.1007/s10623-015-0087-1/fulltext.html
https://link.springer.com/article/10.1007/s10623-015-0087-1/fulltext.html
https://cr.yp.to/bib/2006/gaudry-toronto.pdf
https://cr.yp.to/bib/2006/gaudry-toronto.pdf
https://hal.inria.fr/inria-00000625/file/arithKsurf.pdf
https://eprint.iacr.org/2013/816

16 Daniel J. Bernstein and Tanja Lange

[37] Michael Hutter, Jürgen Schilling, Peter Schwabe, Wolfgang Wieser, NaCl’s
crypto box in hardware, in CHES 2015 [36] (2015), 81–101. URL: https://

cryptojedi.org/papers/#naclhw. Citations in this document: §3.5.
[38] Jan Jancar, Petr Svenda, Vladimir Sedlacek, Minerva (2019). URL: https://

minerva.crocs.fi.muni.cz. Citations in this document: §1.
[39] Adam Langley, Hash based signatures (2013). URL: https://www.

imperialviolet.org/2013/07/18/hashsig.html. Citations in this document:
§2.1.

[40] Adam Langley, Andrew Moon, Implementations of a fast elliptic-curve Dig-
ital Signature Algorithm (2013). URL: https://github.com/floodyberry/

ed25519-donna. Citations in this document: §3.5.
[41] Eric M. Mahé, Jean-Marie Chauvet, Fast GPGPU-based elliptic curve scalar mul-

tiplication (2014). URL: https://eprint.iacr.org/2014/198.pdf. Citations in
this document: §3.5.

[42] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, Nadia Heninger, TPM-FAIL:
TPM meets timing and lattice attacks, in USENIX 2020, to appear (2019). URL:
https://tpm.fail/. Citations in this document: §1.

[43] National Institute of Standards and Technology (NIST), FIPS 186-2 (+Change
Notice): Digital signature standard (DSS) (2001). URL: https://csrc.nist.

gov/CSRC/media/Publications/fips/186/2/archive/2001-10-05/documents/

fips186-2-change1.pdf. Citations in this document: §2.
[44] National Institute of Standards and Technology (NIST) (editor), Pub-

lic comments received on FIPS 186-4: digital signature standard (DSS)
(2015). URL: https://csrc.nist.gov/csrc/media/publications/fips/186/

4/final/documents/comments-received-fips186-4-december-2015.pdf. Cita-
tions in this document: §1.2, §3.5.

[45] National Institute of Standards and Technology (NIST), FIPS 186-5 (draft):
Digital signature standard (DSS) (2019). URL: https://csrc.nist.gov/

publications/detail/fips/186/5/draft. Citations in this document: §1.1, §A,
§A, §A, §A, §A, §A, §A, §A, §A.

[46] National Institute of Standards and Technology (NIST), Re-
quest for comments on FIPS 186-5 and SP 800-186 (2019). URL:
https://www.federalregister.gov/documents/2019/10/31/2019-23742/

request-for-comments-on-fips-186-5-and-sp-800-186. Citations in this
document: §1.1.

[47] Bart Preneel (editor), Progress in cryptology—AFRICACRYPT 2009, second in-
ternational conference on cryptology in Africa, Gammarth, Tunisia, June 21–25,
2009, proceedings, Lecture Notes in Computer Science, 5580, Springer, 2009. See
[26].

[48] Bart Preneel, Tsuyoshi Takagi (editors), Cryptographic hardware and embedded
systems—CHES 2011, 13th international workshop, Nara, Japan, September 28–
October 1, 2011, proceedings, Lecture Notes in Computer Science, 6917, Springer,
2011. ISBN 978-3-642-23950-2. See [12].

[49] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Ma-
rina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi,
Antoine Delignat-Lavaud, Cedric Fournet, Natalia Kulatova, Tahina Ramananan-
dro, Aseem Rastogi, Nikhil Swamy, Christoph Wintersteiger, Santiago Zanella-
Beguelin, EverCrypt: a fast, verified, cross-platform cryptographic provider, in
IEEE S&P 2020, to appear (2019). URL: https://eprint.iacr.org/2019/757.
Citations in this document: §1.

https://cryptojedi.org/papers/#naclhw
https://cryptojedi.org/papers/#naclhw
https://minerva.crocs.fi.muni.cz
https://minerva.crocs.fi.muni.cz
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://github.com/floodyberry/ed25519-donna
https://github.com/floodyberry/ed25519-donna
https://eprint.iacr.org/2014/198.pdf
https://tpm.fail/
https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://www.federalregister.gov/documents/2019/10/31/2019-23742/request-for-comments-on-fips-186-5-and-sp-800-186
https://www.federalregister.gov/documents/2019/10/31/2019-23742/request-for-comments-on-fips-186-5-and-sp-800-186
https://eprint.iacr.org/2019/757

Failures in NIST’s ECC standards, part 2 17

[50] Emmanuel Prouff, Patrick Schaumont (editors), Cryptographic hardware and em-
bedded systems—CHES 2012—14th international workshop, Leuven, Belgium,
September 9–12, 2012, proceedings, Lecture Notes in Computer Science, 7428,
Springer, 2012. ISBN 978-3-642-33026-1. See [17].

[51] Ronald L. Rivest, Martin E. Hellman, John C. Anderson, John W. Lyons, Re-
sponses to NIST’s proposal, Communications of the ACM 35 (1992), 41–54.
URL: https://people.csail.mit.edu/rivest/pubs/RHAL92.pdf. Citations in
this document: §1.1.

[52] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, Ruggero Susella, Break-
ing Ed25519 in WolfSSL, in CT-RSA 2018 [54] (2017), 1–20. URL: https://

eprint.iacr.org/2017/985. Citations in this document: §2.4.
[53] Pascal Sasdrich, Tim Güneysu, Efficient elliptic-curve cryptography using

Curve25519 on reconfigurable devices, in ARC 2014 [33] (2014), 25–36.
URL: https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/

paper_arc14_curve25519.pdf. Citations in this document: §3.5.
[54] Nigel P. Smart (editor), Topics in cryptology—CT-RSA 2018—the Cryptogra-

phers’ track at the RSA Conference 2018, San Francisco, CA, USA, April 16–20,
2018, proceedings, Lecture Notes in Computer Science, 10808, Springer, 2018.
ISBN 978-3-319-76952-3. See [52].

[55] Mathy Vanhoef, Eyal Ronen, Dragonblood: analyzing the Dragonfly handshake
of WPA3 and EAP-pwd, in IEEE S&P 2020, to appear (2019). URL: https://
eprint.iacr.org/2019/383.pdf. Citations in this document: §3.5.

[56] John Wigley, Removing need for rng in signatures, message
5gov5d$pad@wapping.ecs.soton.ac.uk posted to sci.crypt (1997). URL:
https://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89. Cita-
tions in this document: §2.2.

[57] Yuval Yarom, Daniel Genkin, Nadia Heninger, CacheBleed: a timing attack on
OpenSSL constant time RSA, in CHES 2016 [32] (2016), 346–367. Citations in
this document: §3.5.

[58] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key
cryptography—9th international conference on theory and practice in public-key
cryptography, New York, NY, USA, April 24–26, 2006, proceedings, Lecture Notes
in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [6].

A Further comments from author 1 on draft FIPS 186-5

Given the level of interest in post-quantum cryptography, it would be useful
to say explicitly that this standard is not designed to protect against quantum
computers.

Algorithms expressed in Python, Sage, hacspec, etc. would be more useful
than algorithms expressed in pseudocode.

[45, page 3] defines “hash function” to map a “bit string of arbitrary length”
to a “fixed length bit string”. But FIPS 180-4 says that SHA-256 hashes only a
message with “a length of ` bits, where 0 ≤ ` < 264”; this is not an “arbitrary
length”.

[45, page 9, Figure 1] indicates that signing takes only a hash of a message,
rather than the message itself: there is a “hash function” that provides a “mes-

https://people.csail.mit.edu/rivest/pubs/RHAL92.pdf
https://eprint.iacr.org/2017/985
https://eprint.iacr.org/2017/985
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://eprint.iacr.org/2019/383.pdf
https://eprint.iacr.org/2019/383.pdf
https://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89

18 Daniel J. Bernstein and Tanja Lange

sage digest” to “signature generation”. This is wrong for EdDSA.8 There is also
an important difference between

• “signature generation” functions that rely on the separate “hash function”
for security—these functions are broken if the attacker has the ability to
provide fake message digests for signing—and

• “signature generation” functions that are secure by themselves.

Labeling functions of the first type as “signature generation” functions, and
exposing those functions to the user, will mislead implementors and users into
thinking that the functions meet the standard definition of signature security in
the literature.

The same problem also occurs in the narrative description of signature genera-
tion in [45, Section 3.2]. This description says that a message digest is generated
“prior to the generation of a digital signature”.

[45, Section 4] says that it “no longer approves DSA for digital signature
generation” but says that DSA “may be used to verify signatures generated
prior to the implementation date of this standard”. This appears to mean that
it is not compliant with the standard to verify DSA signatures generated after
the implementation date of the standard.9 But how is a DSA verifier supposed
to know that it is in this situation? If this text is approved as a standard, and a
DSA signer (e.g., software built for compliance with the previous standard) then
generates a signature, and a DSA verifier checks the signature, is the verifier
violating this standard?

“PCKS” is a typo for “PKCS”.
[45, Section 7.1] claims that “attacks such as side-channel attacks and fault

attacks” are of “particular concern” for “deterministic signature schemes”. This
is not an accurate summary of what is known on this topic. See Section 2.

[45, Section 7.2] switches from notation “•” to notation “∗”, making the reader
wonder whether the switch is between two different types of multiplication. The
same section refers to an “encoding of GF(p)” but never defines this encoding.
More broadly, if the goal of this section is to specify the same details as in
RFC 8032, then why does this section not simply cite RFC 8032 and say that
encodings are defined there? Having each standardization organization write its
own specification is a denial-of-service attack against reviewers.

