U.S. flag   An unofficial archive of your favorite United States government website
Dot gov

Official websites do not use .rip
We are an unofficial archive, replace .rip by .gov in the URL to access the official website. Access our document index here.

Https

We are building a provable archive!
A lock (Dot gov) or https:// don't prove our archive is authentic, only that you securely accessed it. Note that we are working to fix that :)

This is an archive
(replace .gov by .rip)
Presentation

High-Speed Hardware Architectures and Fair FPGA Benchmarking of CRYSTALS-Kyber, NTRU, and Saber

June 7, 2021

Presenters

Kris Gaj - George Mason University

Description

Performance in hardware has typically played a significant role in differentiating among leading candidates in cryptographic standardization efforts. Winners of two past NIST cryptographic contests (Rijndael in case of AES and Keccak in case of SHA-3) were ranked consistently among the two fastest candidates when implemented using FPGAs and ASICs. Hardware implementations of cryptographic operations may quite easily outperform software implementations for at least a subset of major performance metrics, such as latency, number of operations per second, power consumption, and energy usage, as well as in terms of security against physical attacks, including side-channel analysis. Using hardware also permits much higher flexibility in trading one subset of these properties for another. This paper presents high-speed hardware architectures for four lattice-based CCA-secure Key Encapsulation Mechanisms (KEMs), representing three NIST PQC finalists: CRYSTALS-Kyber, NTRU (with two distinct variants, NTRU-HPS and NTRU-HRSS), and Saber. We rank these candidates among each other and compare them with all other Round 3 KEMs based on the data from the previously reported work.

Event Details

Location

    
                            

Related Topics

Security and Privacy: post-quantum cryptography

Created June 07, 2021, Updated June 10, 2021