U.S. flag   An unofficial archive of your favorite United States government website
Dot gov

Official websites do not use .rip
We are an unofficial archive, replace .rip by .gov in the URL to access the official website. Access our document index here.

Https

We are building a provable archive!
A lock (Dot gov) or https:// don't prove our archive is authentic, only that you securely accessed it. Note that we are working to fix that :)

Presentation

Probabilistic Hash-and-Sign with Retry in the Quantum Random Oracle Model

November 30, 2022

Presenters

Haruhisa Kosuge - Japan Ministry of Defense

Description

A hash-and-sign signature based on preimage-sampleable function (PSF) (Gentry et al. [STOC 2008]) is secure in the Quantum Random Oracle Model (QROM) if the PSF is collision-resistant (Boneh et al. [ASIACRYPT 2011]) or one-way (Zhandry [CRYPTO 2012]). However, trapdoor functions (TDFs) in code-based and multivariate-quadratic-based (MQ-based) signatures are not PSFs; for example, underlying TDFs of the Courtois-Finiasz-Sendrier (CFS), Unbalanced Oil and Vinegar (UOV), and Hidden Field Equations (HFE) signatures are not surjection. Thus, such signature schemes adopt probabilistic hash-and-sign with retry. This paradigm is secure in the (classical) Random Oracle Model (ROM), assuming that the underlying TDF is non-invertible; that is, it is hard to find a preimage of a given random value in the range (e.g., Sakumoto et al. [PQCRYPTO 2011] for the modified UOV/HFE signatures). Unfortunately, there is no known security proof for the probabilistic hash-and-sign with retry in the QROM.

We give the first security proof for the probabilistic hash-and-sign with retry in the QROM, assuming that the underlying non-PSF TDF is non-invertible. Our reduction from the non-invertibility is tighter than the existing ones that apply to only signature schemes based on PSFs. We apply the security proof to code-based and MQ-based signatures. Moreover, we extend the proof into the multi-key setting by using prefix hashing (Duman et al.[ACM CCS 2021]).

Event Details

Location

    Virtual

Related Topics

Security and Privacy: post-quantum cryptography

Created November 23, 2022, Updated December 01, 2022