[45, Section 7.6] violates the standard definition of signatures in the literature
as producing a signature from a private key and a message (and whatever random
bits are consumed by the signing algorithm). The public key is not an input in

8 Mathematically, since SHA-256 is defined only for messages shorter than 264 bits,
one could describe EdDSA with SHA-256 as first applying a fake “hash function”
that outputs a fixed-length encoding of the input message as slightly more than 264

bits. Algorithmically, however, computing EdDSA in this way would be intolerably
slow. Furthermore, Figure 1 is presented as a general description of signatures, not
merely as a description of signatures using hash functions with limited input lengths.

9 Otherwise, why didn’t the text simply say without further restrictions that DSA
“may be used to verify signatures”?

Failures in NIST’s ECC standards, part 2 19

the standard definition, and should not be an input in [45, Section 7.6]. There
are two options for fixing this: recompute the public key as part of the signing
process; or cache the public key as part of the private key.

[45, Section 7.8.3]: See Section 2.5 of this document.

B Further comments from author 1 on draft SP 800-186

“This recommendation includes two newly specified Montgomery curves, which
claim increased performance, side-channel resistance, and simpler implementa-
tion when compared to traditional curves.”: See above regarding “claim”. For
comparison, [23] unskeptically repeats NSA’s “For efficiency reasons, it is desir-
able to take the cofactor to be as small as possible” claim, which (1) was always
incorrect for ECDH and (2) has been incorrect for signatures since the advent
of Edwards curves.

“These curves are only to be used with the EdDSA digital signature scheme in
FIPS 186-5.”: This is ambiguous. Does it mean that the curves are not to be used
with, e.g., ECDH? Is NIST trying to suggest that there is some sort of problem
for the billions of people already using X25519 (ECDH using Curve25519 with
Montgomery x-coordinates)? This usage is not NIST-standardized today, but
if NIST subsequently decides to standardize X25519 then presumably this will
be in separate documents such as an update of SP 800-56A. An underlying
document on “Elliptic curve domain parameters” should be written in a way
that it is not forced to change.

Presumably NIST’s intent was instead to say that, within the scope of FIPS
186-5, these curves are to be used with EdDSA (or HashEdDSA) rather than
ECDSA. This will confuse readers who understand that Curve25519—in short
Weierstrass coordinates—can be plugged into ECDSA:

• Should the reader think that plugging Curve25519 into ECDSA causes prob-
lems avoided by plugging NIST P-256 into ECDSA? What are these problems
supposed to be?

• Or should the reader think that plugging Curve25519 into ECDSA causes
problems avoided by plugging Curve25519 into EdDSA? This is easy to jus-
tify, but should be covered in the signature standard rather than in the curve
specification.

Later the document defines a short Weierstrass curve W-25519, suggesting that
NIST’s intent is to draw a syntactic distinction between short Weierstrass curves
to be plugged into ECDSA and other curves to be plugged into EdDSA. This
could be more clearly expressed as follows: “These curves are approved for use
with the EdDSA and HashEdDSA digital signature schemes in FIPS 186-5. Each
curve has an equivalent short Weierstrass curve approved for use with ECDSA.”

Brainpool curves “are allowed to be used for interoperability reasons”: What
does “allowed” mean here? Does it mean something weaker than “recommended”
in a document that “specifies the set of elliptic curves recommended for U.S.
Government use”? What reasons qualify as “interoperability reasons”?

20 Daniel J. Bernstein and Tanja Lange

The draft defines “morphism” as “mapping from a first group to a second
group that maintains the group structure”. The following changes should be
made for clarity. First, “morphism” should be renamed “group morphism”, to
avoid confusion with other types of morphisms. Second, “maintains the group
structure” should be written as “maps addition to addition”. Otherwise the
reader could understand “group that maintains the group structure” as “group
that has the same group structure as the first group”.

The draft defines “isogeny” as “morphism from a first elliptic curve to a
second elliptic curve”. Given the definition of “morphism”, this does not match
the standard definitions10 of “isogeny” in the literature. An elliptic curve E over
a finite field Fq carries more information than the group E(Fq): it also defines,
for example, the group E(Fq2). An isogeny from E to E′ correspondingly carries
more information than a group morphism from E(Fq) to E′(Fq). For example,
the Frobenius endomorphism (x, y) 7→ (xq, yq) from E to E is not the identity
endomorphism even though it induces the identity morphism from the group
E(Fq) to E(Fq). Considering E(K) for an algebraic closure K of Fq would not
fix the problem, since it would allow more group morphisms than isogenies; this
would also be in conflict with subsequent text that implicitly restricts attention
to E(Fq), such as text regarding the number of curve points. Furthermore, a
group morphism from E(Fq) to E′(Fq′) with q 6= q′ is an “isogeny” in the draft
but not in the standard definitions.

The draft defines “l-isogeny” as “isogeny with kernel of size l”. A reader
who views an isogeny from E to E′ over Fq as a group morphism from E(Fq)
to E′(Fq) (see above) will assume that the “kernel” here is the subgroup of
E(Fq) mapping to 0; but this again does not match the standard definitions.
For example, if q = 2255 − 19 and E is Curve25519, then multiplication by 3 on
E is a 9-isogeny under the standard definitions and not a 1-isogeny, even though
its kernel in E(Fq) has size 1. Even if the definition is adjusted to consider
kernel elements defined over extensions of Fq, the definition will not match the
standard definition for l divisible by the field characteristic.

“The operation addition” in [23, Section 3.1.3] is unclear. Saying “the Ed-
wards addition law” would be clear.

The definition of the points of Ea,d in [23, Section 3.1.3] does not match the
standard definition without further assumptions. The statement that the set
forms a group under the Edwards addition law is also incorrect without further
assumptions. An easy fix is to restrict attention to the case that a is a square
and that d is not, which is done anyway later in the paragraph to guarantee that
the Edwards addition law is complete. The document does not seem to have any
use of the incomplete case.

[23, Section 4.1.2] incorrectly says “this appendix”.
[23, Table 1] is incorrect for (e.g.) Curve25519.

10 Regarding “definitions” vs. “definition”: Some authors allow the zero map as an
isogeny while others do not. All of the standard definitions of nonzero isogenies are
equivalent.

Failures in NIST’s ECC standards, part 2 21

[23, Section 4.1.5] says that users can “generate their own base points to
ensure a cryptographic separation of networks”. No definition is provided for
this “cryptographic separation”, and it is not clear what security properties are
being claimed here. Allowing users to generate their own base points makes some
types of tests more difficult, and gives users opportunities to shoot themselves
in the foot.

The statement that “one cannot reuse an implementation for elliptic curves
with short-Weierstrass form that hard-codes the domain parameter a to −3
to implement Curve25519” is incorrect. One can apply a suitable isogeny to
transform a to −3. The similar statement in B.2 is incorrect for the same reason.

“P-385” is a typo for “P-384”.
[23, Appendix C.2.2.1] uses two different notations for the twist cofactor.

C Further comments from author 1 regarding NIST’s
Request for Comments

“No longer referenced in FIPS 185-5”: This appears to be a typo for 186-5.
“Working in collaboration with the NSA, NIST included three sets of recom-

mended elliptic curves in FIPS 186-2 that were generated using the algorithms in
the American National Standard (ANS) X9.62 standard and Institute of Electri-
cal and Electronics Engineers (IEEE) P1363 standards.”: What exactly is NIST’s
justification for making claims regarding the method that NSA used to generate
these curves? The fact that a hash matches is publicly verifiable, but the dis-
tribution of “random” inputs is not. I have heard NSA employees claiming that
the “random” inputs were actually generated as hashes of English text chosen
(and later forgotten) by Jerry Solinas.

D Further comments from author 2 on draft SP 800-186

Comments on NIST SP 800-186 draft.pdf

For

"Specification of new Montgomery and Edwards

curves, which are detailed in Elliptic

Curves for Security [RFC 7748]. These curves

are only to be used with the EdDSA

digital signature scheme in FIPS 186-5."

it makes more sense to refer to

https://tools.ietf.org/html/rfc8032

but probably the whole phrasing should change

Section 1.2 is bouncing between different scopes and does not fit with the

summary above.

p.12

22 Daniel J. Bernstein and Tanja Lange

"Appendix B: Relationship Between Curve Models" ->

"Appendix B: Relationships Between Curve Models"

"prime curves": term is not defined

The glossary is not accurate; at the very least include fields of

definition, rational maps, and include "nonzero" in the definition of

order. Some definitions are very vague; some don’t match.

The glossary uses 0 as identity, section 2.2 uses \emptyset.

Writing "tr" in italics is confusing as this is canonically interpreted

as t*r. Textbooks use "t" to denote the trace of Frobenius of a curve.

3.1.3

It is not correct that the described set of points forms a group,

that only holds for complete curves, else there are points at

infinity. This needs to be rephrased.

I don’t understand the restriction of Edwards curves to EdDSA,

but they sure are suitable for that.

l.394 for binary fields, GF(q) needs to include a representation of

the field

l.396 Given that you use (u,v) as coordinates for Montgomery curves,

writing "G=(G_x,G_y)" is not proper. The "=(G_x,G_y)" part can be

omitted here without problem.

l. 397 - 402

Does this paragraph mean that FIPS accepts user defined curves?

I don’t think that this is a good idea.

l.404 This needs to say that the points are defined over GF(q)

l.405/417 and others: As stated before, do not use "tr" as variable

l.408/409/413 Use the same symbol for the group generated by P (currently

you use \langle and \rangle as well as < >)

l.414 "P" -> "P"

l.426 "as small as possible." is not accurate, change to "small."

l.427 "below" is non specific

Failures in NIST’s ECC standards, part 2 23

l.427 Curve25519 has cofactor 8, so include 8 in the listing

l.449 "this appendix" is not defined

l.444 The bit length of n should be smaller or equal to the bit

length of p, not the other way around. This table does not fit with

the curves recommended in this draft

l.467 the choice of pentanomials is not described correctly. "t^a has

the lowest degree m" would say "t^a has the lowest degree of all

irreducible polynomials of degree m"

l.468 Replace "of degree m and the second term t^a" by

"of degree m with the second term t^a"

l.477 The method does not guarantee what it claims.

l.484 Earlier you called this a form, not a name of the curves. Being

special is independent of the form the curves are given in.

This is in contrast to Koblitz curves which are special by nature.

l.486 Are you sure about this? Does that mean that you can exclude other

conditions?

Section 4.1.5

As the recent vulnerability in windows (CVE-2020-0601) showed, it is

dangerous to leave the choice of base point to the user. The attack

using a basepoint so that the DLP for the public key becomes 1 has a

valid basepoint (yet no seed).

I would recommend against user-chosen curves or base points. However,

I do not see a benefit of provably random base points over choosing

the smallest point for some definition of smallest, or any other

deterministic way.

l.501-503 I don’t think anybody advertises these features for the

Weierstrass form of these curves, so omit "the curves W-25519

and W-448 may provide improved performance of the elliptic curve

operations as well as increased resilience against side-channel

attacks while allowing for ease of integration with existing

implementations."

l.524 All values except for the seed are provided in decimal and

hex, so update this sentence

I did not check the values provided

24 Daniel J. Bernstein and Tanja Lange

l.697 in analogy with the previous statements the prime should not

be specified here, or it should be specified for the other curves

as well.

l.698 n_1 is not in math mode. None of the other curve descriptions

mentions the quadratic twist of the curve, I would skip it here as

well.

W-25519 Since you are defining isogenies anyways, you may also

define a curve with a=-3 that is isogenous to Curve25519 and then

provide the isogeny rather than the simple isomorphism.

W-448

Same comments regarding the mention of p and the twist as for

W-25519 as well as a=-3.

l.786 I disagree with the "Similar to W-25519 and W-448" part of

this statement. The statement is also missing that these formulas

are simpler to implement.

4.2.2.1 and 4.2.2.2

Throughout these sections, A and B are not stated in italics. The

twists are mentioned but neither n1 is stated.

For Curve448 the respective Edwards curve is stated while this is

missing for Curve25519. These sections should be kept in parallel

4.2.3 The feature that addition on Edwards curves is complete is

missing but is what makes them easier to implement

Decide on whether to call the curves E-,,, or Edwards...

l.894 The curve is not isomorphic but birationally equivalent to

Curve25519

l.919 n1 is not in italics

4.2.3.1 and 4.2.3.2

The twists are mentioned but neither n1 is stated.

4.3.1

It would make more sense to have the type be "Koblitz" to indicate that

the Frobenius endomorphism can be used

Failures in NIST’s ECC standards, part 2 25

l.1043 Earlier the irreducible polynomial was called p(t) rather than

f(z); f is not a good name as that is typically used for the right-hand

side of a Weierstrass equation y^2 + h(x)y = f(x). Stick with p(t) or

change to yet another letter; make sure to also adjust the variable

name.

This comment applies to all binary curves

l.1060-1062 The normal basis is not given, so this is not defined.

State T.

This comment applies to all binary curves

l.1319 -P is not in italics

l.1323 and 1326 There is no reason not to state these as explicit

definitions of x= ... and y= ... rather than implicitly. Yes, it’s a

simple transformation but this is not friendly to the user

A.1.2 Again A and B are not in italics

l.1330 -P is not in italics

l.1334 and 1337 State u and v explicitly in terms of the input values

l.1349 -P is not in italics

l.1350 replace \emptyset with (0,1)

In analogy with Weierstrass and Montgomery curves it would make sense

to define the identity and negation before the addition formula, but

unlike there it is not necessary here.

l.1345 Q is not in italics

l.1355 -P is not in italics

l.1359 and 1362 State x and y explicitly in terms of the input values

B.1 again, A and B are not in italics (except for one B)

l.1372 This map is not an isomorphism of curves but a birational

equivalence. It is an isomorphism of the finite groups of points

over GF(p), but not a curve isomorphism

l.1373 "thereby showing that the discrete logarithm problem in either curve

model is equally hard." is correct and should be stated as motivation

26 Daniel J. Bernstein and Tanja Lange

somewhere -- but this does not make sense here in the appendix. Move this

to the body of the text where the appendix is announced

The maps stated here are the standard maps between Edwards and Montgomery

curves, but these do not match the specific maps given earlier, which

include an extra parameter alpha. The definitions should match

l.1389 This map is actually an isomorphism of cures, so keep as is

l.1397 "recommendation" -> "Recommendation" (at least in line with

previous typesetting, else fix there)

To make B2 useful for implementations using a=-3 you should include

the isogeny version -- or skip W-25519 and W-448 completely

B.4

This section is not comprehensible as is. People who don’t understand

what an isogeny is will miss that this is not a one-to-one mapping

and that this is OK to use only for the prime-order subgroup

l.1426 should come before l.1424 (by grammar)

l.1433 "prime number" -> "prime field"

l.1437 what is the motivation of allowing such a large range for h?

The given curves have h <= 8.

l.1439/1440 you probably want to make sure that q is large (and not 2),

else you’re in trouble with the Koblitz curves

l.1442/1443 Once you fix the notation for trace to be t choose a

different letter for the embedding degree; k is the typical letter.

l.1444 why do you choose such a low bound on the embedding degree?

This is typically on the order of n, so much much larger, and I don’t

see any reason to stay small. For smallish values one might need to

worry about the number of subfields.

l.1462 remove "The curve parameters a and b are:" as this does not

fit what comes next

l.1474 append "from Curve25519 and Curve448".

l.1485 and 1501 The group is cyclic, not the curve

Failures in NIST’s ECC standards, part 2 27

l.1487 and 1503 the cofactor is called h1 above, not h’

l.1511 and 1513 the map is a birational equivalence, not an isomorphism

l.1522 remove "wiz."

l.1524 append that this is about "chosen to satisfy the following";

but again the following is about more than a and b

l.1534 remember to adjust f(z) if you change variable names earlier.

In the curve parameters you also mention normal bases, this is missing

here.

l.1543 again the text after this covers more than a and b

The specification of the field is missing.

In the curve parameters you also mention normal bases, this is missing

here.

l.1572, 1573, 1579, and 1580 h is already used for the cofactor, choose

a different letter, e.g. H

Step 9: for all curves you have a=-3, so this should be mentioned here.

None of your curves have a=b; worse, he verification process is specific

to a=-3, so other choices of a would fail there.

l.1590 the title is misleading; this is not a test of pseudorandomness

but a test that a and b match seed. The text following the section

title is accurate

l.1594 The inputs need to include b, or b and a.

Adjust the variable names to match the generation procedure

Either include a in the test (and input) as b^2c=a^3 or adjust

the generation procedure

C3.3 same comments on h as above; now there is also a clash for z, which

is the variable in f(z), the irreducible polynomial

C3.4 the input needs to include b, make clear the representation for the

normal basis is used

l.1662 elsewhere HASH is in italics; it actually should be like here

28 Daniel J. Bernstein and Tanja Lange

in upright font everywhere

l.1686 append "given by the domain parameters ..." The same applies to the

tests for other curve shapes and the complete tests

l.1687 and 1690 these lines are not compatible as Q=(x,y) implies that

Q is not the point at infinity, remove "=(x,y)" in l.1687. This requires

defining x and y in l.1691 using "Q=(x,y)"

l.1693 "point on the" -> "point on"

If the curve can be specified by the user you also need to verify that

n and p are prime and that the curve is elliptic. The same applies to

the tests for other curve shapes

l.1712 remove "=(u,v)" as above

l.1716 include definition of u and v as above

l.1718 "point on the" -> "point on"

l.1754 "If Q is the point at identity element (0,1)" -> "If Q=(0,1)"

l.1795 is missing an underline for y

l.1805 do not use GF(2) to describe the set {0,1}

D.2.2 normally B is in italics

l.1822 remove "(mod 2)"

l.1824 remember to check this if you change z to a different letter

D.2.2 normally B is in italics

l.1822 remove "(mod 2)"

l.1824 remember to check this if you change z to a different letter

D.3 is specific to Weierstrass curves (binary or prime fields);

Montgomery and Edwards curves are not covered. I would prefer not

to have this section at all and use standardized base points

l.1855 and 1860 "F_q" is not defined here; change to GF(q) as elsewhere

Failures in NIST’s ECC standards, part 2 29

l.1855 This does not match the domain parameters; adjust to fit the other

descriptions

l.1858 what do you mean by "or its equivalent"? This is too vague for a

standard; the same applies to the following sections

I would replace this with a procedure that finds a point on the curve,

rather than hiding this requirement in a comment; once that’s done,

the comment can be deleted

l.1862 E should be in italics

l.1868 there is no "verifiably random nature" if the x and y are not

generated from seed an no method is specified here, so remove this

comment

l.1870 You use a different symbol for the identity here than normally,

same for the following sections

l.1877 this needs to specify that n is a large prime. Also, this

statement relies on (x,y) being valid, while the selection routines

for Curve25519 and Curve448 were incrementing u

l.1889 do you want \not= here?

l.1892 and 19082 change F_q to GF(q)

l.1935 n is already used for the order of G, use a different letter

l.1937 upper case letters denote points, so use other variable names instead

of Q and S

l.1940 I suggest to specify a quadratic non-residue as input and skip

this step

l.1966 I don’t see any reason for this line

l.1968 The section is describing a general procedure to compute square

roots, but now mixes this with u/v. This is useful for decompression

for Edwards curves but needs a proper subsection title.

l.1970 and 1976 There is no mention of "decoding" earlier, thus remove

or adjust the rest.

30 Daniel J. Bernstein and Tanja Lange

l.1983 This is not the best inversion method for SCA protection, so

this should not be stated as a "should" condition. Using Fermat’s

little theorem is easier; there exist other methods that are

constant time.

l.1998 for the avoidance of doubt, say that this is computed over Z,

not modulo 2

G.1 starts by covering both pseudo Mersenne and Crandall primes, but in

l.2044 only pseudo Mersenne numbers are mentioned, this should mention

both

l.2055 italicize B

I did not check the numbers in this appendix; executable code would

be more useful for testing

Either adjust the text in L.2048/2049 or add a matching text before

l.2108.

Everywhere else 25519 is handled before 448, it would make sense to

match this order here as well.

Efficient implementations of Curve25519 use radix 25.5, why do you

present a different radix here?

G.2

Why do you present the Lucas sequences for the Koblitz curves? This

makes the algorithms unnecessarily imposing. Computing a representation

to the base of Frobenius and then turning that into a tau-NAF is

shorter, see Solinas’ paper, no need to do this as a complicated

1-pass algorithm.

l.2230 the change in endianess is confusing; if you do change it, make

sure to adjust l.2146 as well (from right to left shift)

l.2350 are you sure about the statement "These curves were pseudorandomly

generated"?

What protocols can these curves be used for? Would the implementation

be FIPS certified?

E Further comments from author 2 on draft FIPS 186-5

Notes on NIST FIPS 186-5 draft

Failures in NIST’s ECC standards, part 2 31

I did not review the RSA part.

2.3

Unify notation -- this uses a mod n while SP 800-186 uses a (mod n);

similarly [n]X vs. nX for scalar multiplication

The ECDSA and EdDSA parts use the mod notation from SP 800-186, so

adjust here; the use of [] in scalar multiplication is incompatible.

At least one of p and q should mention

"2. size of the finite field GF(p) (or GF(q)"

The base point of an EC should be included in the list

6.1

"if the elliptic curve was randomly generated in a verifiable fashion":

same comment as for SP 800-186, this does not prove it.

Table 1: what is the justification for allowing so large cofactors?

Why is this included if the curves are fixed by SP 800-186?

Do not use "GF_p" or "GF_{2^m}" to denote finite fields.

In line with SP 800-186 I suggest using "GF(p)" and "GF(2^m)".

I recommend against user-generated curves, but I don’t see a reason

for having G generated randomly rather than by a deterministic method

finding the smallest or first valid point in some sequence.

6.1

The "(successfully)" part here does not make sense

"could be accidentally used (successfully) for another purpose"

6.4

Item 5 does not make sense for the deterministic ECDSA version

6.4.2

The algorithm does not check that Q is on the curve and has the

correct order.

7.1

It is good to highlight the importance of protecting against side-channel

and fault attacks, however, this is not a feature unique to EdDSA and

should be included in the sections on ECDSA and RSA as well. The same

holds for the verification of implementation, which is even more

important for ECDSA because of the more complicated arithmetic, so make

sure to include the same comment, or a strengthened version, there.

32 Daniel J. Bernstein and Tanja Lange

The notation is inconsistent

Given that you use (a,d) as the curve parameters for Edwards curves in

SP 800-186, the use of d as the private key is not good. Parameters b

and c are not mentioned in SP 800-186. H is called Hash before, while

H is the output of the hash function. Here H is a function that is not

exactly the stated hash function as some strings are appended to the

input.

7.2 This uses \bullet and * in a single line, both to indicate integer

multiplication; make the notation consistent

7.2 / 7.3 Change to "Point Encoding" and "Point Decoding" or leave out

"Point" in both.

7.3 requires a and d as curve coefficients: a is not defined and d

is used to denote the secret key (see above)

Remove

"Square roots can be computed using the Tonelli-Shanks algorithm (see

NIST SP 800-186, Appendix E)."

as this is not used for either of the two curves.

Instead include that x_0 selects the correct root for x.

Remove "*" in the second condition for b)

Unify

"Otherwise, no square root exists, and the decoding fails."

and

"Otherwise, no square root exists for modulo p, and decoding fails."

The text

"For both cases, if x=0 and x_0=1, point decoding fails. If

x (mod 2) = x_0 , then the x-coordinate is x. Otherwise, the

x-coordinate is p - x."

Should be part of item 2. Given the algorithm continues with 3,

I strongly suggest to move the routines for computing squareroots

outside of this environment and to put a forward reference in 2.

7.4 and following sections

This is back to using d as private key and H instead of Hash,

make sure to unify this. Note that H is not used as defined here,

as H(d) includes extra inputs for Ed448. This needs fixing.

7.6

Failures in NIST’s ECC standards, part 2 33

2.1 and 2.2 need to state that r is turned into an integer < n

4. should include a reference to section 7.4

4.1 and 4.2 miss how the hash outputs turn into integers;

remove "*" as multiplication is not denoted by any symbol in other places.

7.7.

Input 3. "that is valid for domain parameters D." This is checked in

1; so skip here that is is valid

Process 1 and 4 should have R in italics

Process 2 is not analogous to the signing procedure; unify

Process 4: remove "*", change "S" to "s", change "(2^c*t)" to "[2^ct]"

7.8 I suggest to also include reasons for using EdDSA over HashEdDSA.

The same comments regarding use of d and H apply as above.

Again, H is not used as such.

Process 2 needs to define s

3.1 and 3.2 need to turn r into an integer

5.1 and 5.2 remove "*" and turn the outputs of the hash functions

into integers

7.8.2

Input 3. Same comment as above on validity

Process 1 and 4 should have R in italics

Process 2 is not analogous to the signing procedure; unify

Process 3: refer to the signing procedure for the definition of dom2

and dom4.

Process 4: remove "*", change "S" to "s", change "(2^c*t)" to "[2^ct]"

7.8.3

What do you mean by "believed"; be concrete and state the requirements

on the hash function.

I would skip "Note that the risk of collisions using either SHA-512 or

SHAKE256 is considered negligible.’ as this language is not compatible

34 Daniel J. Bernstein and Tanja Lange

with the rest of the standard.

Appendix A

"math" -> "mathematics" (this sentence is still very colloquial)

A.2.1

Note that this matches d in ECDSA not in EdDSA

In SP 800-186 l is the length of n, here it is N; Q=dG should be

Q=[d]G; same for the next section.

Table A.2 does not match the curves in SP 800-186.

A.4.2 what is the difference between rejection sampling and the

"Discard Method"

B.2.1/2 does not match the representations elsewhere which start at

_0 and have x_i belong to 2^i.

Dempsky, Matthew
<mdempsky@google.com>
Wed 11/6/2019 8:21 PM
SP800-186-comments

Hello,

This is a comment on the Oct 2019 draft of SP 800-186.

Under "Executive Summary", the document states: "Specification of new Montgomery and Edwards
curves, which are detailed in Elliptic Curves for Security [RFC 7748]. These curves are only to be used
with the EdDSA digital signature scheme in FIPS 186-5." [p. v, ll. 164--166; emphasis added]

It sounds like NIST is stating that EdDSA is the only allowable way to use Curve25519 and Curve448. In
particular, that they are not allowed for use with ECDH, even though RFC 7748 specifically explains how
to use them that way. Is that the intended interpretation here?

If so, that seems unfortunate. E.g., TLS 1.3 (RFC 7748) supports ECDH over the Montgomery formats of
Curve25519 and Curve448.

However, I expect the sentence is actually meant to simply disallow use of the curves with ECDSA. If so,
perhaps the summary could be reworded to make that clearer.

Thanks,
Matthew Dempsky

mailto:mdempsky@google.com

Giessmann, Ernst
From: Ernst G Giessmann
Sent: Thursday, January 30, 2020 8:22 AM
To: SP800-186-comments
Subject: Comment on Draft NIST SP 800-186

Dear editors,
thanks for good job. The included remarks are almost editorials and I
guess, that they are found already by others. If there are new ones, let
me know ;-)
One remark on the "(mod n)" notation. You defined "mod" as the operation
reducing an integer "modulo n" to the remainder. Therefore "6 mod 5" is
defined 0 mod 4 as well. And if you write "0 (mod 4)", then it can't be
the modulo reduction. Quite often it is clear that you had the
equivalence relation in GF(n) in mind. But, as it is not defined
explicitly, you must use only one symbol for it, either two bar equal
sign or three bar equivalence sign (line 506). Therefore many of the
remarks can be resolved by using "(mod n)" in brackets with the
equivalence symbol or "mod n" without brackets.

Kind regards,
/Ernst.

Hartog, Kyle

Received: December 18, 2019
Status: Posted
Posted: January 29, 2020
Tracking No. 1k3-9dy4-dnfu
Comments Due: January 29, 2020
Submission Type: API

Docket: NIST-2019-0004
Request for Comments on FIPS 186-5 and SP 800-186

Comment On: NIST-2019-0004-0001
Request for Comments on FIPS 186-5 and SP 800-186

Document: NIST-2019-0004-0004
Comment on FR Doc # 2019-23742

Submitter Information

Name: Kyle Den Hartog
Email: kyle.denhartog@mattr.global
Organization: MATTR

General Comment

At MATTR we're concerned about the exclusion of the now popularly used curves secp256k1
and Curve25519 missing from these documents. The prominent use throughout the blockchain
space should be an encouraging factor for FIPS 186-5 and SP 800-186 to additionally support
these curves. We believe that FIPS 186-5 and SP 800-186 should add these curves to make it
more likely that FIPS compliant hardware emerges. The inclusion of these curves would support
blockchain solutions which would impact many different industries in a positive manor. As more
and more capabilities in finance, Identity and access management, cybersecurity, governments
agencies, and other major industries began working with Ethereum and Bitcoin it will be
especially advantageous to support the use of these curves. We urge the authors of FIPS 186-5
and SP 800-186 to support the addition of secp256k1 and Curve25519 for key agreements to
make compatibility and support of strong software implementations and hardware support more
likely.

Ireland, Marc
From: Marc Ireland marc.ireland@nxp.com
Sent: Monday, January 27, 2020 9:08 AM
To: fips186-comments fips186-comments@nist.gov
Subject: Comment on Draft FIPS 186-5

Hello,

Attached please find comments from NXP Semiconductors on draft FIPS 186-5. Please confirm receipt
as soon as is convenient.

Thank you,

Marc Ireland
Certifications Expert
NXP Semiconductors

FIPS 186-5

Physical attacks

The draft writes (Section 7.1) “Care must be taken to protect implementations against attacks such as
side-channel attacks and fault attacks”.

In order to aid the practitioners who care about e.g. fault resistance why not follow the advice from
Section 4.2 of [7]? By having the choice to randomize the signature algorithm many of the presented
attacks are prevented or at least getting much harder.

This means including additional random nonce in the hash computation (Step 2, Section 7.6 of the NIST
FIPS 186-5 draft). Adding some randomness does not change the proposed verification algorithm, does
not weaken security and one can still do unit testing by using a constant value. Moreover, noise from a
poor random number generator will not harm the security of the signature scheme. When no such
protection is needed this additional random nonce can be constant or omitted.

This does mean, however, that the scheme loses the deterministic signature property.

Same remark holds for the ECDSA deterministic signature .

Cofactorless EdDSA Signature Verification

In [EdDsaCofVer], the authors propose a cofactorless verification of the EdDSA signature. Shouldn't this
cofactorless verification be an option proposed in FIPS 186-5?

[EdDsaCofVer]: Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe and Bo-Yin Yang,
“EdDSA for more curves", 2015.07.04
(https://pure.tue.nl/ws/portalfiles/portal/3850274/375386888374129.pdf)

mailto:marc.ireland@nxp.com
mailto:fips186-comments@nist.gov
https://pure.tue.nl/ws/portalfiles/portal/3850274/375386888374129.pdf

Small subgroup attack

Small subgroup attacks are applicable to curves with a cofactor > 1. Such curves are referenced in SP800-
185 (e.g. W-25519), therefore a small sub-group check shall be performed in the ECDSA algorithm
described in FIPS 186-5.

E448

It is not clear what the curve E448 specified in SP800-186 shall be used for. If it shall be used in the EdDSA
scheme, then additional information needs to be specified (choice of hash function, point encoding
mechanism, etc.)

SP800-186

Correspondence between curves (Appendix B)

It should be made clear that the correspondence between twisted Edwards curves and Montgomery
curves does not hold for all curves, only in the case a is a square and d a non-square (l1372).

Besides the correspondence between some curves is missing (e.g. correspondence between Curve25519
and W25519, between Edwards448 and Curve448)

Typo

In FIPS 186-5:

• Page 10, paragraph 2: "the public key needs"
• Remove DSA from document (e.g. figure 2)
• Section 5.2 RSA Key Pair management. Point 5: remove domain parameters
• Section 5.4.1, correct "defination"
• Section 6.4.2, ECDSA Signature Verification Algorithm, step 4.

Compute s−1 = (1/s) (mod n) using the routine in Appendix C.1. To be replaced
by Appendix B.1

• Section 7.7: [2c * S]G = [2c]R + (2c * t)Q should be [2^c * S]G = [2^c]R + [2^c *
t]Q

• Section 7.2 Encoding: The multiplication of 2^8 and h[1] and 2^248 and h[31]
seem to use different notation. The first operator is not defined in Section 2.3.

• Section A.1.2.2 : reference to C.10 should probably be B.10
• We suggest the Section 3 to be reworked. For instance page 10, "For both the

signature generation and verification processes, the message (i.e., the signed
data) is converted to a fixed-length representation of the message by means
of an approved hash function. Both the original message and the digital
signature are made available to a verifier."
It is not completely correct, since for the pure EdDSA there is no hashing of the
message.

• Reference [7]:
Ambrose C, Bos JW, Fay B, Joye M, Lochter M, Murray B (2017) Differential
Attacks on Deterministic Signatures. Cryptology ePrint Archive preprint.
https://ia.cr/2017/975
was actually published, better to reference
Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter
and Bruce Murray: Differential Attacks on Deterministic Signatures. RSA
Conference Cryptographers’ Track - CT-RSA, Lecture Notes in Computer
Science 10808, pp. 339–353, Springer, 2018.

• “Section 7.7, first step of “Process”: The variable “s” conflicts with the integer
“s” in Step 4 of “Process” in Section 7.6. This conflict should be resolved.

Markowitz, Michael
From: Michael Markowitz <markowitz@infoseccorp.com>
Sent: Tuesday, January 28, 2020 1:24 PM
To: SP800-186-comments <sp800-186-comments@nist.gov>
Subject: question on E448 in SP800-186 draft

Folks: I can’t find comments on the draft posted online, so please pardon me if this has been previously
discussed …

First I want to note the typo in the value for the y-coordinate of the generator of E448 in section 4.2.3.3:
there an extraneous ‘L’ at the end of line 983.

Second, I want to ask whether the order, n, of the subgroup generated by (Gx,Gy) has been validated:
when I compute n(Gx,Gy), I get the point (0,-1) of order 2, rather than the identity element (0,1). I find
this very strange… Is my code (which works fine with the parameters for Edwards25519 and
Edwards448) flawed, or is the value of n in the draft (and in RFC7748) incorrect?

n =
18170968107390172263733095197200113358841034017182951507037254979514600396153958571619575
5291692375963310293709091662304773755859649779
 = 0x3fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffff7cca23e9
c44edb49aed63690 216cc2728dc58f55 2378c292ab5844f3
 = 2^446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

Thanks in advance for your response!

Regards,
Michael

==========
Michael J. Markowitz, Ph.D. Email: markowitz@infoseccorp.com
Vice President R&D Office: 708-445-1704
Information Security Corporation Direct: 708-872-0962
1011 Lake Street, Suite 425 Fax: 708-445-9705
Oak Park, IL 60301 WWW: http://www.infoseccorp.com

mailto:markowitz@infoseccorp.com
mailto:sp800-186-comments@nist.gov

Mattsson, John

Received: November 13, 2019
Status: Posted
Posted: January 29, 2020
Tracking No. 1k3-9dag-qwp5
Comments Due: January 29, 2020
Submission Type: Web

Docket: NIST-2019-0004
Request for Comments on FIPS 186-5 and SP 800-186

Comment On: NIST-2019-0004-0001
Request for Comments on FIPS 186-5 and SP 800-186

Document: NIST-2019-0004-0002
Comment on FR Doc # 2019-23742

Submitter Information

Name: John Prue Mattsson
Email: john.mattsson@ericsson.com

General Comment

Dear NIST,

Thanks for your continuous efforts to produce well-written open-access security documents.
These are two very important and well-written document. Comments submitted in two parts as
there is a limit of 5000 characters.

High level comments:

- Excellent that NIST is adding Montgomery and Edwards curves from RFC 7748. Because of
their excellent performance, these curves have already found substantial use in various industries
for key exchange, ECIES, and signatures in deployed systems (TLS), new standards (IMSI
protection in 5G), and upcoming standards like TLS ESNI, Group OSCORE, and EDHOC.

- We are fine with NIST deprecating binary curves and DSA. While they are quite many libraries
that support them, we do not know of any deployment that are actually using them.

Comments on SP 800-186

- Line 160: Elliptic curves over binary field are deprecated, but still included in the document.
What does this mean in practice? When is use allowed and when is it not allowed? This should
be explained.

- Line 164: Specification of new Montgomery and Edwards curves, which are detailed in Elliptic

Curves for Security [RFC 7748]. These curves are only to be used with the EdDSA

This make it seems like the Weierstrass curve W-25519 can be used for anything, the Edwards
curve Edwards25519 can be used for EdDSA and the Montgomery curve cannot really be use for
anything. Are Montgomery curves specified only as a way to use a Montgomery code library for
EdDSA? For industry use cases, we would like to use the Montgomery curve Curve25519 as
much as possible for key exchange (e.g. in TLS) and for hybrid encryption like in ECIES.

- Line 286: have garnered academic interest.

These curves already have substantial deployment in various industries.

- Section 4.1.2: The document lets the reader calculate the security strengths themselves from the
curve parameters and SP 800-57. It would be easier for the reader if the document listed the
security strengths of the curves instead of forcing the reader to calculate them.

- Section 4.1.2: Following the security strength calculation, W-25519, Curve25519 and
Edwards25519 has a security strength of only 112 as n is 255 bits. Algorithms with a 112 bit
security strength are only approved to be used beyond 2030 minus the number of year of
protection needed. We strongly suggest that NIST changes the security strength calculations and
approve W-25519, Curve25519, and Edwards25519 as having 128 bit security strength.

- Line 481: For each curve size range, the following curves are given

This is not true as Edwards and Montgomery curves are not given for all ranges. Also the
Weierstrass curves W-25519 and W-448 seem special rather than pseudorandom.

Best Regards,
John Preu Mattsson, Senior Specialist, Ericsson

Patil, Harsh

Received: January 29, 2020
Status: Posted
Posted: January 30, 2020
Tracking No. 1k4-9epy-d584
Comments Due: January 29, 2020
Submission Type: Web

Docket: NIST-2019-0004
Request for Comments on FIPS 186-5 and SP 800-186

Comment On: NIST-2019-0004-0001
Request for Comments on FIPS 186-5 and SP 800-186

Document: NIST-2019-0004-0008
Comment on FR Doc # 2019-23742

Submitter Information

Name: Harsh Kupwade Patil
Email: harsh.patil@lge.com

General Comment

See attached file(s)

Attachments

LG Comments: Docket No. NIST–2019–0004

1
IANNARBOR\000119780\0001\530886.v2-1/15/20

January 29, 2020

Information Technology Laboratory
ATTN: FIPS 186-5 and SP 800-186 Comments
Docket ID: NIST-2019-0004
National Institute of Standards and Technology
100 Bureau Drive, Mail Stop 8930
Gaithersburg, MD 20899-8930
sp800-186-comments@nist.gov

Re: Federal Register Notice (FRN) Request for Comments on Draft Special
Publication (SP) 800-186 - Docket no. NIST-2019-004

Dear Docket Manager,

LG Electronics appreciates the opportunity to provide comments in the above-
referenced proceeding. LG has a long history of developing and producing world-
class electronics products in a range of consumer and business areas including home
entertainment, home appliances, mobile communications, air solutions, renewable
energy and vehicle components. LG was one of the first companies to introduce
cellular phones using CDMA technology and is a leading developer of LTE
technology. LG also is a leading supplier of Electronic Control Units (ECUs) such
as Audio/Video Navigation, LCD clusters, and telematics modules to vehicle OEMs
worldwide.

LG understands the importance of cybersecurity and is spearheading research in this
area. For some time, LG has been addressing privacy and cybersecurity in various
consumer electronics devices such as Smart TVs and mobile phones for our global
consumers. And, as one of the leading Tier-1 automotive suppliers, LG understands
the security issues in the vehicle ecosystem, and has established a globally-focused,
automotive, Internet of Things (IoT) cybersecurity team.

LG Electronics also has been an active contributor in the University of Michigan’s
public-private partnership M-City working groups (Pillar1/2/3, Legal/Insurance, and
Cybersecurity). We have actively contributed to a number of key global standards
for security and privacy in the North America and Europe. Furthermore, our
proposed cryptographic applications have been adopted by major OEMs in the
connected-vehicle paradigm.

LG Comments: Docket No. NIST–2019–0004

2
IANNARBOR\000119780\0001\530886.v2-1/15/20

We are pleased to respond to the request for comments on NIST’s proposal to update
its standards on digital signatures and Elliptic Curve Cryptography (ECC) to align
with existing and emerging industry standards. In addition to updating ECC
standards, NIST is proposing the removal of Digital Signature Algorithms (DSA),
noting recent security analysis against DSA implementation and increased industry
adoption of ECDSA.

We commend NIST for its continued study into the advances of applications of
elliptic curves in the cryptographic community. As highlighted in the comments
below, LG generally supports the continued development and analysis of the
application of protocols and approaches to security, including the use of Elliptic
Curve Cryptography.

In summary, LG believes that there are many advantages to the proposed curves;
however, there are multiple limitations that NIST should consider. First, the
proposed curves may be limited in application. Not all industry segments will benefit
from potential implementations based on the need for an increased number of
memory resources and processing overhead.

Although NIST recommends the use of unsaturated limb representations for high-
level and portable software implementations of Curve25519 modular arithmetic to
minimize the effects of carry computations, this approach requires more registers to
accommodate intermediate operands in low-level Assembly implementations. In
addition, the conversion of finite-field elements from an unsaturated limb
representation to a saturated one, and vice-versa, incurs in processing overhead. On
the other hand, hardware architectures of modern embedded processors have
incorporated application-domain instructions to maximize chip functionality,
performance and efficiency. Some of these instructions were designed to enable
faster carry computations.

Indeed, LG believes that saturated limb representations are most suitable for low-
level Assembly implementations targeting embedded platforms having constrained
register use, but that can leverage instruction-level carry handling mechanisms.

As a complement to the proposed unsaturated 26-bit representation from SP 800-
186 (Draft), we propose reference algorithms, along with the corresponding upper
bound analysis, for the implementation of the reduction modulo 2𝑝𝑝 = 2256 − 38

LG Comments: Docket No. NIST–2019–0004

3
IANNARBOR\000119780\0001\530886.v2-1/15/20

using saturated limb representations. We performed an analysis of all the steps
required in order to ensure that all carry values are properly handled during the
reduction process.

More-detailed LG comments may be found on the following pages. LG Electronics
applauds NIST’s important focus on cybersecurity, and we welcome any additional
related discussions.

If you have any questions regarding the comments, please contact
harsh.patil@lge.com or henrique1.ogawa@lge.com.

Respectfully Submitted,

Harsh Kupwade Patil, Ph.D.

Principal Research Engineer
Edge Security Team,
Advanced AI
LG America R&D Center
Santa Clara, CA
214-801-7318
harsh.patil@lge.com

Peter (Seungyoon) Song, Ph.D.

Vice President
Advanced AI
LG Electronics
America R&D Center
Santa Clara, CA
speter.song@lge.com

John I. Taylor
Senior Vice President, Government
Relations
LG Electronics North America
Washington, DC
202-719-3490
john.taylor@lge.com

mailto:harsh.patil@lge.com
mailto:henrique1.ogawa@lge.com
mailto:john.taylor@lge.com

LG Comments: Docket No. NIST–2019–0004

4
IANNARBOR\000119780\0001\530886.v2-1/15/20

Comments of LG Electronics Inc.
on Draft Special Publication (SP) 800-186 - Docket no. NIST-2019-004

Introduction/Background
Key exchange protocols and digital signature schemes are cryptographic building
blocks for many applications using key distribution schemes and secure software
updates based on code signing. These protocols are fundamental to preserve the
integrity of software running in embedded devices, and to establish symmetric
cryptographic keys for encrypted communication between different parties.

A. Elliptic Curve Cryptography (ECC)
From this perspective, Elliptic Curve Cryptography (ECC) is a set of
cryptographic primitives based on mathematical foundations of special
elliptic curves. Recently, the efficiency and security being achieved by ECC
over legacy RSA solutions has promoted ECC-based digital signature
schemes and key exchange protocols inside standardization initiatives
involving academy, industry and governmental institutions.

In detail, an elliptic curve E over a field 𝔽𝔽𝑞𝑞 is the set of coordinates (𝑥𝑥, 𝑦𝑦) ∈
 𝔽𝔽𝑞𝑞 × 𝔽𝔽𝑞𝑞, which satisfy the Weierstrass equation:

𝐸𝐸/𝔽𝔽𝑞𝑞 ∶ 𝑦𝑦2 + 𝑎𝑎1𝑥𝑥𝑥𝑥 + 𝑎𝑎3𝑦𝑦 = 𝑥𝑥3 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎4𝑥𝑥 + 𝑎𝑎6 (Eq. 1)

In Equation 1, 𝑎𝑎1,𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4,𝑎𝑎6 ∈ 𝔽𝔽𝑞𝑞 and the curve discriminant is such
that ∆ ≠ 0. Special attention is given to curves defined over prime fields
which can be represented in the Montgomery (or Twisted Edwards) model.
These models facilitate implementations with faster and unified arithmetic
formulas1,2,3.

The main advantages of ECC over RSA are the reduction in the key sizes and
processing times. ECC provides smaller keys and faster processing by relying

1 D. Bernstein; P. Birkner; M. Joye; T. Lange; C. Peters, “Twisted Edwards Curves”, in International Conference on Cryptology in
Africa, pages 389–405. Springer, 2008.
2 D. Bernstein; T. Lange, “Analysis and Optimization of Elliptic-Curve Single-Scalar Multiplication”, in Contemporary
Mathematics, 461(461):1, 2008.
3 P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization”, in Mathematics of Computation,
48(177):243–264, 1987.

LG Comments: Docket No. NIST–2019–0004

5
IANNARBOR\000119780\0001\530886.v2-1/15/20

on the complexity of solving the Elliptic Curve Discrete Logarithm Problem
(ECDLP), conjectured to be exponential. Therefore, ECC is an efficient, yet
conservative option for deploying public-key cryptography in embedded
systems, and with less memory requirements.

B. Curve25519
An efficient, yet conservative instance of the ECDLP can be obtained by
selecting prime curves of near-prime order without supporting any non-trivial
endomorphism. Curve25519, defined in IETF RFC77484, is a popular curve
offering a 128-bit security level, which is represented through the
Montgomery model

Curve25519: 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝑥𝑥, (Eq. 2)

where A = 486662. This Montgomery curve is defined over the prime
field 𝑝𝑝 = 2255 − 19 . Curve25519 is ideal for ECC-based key exchange
protocol (namely, X25519), since it allows the scalar multiplication to be
computed using x-coordinates only.

C. Ed25519 Digital Signatures
Using a birational equivalence, Curve25519 can be also represented in the
twisted Edwards model using full coordinates to allow instantiations of secure
signature schemes:

Edwards25519: −𝑥𝑥2 + 𝑦𝑦2 = 1 − 121655
121666

𝑥𝑥2𝑦𝑦2 (Eq. 3)

The Edwards25519 curve enables the use of Edwards-curve Digital Signature
Algorithm (EdDSA), which is a signature scheme variant of Schnorr
signatures based on elliptic curves represented in the Edwards mode. When
instantiated using Edwards25519, the EdDSA scheme is called Ed25519, and
is defined in IETF RFC80325.

Due to the improvements over ECDSA, Ed25519 has been adopted into well-
known technologies across different application domains: SSH connection

4 A. Langley; M. Hamburg; S. Turner, “RFC 7748: Elliptic Curves for Security”, in Internet Engineering Task Force (IETF), 2016.
5 S. Josefsson; I. Liusvaara, “Edwards-Curve Digital Signature Algorithm (EdDSA)”, in Internet Research Task Force, Crypto Forum
Research Group, RFC, volume 8032, 2017.

LG Comments: Docket No. NIST–2019–0004

6
IANNARBOR\000119780\0001\530886.v2-1/15/20

protocol (Secure Shell) adopted Ed25519 as an additional signature scheme
(alongside RSA, DSA, and ECDSA) for client authentication to a server6.
Ed25519 was also incorporated to the Transport Layer Security (TLS)
Version 1.3 cryptographic suite for secure client/server applications 7 . In
addition, Apple Inc.’s recently introduced CryptoKit framework for common
cryptographic operations on iOS platform also includes the support for
Ed25519 signature scheme8. Moreover, modern Hardware Security Modules
(HSMs) have incorporated tamper-resistant technologies and hardware
acceleration for the execution of the Ed25519 signature
generation/verification algorithms9,10.

D. F2255-19 Finite Field Arithmetic
Modular arithmetic operations in Curve25519 are defined over the 𝔽𝔽𝑝𝑝 prime
field11, where 𝑝𝑝 = 2255 − 19. Hereby, the results of addition, subtraction and
multiplication operations are given as modulo the prime 𝑝𝑝. Since the reduction
modulo 𝑝𝑝 requires bit-level manipulations, the reduction modulo 2𝑝𝑝 =
2256 − 38 is proposed in order to make intermediate results of the 𝔽𝔽𝑝𝑝
arithmetic operations to fit within 256 bits12. As opposed to the reduction
modulo 𝑝𝑝, the reduction modulo 2𝑝𝑝 does not require bitwise operations, and
can be performed using only additions with carry. In this way, the reduction
modulo 2𝑝𝑝 can be applied throughout groups of finite-field arithmetic
operations (e.g. scalar inversion, X25519, point addition, point doubling),
allowing the postponing of the reduction modulo 𝑝𝑝 until the calculation of the
final result.

For notation purposes, let us consider the arithmetic operations 𝑓𝑓 , such
that 𝑅𝑅 = 𝑓𝑓(𝑋𝑋,𝑌𝑌). Moreover, being 𝑅𝑅 up to 512 bits in length (in the case of 𝑓𝑓
being a multiplication), let us also consider 𝑅𝑅𝐻𝐻 and 𝑅𝑅𝐿𝐿 as the higher and lower
256-bit limbs of 𝑅𝑅, respectively. The reduction modulo 2𝑝𝑝 consists in

6 S. Moonesamy, “RFC7479 – Using Ed25519 in SSHFP Resource Records”, in Internet Engineering Task Force (IETF), 2015
7 E. Rescorla, “RFC8646 – The Transport Layer Security (TLS) Protocol Version 1.3”, in Internet Engineering Task Force (IETF),
2018
8 Apple Inc., “Apple CryptoKit – Perform cryptographic operations securely and efficiently”, in Apple Developer, 2019. Apple
and CryptoKit are registered trademarks of Apple Inc., in the U.S. and other countries.
9 Infineon Technologies AG, “AURIX™ Security Solutions”, 2019
10 Thales Group, “SafeNet Luna Network HSM”, 2019
11 D. Bernstein, “Curve25519: New Diffie-Hellman Speed Records”, in International Workshop on Public Key Cryptography,
pages 207–228. Springer, 2006.
12 M. Düll; B. Haase; G. Hinterwälder; M. Hutter; C. Paar; A. Sánchez; P. Schwabe, “High-Speed Curve25519 on 8-bit, 16-bit, and
32-bit Microcontrollers”, in Designs, Codes and Cryptography, 77(2-3):493–514, 2015.

LG Comments: Docket No. NIST–2019–0004

7
IANNARBOR\000119780\0001\530886.v2-1/15/20

successively adding the value congruent to the carry modulo 𝑝𝑝 = 2255 − 19
to the lower 𝑅𝑅𝐿𝐿 limb, until the result fits in 256 bits.

LG Comments: Docket No. NIST–2019–0004

8
IANNARBOR\000119780\0001\530886.v2-1/15/20

Technical comment
On page 59, NIST SP 800-186 (Draft) states that “The modulus for this curve
(Curve25519) is 𝑝𝑝 = 2255 − 19. Each integer 𝐴𝐴 less than 𝑝𝑝2 can be written

𝐴𝐴 = 𝐴𝐴1 ∙ 2256 + 𝐴𝐴0 (Eq. 4)

where each 𝐴𝐴𝑖𝑖 is a 256-bit integer. As a concatenation of 256-bit words, this can be
denoted by

𝐴𝐴 = (𝐴𝐴1||𝐴𝐴0)

The expression for 𝐵𝐵 is

𝐵𝐵 = (38 ∙ 𝐴𝐴1 + 𝐴𝐴0)(mod 2𝑝𝑝),

where all computations are carried out modulo 2𝑝𝑝 rather than modulo 𝑝𝑝.

This allows efficient modular reduction and finite field operations that try and
minimize carry-effects of operands if each integer X less than 2p is represented as

𝑋𝑋 = 𝑋𝑋9 ∙ 2234 + 𝑋𝑋8 ∙ 2208 + 𝑋𝑋7 ∙ 2182 + 𝑋𝑋6 ∙ 2156 + 𝑋𝑋5 ∙ 2130 +
𝑋𝑋4 ∙ 2104 + 𝑋𝑋3 ∙ 278 + 𝑋𝑋2 ∙ 252 + 𝑋𝑋1 ∙ 226 + 𝑋𝑋0 , (Eq. 5)

where each 𝑋𝑋𝑖𝑖 is a 26-bit integer and where 𝑋𝑋9 is a 22-bit integer. Note that in this
case, multiplication by the small constant 38 does not lead to overflows if each 𝑋𝑋𝑖𝑖 is
stored as a 32-bit word. It turns out that the cost of occasional resizing of X,
represented this way, is outweighed by savings due to the possibility of postponing
‘carry’ operations.”

LG Comment
NIST SP 800-186 (Draft) proposes the unsaturated limb representation shown above
in order to avoid carry computations when multiplying 38 by the higher 𝐴𝐴1 word (an
operation equivalent to add 38 repeatedly for 𝐴𝐴1 times into 𝐴𝐴0). Since a
multiplication of a 26-bit unsigned integer by 38 (6 bits) results in a 32-bit unsigned
integer, the value resulting from this operation fits in a 32-bit register, eliminating
the need for propagating the carry value to another register. Following a similar logic,
an unsaturated 51-bit limb representation was proposed for implementations on 64-

LG Comments: Docket No. NIST–2019–0004

9
IANNARBOR\000119780\0001\530886.v2-1/15/20

bit platforms13. LG believes that these unsaturated limb representations are suitable
for software implementations in order to facilitate code auditability and portability
across different target platforms, to prevent mistakes when manually implementing
carry propagation logic, and to avoid incorrect compiler’s machine-code extraction
from high-level carry logic implementations. Therefore, when adopting an
unsaturated representation, the implementer neither needs to keep track of overflow
conditions nor how/when to process the carry values.

Nevertheless, we believe that the register usage limitations in low-level Assembly
implementations targeting embedded platforms might impose restrictions to the use
of unsaturated representations, since they require an increased number of registers
to accommodate finite-field operands. For instance, whereas eight (8) 32-bit
registers are required for the representation of a single 256-bit integer, ten (10)
registers are necessary when using the proposed 26-bit limb representation (Equation
5). Moreover, it is worth mentioning that most modern embedded processors
implement carry handling mechanisms (e.g. overflow flags, carry instructions,
multiply-and-accumulate instructions, implicit registers), which can be used along
with a saturated limb representation in order to allow more efficient register usage
schemes. However, when adopting a saturated representation, it may be tricky for
the implementer to take care of all overflow conditions, and to make sure that all
possible carry values are processed accordingly.

Therefore, as a complement to the NIST’s suggested unsaturated 26-bit limb
representation, LG proposes reference algorithms for the implementation of finite-
field operations in Curve25519 using saturated limb representations. Along with the
algorithms, we demonstrate a corresponding step-by-step upper-bound analysis
throughout the reduction modulo 2𝑝𝑝 process in order to ensure that all carry values
are handled during the reduction process. For our algorithms, we consider the
constant-time implementation practices (aiming to thwart side-channel attacks), and
that all the variables and intermediate results are represented in radix-2256, as in
Equation 4.

A. Modular addition and subtraction
Algorithm 1 describes the implementation of the reduction modulo 2𝑝𝑝 for the
modular addition. Since field elements are up to 256-bit long, the sum 𝑆𝑆

13 Y. Chen; C. Hsu; H. Lin; P. Schwabe; M. Tsai; B. Wang; B. Yang; S. Yang; “Verifying Curve25519 Software”, in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages 299–309.
ACM, 2014.

LG Comments: Docket No. NIST–2019–0004

10
IANNARBOR\000119780\0001\530886.v2-1/15/20

resulting from the addition of the field elements 𝑋𝑋 and 𝑌𝑌 can only carry at
most one bit to 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎, as described in line 6 of Algorithm 1. Therefore, the
value to be added back to 𝑆𝑆 will be either 0 or 38.

If 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 is equal 1, the addition with carry must be performed again over 𝑆𝑆,
since there might still exist intermediate carry values. The addition of 38 to 𝑆𝑆
results in 𝑆𝑆′, as depicted in line 7 of Algorithm 1. Although very unlikely to
happen, if this addition step still carries a bit in 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎′ , it is necessary to add 38
again to the 𝑆𝑆′, which gives the final result 𝑆𝑆′′ (line 8 of Algorithm 1).

Even considering that the probability of 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎′ to be equal 1 is very low, a
constant-time implementation requires the execution of all the
aforementioned steps without any conditional statements.

1: input: 𝑋𝑋,𝑌𝑌 ∈ {0,1}256 ⇒ 256-bit integers
2: output: 𝑆𝑆′′ ∈ {0,1}256 ⇒ 256-bit integer

3: 𝑆𝑆, 𝑆𝑆′ ∈ {0,1}256 ⇒ intermediate addition variables, 256-bit integers
4: 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎′ ∈ {0,1}1 ⇒ carry variables, 1-bit integers

5: procedure ADD_MOD_2P (𝑋𝑋,𝑌𝑌):
6: 2256 ∙ 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆 ← 𝑋𝑋 + 𝑌𝑌
7: 2256 ∙ 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎′ + 𝑆𝑆′ ← 𝑆𝑆 + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎
8: 𝑆𝑆′′ ← 𝑆𝑆′ + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎′
9: end procedure

Algorithm 1 - Addition modulo 2𝑝𝑝, constant-time implementation

To demonstrate that no extra additions by 38 are required, Equation 6
describes an upper bound analysis for all the steps shown in Algorithm 1. Even
considering the largest possible input values that can be represented by 𝑋𝑋
and 𝑌𝑌, the upper bound analysis show that the final sum 𝑆𝑆′′ still fits in 256
bits. Therefore, when 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 is equal zero (0), the final sum 𝑆𝑆′′ is equal 𝑆𝑆′ ,
which can be up to 256 bits in size. On the other hand, when 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 is equal one
(1), the final sum 𝑆𝑆′′ can be up to seven (7) bits in size. Thus, by repeating the
addition by 38 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 twice, we ensure that no carry bits are left aside
during the reduction process.

Algorithm 1, line 6:
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 = 2256 − 1 + 2256 − 1 = 2257 − 2
⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚)⌋ + 1 = 257 bits

LG Comments: Docket No. NIST–2019–0004

11
IANNARBOR\000119780\0001\530886.v2-1/15/20

Algorithm 1, line 7:
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 = 2256 − 2 + 38 = 2256 + 36
⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎)⌋ + 1 = 257 bits

Algorithm 1, line 8:
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
′′ = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

′ + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎′ = 74 ⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
′′)⌋ + 1 = 7 bits

 Equation 6 – Upper bound analysis of the addition modulo 2𝑝𝑝 for 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 = 2256 − 1

This upper bound analysis also applies for the modular subtraction, since the
subtraction of the field elements 𝑋𝑋 and 𝑌𝑌 can only borrow at most one bit to
𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 (the equivalent of 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 in addition operation). Thus, in this case, the
value to be subtracted back from 𝑆𝑆 will be either 0 or 38 as well.

B. Modular multiplication

Algorithm 2 describes the implementation of the reduction modulo 2𝑝𝑝 for the
modular multiplication. Following the radix-2256 representation, we split the
product resulting from the multiplication of the field elements 𝑋𝑋 and 𝑌𝑌 in two
parts: 𝐻𝐻 and 𝐿𝐿 . Since field elements are up to 256-bit long, the
multiplication 𝑋𝑋 × 𝑌𝑌 can carry at most 256 bits to 𝐻𝐻, as represented by the
operation in line 8 of Algorithm 2.

In this case, the value of 38 × 𝐻𝐻 must be added back to the lower 𝐿𝐿 limb (this
is equivalent to add 38 into 𝐿𝐿 repeatedly for 𝐻𝐻 times). However, since the
38 × 𝐻𝐻 product might also get more than 256-bit long, we need to first reduce
it in order to make sure it fits in 256 bits: if the 38 × 𝐻𝐻 product results in carry
bits over 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, we need to add the value of 38 × 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 to the lower 256-bit
limb of the 38 × 𝐻𝐻 product. These operations are shown in lines 9, 10, and 11
of Algorithm 2.

The addition of 38 × 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 into the lower 256-bit limb of 38 × 𝐻𝐻, resulting in
up to 256 bits in 𝑀𝑀′, can still carry up to one bit in 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎. In this case, a last 38
must be added into 𝑀𝑀′ in order to obtain 𝑀𝑀′′, which always fits in 256 bits.
Lastly, since 𝑀𝑀′′ is the value of 𝐻𝐻 mod 2𝑝𝑝 (therefore being up to 256-bit
long), the last step of the multiplication modulo 2𝑝𝑝 consists in applying the
addition modulo 2𝑝𝑝 over the lower 256-bit limb of 𝑋𝑋 × 𝑌𝑌 (namely, 𝐿𝐿) and 𝑀𝑀′′,
as depicted in line 13 of Algorithm 2.

It is worth mentioning again that, despite the low probabilities of some carry
values to occur, a constant-time implementation requires the execution of all
the aforementioned steps without any conditional statements.

LG Comments: Docket No. NIST–2019–0004

12
IANNARBOR\000119780\0001\530886.v2-1/15/20

1: input: 𝑋𝑋,𝑌𝑌 ∈ {0,1}256 ⇒ 256-bit integers
2: output: 𝑃𝑃 ∈ {0,1}256 ⇒ 256-bit integer

3: 𝐿𝐿,𝐻𝐻,𝑀𝑀,𝑀𝑀′,𝑀𝑀′′ ∈ {0,1}256 ⇒ intermediate variables, 256-bit integers
4: 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ∈ {0,1}6 ⇒ multiplication by 38 carry, 6-bit integer
5: 𝑟𝑟 ∈ {0,1}11 ⇒ multiplication by 38 carry, 11-bit integer
6: 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 ∈ {0,1}1 ⇒ addition carry, 1-bit integer

7: procedure MUL_MOD_2P (𝑋𝑋,𝑌𝑌):
8: 2256 ∙ 𝐻𝐻 + 𝐿𝐿 ← 𝑋𝑋 × 𝑌𝑌
9: 2256 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 +𝑀𝑀 ← 38 × 𝐻𝐻
10: 𝑟𝑟 ← 38 × 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
11: 2256 ∙ 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑀𝑀′ ← 𝑀𝑀 + 𝑟𝑟
12: 𝑀𝑀′′ ← 𝑀𝑀′ + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎
13: 𝑃𝑃 ← ADD_MOD_2P (𝐿𝐿,𝑀𝑀′′)
14: end procedure

Algorithm 2 – Multiplication modulo 2𝑝𝑝, constant-time implementation

To demonstrate that no further repeated additions by 38 are required, Equation
7 details an upper bound analysis for all the operations listed in Algorithm 2.
Again, even considering the largest representable values for 𝑋𝑋 and 𝑌𝑌 , the
upper bound analysis shows that the final product 𝑃𝑃 still fits in 256 bits.

Algorithm 2, line 8:
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 = (2256 − 1) × (2256 − 1) = 2512 − 2257 + 1
⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚)⌋ + 1 = 512 bits

Algorithm 2, line 9:
38 × 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 38 × (2256 − 2) = 38 × 2256 − 76
⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(38 × 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚)⌋ + 1 = 262 bits

Algorithm 2, line 10:
38 × 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 38 × 37 = 1406 ⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(38 × 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚)⌋ + 1 = 11 bits

Algorithm 2, line 11:
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 2256 − 76 + 1406 = 2256 + 1330
⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)⌋ + 1 = 257 bits

Algorithm 2, line 12:
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
′ + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 = 1330 + 38 = 1368

⇒∴ ⌊𝑙𝑙𝑙𝑙𝑙𝑙2(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
′ + 38 × 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎)⌋ + 1 = 11 bits

 Equation 7 - upper bound analysis of the multiplication modulo 2𝑝𝑝 for 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 = 2256 − 1

LG Comments: Docket No. NIST–2019–0004

13
IANNARBOR\000119780\0001\530886.v2-1/15/20

Conclusion
In response to NIST’s publication of Draft Special Publication (SP) 800-186, we
presented reference algorithms for the implementation of the reduction
modulo 2𝑝𝑝 = 2256 − 38 using saturated limb representations. The upper-bound
analyses provided along the reference algorithms show that all overflow conditions
are properly handled during the specified algorithms’ steps, and the final results
always fit in 256 bits. Despite final overflow conditions occurring for a very small
set of (𝑋𝑋,𝑌𝑌) pairs, we believe that secure implementations need to cover the corner
cases.

Although we demonstrated our algorithms and analysis using a radix-2256 for the
sake of simplification of the mathematical expressions in the upper-bound analysis,
the algorithms, the overflow conditions, and the upper-bound analysis apply to
implementations in traditional 32 and 64-bit processor platforms. Furthermore, the
analysis for the multiplication modulo 2𝑝𝑝 also applies for the finite-field squaring
operation, since it is essentially a multiplication with equal operands.

LG Electronics appreciates your consideration of our comments in this FRN. For
additional information, please contact Harsh Kupwade Patil (harsh.patil@lge.com)
or Henrique Ogawa (henrique1.ogawa@lge.com).

mailto:harsh.patil@lge.com
mailto:henrique1.ogawa@lge.com

Qian, Yuji
<yqian@nvidia.com>
Thu 10/31/2019 10:58 PM
 SP800-186-comments

Hi,

This is Yuji Qian from NVIDIA Semiconductor Technology (Shanghai), there is one comment on SP 800-
186,
The u-coordinate of montgomery curve25519 base point (Gv) is wrong, the correct one is:
14781619447589544791020593568409986887264606134616475288964881837755586237401
(=0x20ae19a1b8a086b4e01edd2c7748d14c923d4d7e6d7c61b229e9c5a27eced3d9)

Thanks,
Yuji

mailto:yqian@nvidia.com

Smith, David
From: Smith, David E. <David.Smith@cyber.gc.ca>
Sent: Thursday, January 30, 2020 4:52 PM
To: SP800-186-comments <sp800-186-comments@nist.gov>
Subject: Cyber Centre comments on SP 800-186 (Draft)

Please find below our editorial and technical comments on the Draft SP 800-186 issued for comment in
October 2019.

David Smith
Canadian Centre for Cyber Security

Page, section,
paragraph

Type Comment

8, 4, 7 Editorial
The formatting of angle brackets on <P> on line 409 should be to be consistent
with lines 408 and 413.

10, 4.1.3,
Polynomial
Basis

Editorial

The explanation of how to choose the pentanomial states that “the second
term t^a has the lowest degree m”. It should read “the second term t^a has
the lowest degree among all irreducible pentanomials of degree m”. Also the
phrase “the third term t^b has the lowest degree among all irreducible
pentanomials of degree m and the second term t^a …” should read “the third
term t^b has the lowest degree among all irreducible pentanomials of degree
m with the second term t^a …”.

26, 4.3.1.4,
f(z)

Editorial/

Technical

The definition of f(z) on line 1103 is incorrect. It should be f(z) = z^{409} +
z^{87} + 1. See ANSI X9.142 Table B.3 for reference.

mailto:David.Smith@cyber.gc.ca
mailto:sp800-186-comments@nist.gov

	Public Comments Received on Draft NIST SP 800-186:Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters
	Adinolfi, Shailee
	Bernstein, Dan/Lange, Tanja
	Dempsky, Matthew
	Giessmann, Ernst
	Hartog, Kyle
	Ireland, Marc
	Markowitz, Michael
	Mattsson, John
	Patil, Harsh
	Qian, Yuji
	Smith, David

